
On Discovery of Traveling Companions from
Streaming Trajectories

Lu-An Tang1,2, Yu Zheng2, Jing Yuan2,3, Jiawei Han1

Alice Leung4, Chih-Chieh Hung5, Wen-Chih Peng6

1University of Illinois at Urbana-Champaign; 2Microsoft Research Asia
3University of Science and Technology of China; 4BBN Technologies;

5Yahoo! Inc.; 6National Chiao Tung University
{tang18, hanj}@illinois.edu, {yuzheng, v-jinyua}@microsoft.com
aleung@bbn.com, oshin@yahoo-inc.com, wcpeng@cs.nctu.edu.tw

Abstract— The advance of object tracking technologies leads
to huge volumes of spatio-temporal data collected in the form of
trajectory data stream. In this study, we investigate the problem
of discovering object groups that travel together (i.e., traveling
companions) from streaming trajectories. Such technique has
broad applications in the areas of scientific study, transportation
management and military surveillance. To discover traveling
companions, the monitoring system should cluster the objects
of each snapshot and intersect the clustering results to retrieve
moving-together objects. Since both clustering and intersection
steps involve high computational overhead, the key issue of
companion discovery is to improve the efficiency of algorithms.
We propose the models of closed companion candidates and
smart intersection to accelerate data processing. A data structure
termed traveling buddy is designed to facilitate scalable and
flexible companion discovery from streaming trajectories. The
traveling buddies are micro-groups of objects that are tightly
bound together. By only storing the object relationships rather
than their spatial coordinates, the buddies can be dynamically
maintained along trajectory stream with low cost. Based on
traveling buddies, the system can discover companions without
accessing the object details. The proposed methods are evaluated
with extensive experiments on both real and synthetic datasets.
The buddy-based method is an order of magnitude faster
than baselines. It also achieves higher precision and recall in
companion discovery.

I. INTRODUCTION

The technical advances in location-acquisition devices and
tracking technologies have generated huge amount of trajec-
tory data recording the movement of people, vehicle, animal
and natural phenomena in a variety of applications, such as
social network, transportation management, scientific studies
and military surveillance: (1) In Foursquare [1], the users
check in the sequence of visited restaurants and shopping malls
as trajectories. In many GPS-trajectory-sharing websites like
Geolife [35], people upload their travel or sports routes to
share with friends. (2) Many taxis in major cities have been
embedded with GPS sensors. Their locations are reported to
the transportation system in the format of streaming trajecto-
ries [32], [28]. (3) Biologists solicit the moving trajectories
of animals like migratory birds for their research [2]. (4)
The battlefield sensor network watches the designated area
and collects the movement of possible intruders [27]. Their
trajectories are watched by military satellites all the time.

In the above-mentioned applications, people usually expect
to discover the object groups that move together, i.e., traveling
companions. For example, commuters want to discover people
with the same route to share car pools. Scientists would like
to study the pathways of species migration. Information about
traveling companions can also be used for resource allocation,
security management, infectious disease control and so on.

Despite of the wide applications, the discovery of traveling
companion is not efficiently supported in existing systems,
partly due to the following challenges:

• Spatio-temporal co-location: Companions are objects that
travel together. Here “travel together” means the objects
are spatially close at the same time. Many state-of-the-
art trajectory clustering methods, retrieving the object’s
major moving direction from their trajectories, ignore the
temporal information of objects [20], [15], [23], [30], [33],
[16]. Hence they cannot be directly used for companion
discovery.

• Incremental discovery: In several applications like military
surveillance, the system needs to monitor objects for a
long time and discover companions as soon as possible.
Hence the algorithm should report the companions in an
incremental manner, i.e., output the results simultaneously
while receiving and processing the trajectory data stream.

• Efficiency: Most trajectories are generated in a format of
data stream. Huge amounts of data arrive rapidly in a short
period of time. The monitoring system has to cluster the
data and intersect the clusters for companions. These steps
involve high computational overhead. The algorithm should
develop efficient data structures to process large scale data.

• Effectiveness: The number of companions is usually large.
The system should report the large and long-lasting compan-
ions rather than small and short-time ones. The companion-
discovery algorithm should be effective to select the most
important results.

We are aware that several studies have retrieved object
groups similar to the traveling companions, such as flock
[12], convoy [17] and swarm [24]. However, most of them
are designed to work on static datasets, some methods need

multiple scans of the data, or cannot output results in an
incremental manner. Hence it is still desirable to provide high-
quality but less costly techniques for companion discovery on
a trajectory stream.

In this study, we investigate the models, principles and
methodologies to discover traveling companions from stream-
ing trajectories. The main contributions of this paper include:
(1) introducing the companion models to define the problem;
(2) proposing the concepts of smart intersection and closed
companion candidates to accelerate data processing; (3) ana-
lyzing the bottleneck of the problem and proposing a traveling
buddy based approach; and (4) demonstrating the scalability
and feasibility of the proposed methods by experiments on
both real and synthetic datasets. Since the objects keep on
moving in the trajectory stream, it is hard to maintain an
index for their spatial positions. However, the relationship of
objects are gradual evolutions rather than fierce mutations.
The traveling buddies only store such relationship and can
be easily maintained along the data stream. They can help
discover companions without accessing the object details and
significantly improve the algorithm’s efficiency.

The rest of the paper is organized as follows. Section
II defines the problem; Section III introduces the general
framework of companion discovery; Section IV proposes the
traveling buddy based method; Section V evaluates the algo-
rithm’s performances; Section VI carries out the discussions;
Section VII gives a brief review of the related work and finally
in Section VIII we conclude the paper.

II. PROBLEM DEFINITION

In the various applications of traveling companion, there
are some common principles shared in different scenarios. We
illustrate the characteristics of companion discovery by the
following example.

Example 1: Ten objects are tracked by a monitoring system.
Fig.1 shows their positions in four snapshots. There are three
key issues to discover the companions:

• Cluster: The companions are the objects that travel together,
i.e., in the same cluster. Since the people, vehicles and
animals often move and organize in arbitrary ways, the
companion shape is not fixed. In Fig.1, the objects are
grouped in round shape in snapshots s1 and s2, while in
s3, they are moving in a queue and the companions are
formed as thin and long ellipses.

• Consistency: The companions should be consistent enough
to last for a few snapshots. This feature makes it possible to
find the companions by intersecting the clusters of different
snapshots.

• Size: Most users are only interested in the object groups
that are big enough. They may have requirements on the
companion’s size. For example, if the user sets the size
threshold as four and requires the companion to last for
at least four snapshots, then {o1, o2, o3, o4} is the result
companion.

s1 s2 s3 s4

o5

o6

o7
o9

o10

o2

o3

o4

o5o1

o8

o3

o1

o2

o4

o6

o7

o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6
o5

Fig. 1. Example: Discover Traveling Companions

To discover the traveling companions with various shapes,
we employ the concepts of density-based clustering [8] in this
study.

Definition 1 (Density Reachable): Let O be the object set
in a snapshot, ε be the distance threshold, μ be the density
threshold and Nε(oi) = {oj ∈ O | dist(oi, oj) ≤ ε}. Object
oj is directly density reachable from object oi if oj ⊂ Nε(oi)
and |Nε (oi) | ≥ μ.

Definition 2 (Density Connection): Let O be the object set
in a snapshot, object oi is density connected to object oj , if
there is a chain of objects {o1, . . . , on} ∈ O where o1 = oj ,
on = oi such that oi+1 is directly density reachable from oi.

With the concepts of density connection, we formally define
the traveling companion as follows.

Definition 3 (Traveling Companion): Let δs be the size
threshold and δt be the duration threshold, a group of objects
q is called traveling companion if:
(1) The members of q are density connected by themselves
for a period t where t � δt;
(2) q’s size size(q) � δs.
Problem Definition: Let trajectory data stream S be denoted
by a sequence of snapshots {s1, s2, . . . , si, . . .}. Each snap-
shot si = {(o1, x1,i, y1,i), (o2, x2,i, y2,i), . . . , (on, xn,i, yn,i)},
where xj,i, yj,i are the spatial coordinates of object oj at
snapshot si. When the data of snapshot si arrives, the task
is to discover companion set Q that contains all the traveling
companions so far.

We will introduce the framework and techniques for com-
panion discovery in the next few sections. Fig. 2 lists the
notations used throughout this paper.

Notation

S

C

R

B

O

Explanation

the trajectory stream

the cluster set

the candidate set

the buddy set

the object set

Notation

s, si, sj

ci, cj

q

bi, bj

o1, o2, oi

Explanation

the snapshots in stream

the clusters

the traveling companion

the traveling buddies

the objects

ri, rj the companion candidates

Q the companion set

ε the distance threshold μ the density threshold

δs the size threshold δt the duration threshold

δγ the buddy radius threshold γi, γj the buddy radius

Fig. 2. List of Notations

III. COMPANION DISCOVERY FRAMEWORK

A. The Clustering-and-Intersection Method

A general framework of clustering-and-intersection is pro-
posed in [12], [17] to retrieve the convoy patterns. This
framework can also be adapted to discover companions on
trajectory stream: The idea is to retrieve companion candidates
by counting common objects in the clusters from different
snapshots. The system keeps clustering the objects in coming
snapshots and intersecting them with the stored candidates.
In this way the candidates are gradually refined to become
resulting companions.

Definition 4 (Companion Candidate): Let δs be the size
threshold and δt be the duration threshold, a group of objects
r is a companion candidate if:
(1) The members of r are density connected by themselves
for a period t where t < δt ;
(2) size(r) � δs.

Intuitively, the companion candidates are the object groups
with enough size but shorter duration. The candidate’s size
reduces when intersecting with the clusters from other snap-
shots, but its lasting time increases. Once a candidate’s time
grows longer than threshold, it will be reported as a traveling
companion. Meanwhile, as soon as the candidate is not large
enough, it is no longer qualified and should be removed from
memory. Fig. 3 lists the steps of clustering-and-intersection
algorithm.

Algorithm 1. Clustering-and-Intersection

Input: size threshold s, duration threshold t, distance threshold

, density threshold μ, candidate set R and the trajectory data

stream S

Output: every qualified companion q

1. for each coming snapshot s of S

2. initialize new candidate set R';

3. cluster the objects in s w.r.t to and μ;

4. for each candidate ri R, do

5. for each cluster cj s, do

6. new candidate ri' ri cj;

7. duration (ri') = duration (ri)+duration (s);

8. if size(ri') s then

9. add ri' to R';

10. if duration (ri') t then

11. output ri' as a qualified companion q;

12. add all the new clusters to R';

13. R R';

Fig. 3. Algorithm: The Clustering-and-intersection Method

Algorithm 1 first performs density-based clustering for all
the objects in coming snapshot (Lines 1 – 3). Then the system
refines companion candidates by intersecting them with new
clusters (Lines 4 – 7). The intersection results with enough
size are stored as new candidates (Lines 8 – 9). The ones with
enough duration are reported as traveling companion (Lines
10 – 11). The new clusters are added to the candidate set

(Line 12). At last the candidate set R is updated to process
following snapshots (Line 13).

Proposition 1: Let n1 be the size of objects and n2 be the total
size of candidate set R. The time complexity of Algorithm 1
is O(n2

1+n1 ∗ n2).

Proof: In the clustering step, the algorithm needs O(n2
1) time

to generate density-based clusters 1. In the intersection step,
suppose there are average m1 clusters and m2 candidates, the
system carries out m1 ∗m2 intersections, and the intersection
takes l1 ∗ l2 time, where l1 is the average cluster size and l2
is the average candidate size. Since m1 ∗ l1 = n1, m2 ∗ l2 =
n2, thus the time complexity of intersection step is O(m1 ∗
m2 ∗ l1 ∗ l2) = O(n1 ∗ n2) and the total time complexity is
O(n2

1+n1 ∗ n2).

Example 2: Fig. 4 shows the running process of clustering-
and-intersection algorithm. Suppose each snapshot lasts for
10 minutes, the size threshold is 3 and the time threshold is
40 minutes. The objects are first clustered in each snapshot.
Two clusters in s1 are taken as the candidates, namely r1

and r2. Then they are intersected with the clusters in s2,
meanwhile, the cluster of s2 is also added as a new candidate
r3. The clustering and intersection steps are carried out in each
snapshot. Finally, the algorithm reports {o1, o2, o3, o4} as a
traveling companion in s4. The total intersection times are 29,
and the largest candidate set R appears in s3 with 23 objects
involved.

s1 = 10m s2= 10m s3= 10m s4= 10m

r1 ={o1, o2, o3,

o4 }, 10 m

r2 ={o6, o7, o8,

o9, o10}, 10 m

r1 ={o1, o2, o3,

o4 }, 20 m

r2 ={o6, o7, o8,

o9, o10}, 20 m

r3 ={o1, o2, o3,

o4, o5, o6, o7, o8,

o9, o10}, 10 m

r1 ={o1, o2, o3,

o4}, 30 m
r2 ={o8, o9, o10},

30 m

r4 ={o8, o9,

o10}, 20 m

r3 ={o1, o2, o3,

o4 , o5}, 20 m

r5 ={o1, o2, o3,

o4, o5}, 10 m

r1 ={o1, o2, o3,

o4 }, 40 m

r2 ={o1, o2, o3,

o4, o5}, 30 m

r3 ={o1, o2, o3,

o4 , o5}, 20 m

R's size: 9

Intersect: 0

R's size: 19

Intersect: 2

R's size: 23

Intersect: 11

R's size: 14

Intersect: 29

r6 ={o8, o9,

o10}, 10 m

o5

o6

o7
o9

o10

o2

o3

o4

o5o1

o8

o3

o1

o2

o4

o6

o7

o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6
o5

Fig. 4. Example: The Clustering-and-intersection Method

1The clustering process can be improved to O(n1 ∗ logn1) with a spatial
index, however it is costly to maintain such spatial index in each time snapshot
[21].

B. The Smart-and-Closed Algorithm
The computational overhead of clustering-and-intersection

method is high in both time and space. In each snapshot,
the intersection is carried out in every pair of candidate and
cluster. However, most intersections cannot generate qualified
results with enough size. In this subsection we introduce the
methods to improve the efficiency: (1) the smart algorithm
stops the intersection step early once it is impossible to
generate qualified candidates, and (2) the closed candidate are
used to help reduce the memory cost.

Lemma 1: Let r be a companion candidate and δs be the
size threshold, if there are more than size(r) − δs objects
of r already appearing in intersected clusters, continuously
intersecting r with remaining clusters will not generate any
meaningful results with size larger than δs.

Proof: Since each object only appears once in a single
snapshot and only belongs to one cluster2, if there are more
than size(r) − δs objects appearing in already intersected
clusters, even in the best case (all the remaining objects are
in a single cluster), the intersection result will still be smaller
than size(r) − (size(r) − δs) = δs.

Lemma 1 can be used to improve the candidate refining
process with smart intersection. Once an object is found in
the cluster, the algorithm removes it from the candidate. The
intersection process will stop earlier if there are less than δs

objects remaining in the candidate.
Another problem of clustering-and-intersection method is

the space efficiency, if all new clusters are added as candidates,
the size of the candidate set will increase rapidly as trajectory
stream passes-by, such a huge candidate set is a burden for
system memory. In the worst case, all the clusters stay constant
in the series of snapshots, the intersection process cannot prune
any existing candidates and all the new clusters are added
to the candidate set. After m snapshots, the system needs to
maintain a m∗n size candidate set, where n is the number of
objects.

In Fig. 4, candidates r3 and r5 in s3 contain the same
objects with different lasting time. In such cases, the system
only needs to store the one with longer time (e.g., r3). Such
candidates like r3 are called closed candidates.

Definition 5 (Closed Candidate): For a companion candidate
ri, if there does not exist another candidate rj such that ri

⊆ rj , and ri’s duration is less than rj’s duration, then ri is a
closed candidate.

Armed with Lemma 1 and Definition 5, we propose the
smart-and-closed algorithm. The modifications are underlined
in Fig. 5, the algorithm removes intersected objects from
the candidate set and checks its remaining size before next
intersection (Lines 5 and 9); when adding the new clusters
to the candidate set, the algorithm always checks if there
is already a candidate containing the same objects but with
longer duration, only the ones passing the closeness check are
added as new candidates (Lines 14 – 15).

2The clustering methods used in this study are all “hard-clustering”, i.e.,
an object can only belong to one cluster.

Algorithm 2. Smart-and-Closed Algorithm

Input: size threshold s, duration threshold t, distance threshold

, density threshold μ, candidate set R and the trajectory data

stream S

Output: every qualified companion q

1. for each coming snapshot s of S

2. initialize new candidate set R';

3. cluster the objects in s w.r.t to and μ;

4. for each candidate ri R, do

5. for each cluster cj s, do

6. if ri size is less than s then break;

7. new candidate ri' ri cj;

8. duration (ri') = duration (ri)+duration (s);

9. remove intersected objects from ri;

10. if size(ri') s then

11. add ri' to R';

12. if duration (ri') t then

13. output ri' as a qualified companion q;

14. for each cluster cj do

15. if cj is closed then add to R';

16. R R';

Fig. 5. Algorithm: The Smart-and-closed Discovery

In the worst case, Algorithm 2 cannot prune any candidates
and the time complexity is the same as Algorithm 1. However,
we find out that the smart-and-closed algorithm can save about
50% time and space in the experiments.

Example 3: Fig. 6 shows the running process of smart-and-
closed algorithm. In snapshot s3, when making intersections
for candidate r1 with three clusters, the process ends early after
the first round. Since the system only stores closed candidates,
the largest candidate set size is only 19 in s2, and the total
intersection time is 12, less than half of the cost in clustering-
and-intersection.

s1 = 10m s2= 10m s3= 10m s4= 10m

r1 ={o1, o2,

o3, o4 }, 10 m

r2 ={o6, o7,

o8, o9, o10},

10 m

r1 ={o1, o2,

o3, o4 }, 20 m
r2 ={o6, o7, o8,

o9, o10}, 20 m
r3 ={o1, o2,

o3, o4, o5, o6,

o7, o8, o9,

o10}, 10 m

r1 ={o1, o2,

o3, o4}, 30 m

r2 ={o8, o9,

o10}, 30 m

r3 ={o1, o2,

o3, o4 , o5},

20 m

r1 ={o1, o2,

o3, o4 }, 40 m

r2 ={o1, o2,

o3, o4 , o5},

30 m

R's size: 19

Intersect: 2

R's size: 15

Intersect: 9

R's size: 9

Intersect: 12

o5

o6

o7
o9

o10

o2

o3

o4

o5o1

o8

o3

o1

o2

o4

o6

o7

o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6
o5

R's size: 9

Intersect: 0

Fig. 6. Example: Smart-and-closed Algorithm

IV. TRAVELING BUDDY BASED DISCOVERY

Smart-and-closed algorithm improves the efficiency of in-
tersection step to generate companions, but the system still
has to cluster the objects in each snapshot. The density-based
clustering costs O(n2) time without spatial index, where n is
the number of the objects [14]. Due to the dynamic nature of
streaming trajectories (i.e., the objects’ positions are always
changing), maintaining traditional spatial indexes (such as R-
tree or quad-tree) at each time snapshot incurs high cost [21].
In this section, we introduce a new structure, called traveling
buddy, to maintain the relationship among objects and help
discover companions.

A. The Traveling Buddy

In streaming trajectories, the objects keep on moving and
updating their positions, however, the changes of object rela-
tionships are gradual evolutions rather than fierce mutations.
The object relationships are possible to be retained in a few
snapshots, i.e., the objects are likely to stay together with
several members of the current cluster. It is attractive to reuse
such information to speed up the clustering tasks. However,
the system cannot reuse it directly. The major issue is about the
intrinsic feature of density-based clustering. Unlike other types
of clusters, the results of density-based clustering may be quite
different due to minor position change of an individual object.
This phenomenon is called individual sensitivity as illustrated
in Example 4.

Example 4: Fig. 7 shows two consecutive snapshots of the
trajectory stream. Suppose the density threshold μ is set to
three. In snapshot s1, two clusters c1 and c2 are independent.
However in s2, object o1 moves a little to the south, and
this movement makes the two clusters density connected and
merged as one cluster c3. Such case may impose important
meanings in real applications, for instance, in the scenario of
infected disease monitoring, the people in the two clusters
should then be watched together since the disease may spread
among them.

s1 s2

o1

c1

c2
o1

c3

Fig. 7. Example: Individual Sensitivity Problem

The time cost of checking individual sensitivity is quadratic
to the cluster size, and in many cases the system has to
generate large clusters to produce meaningful companions.
Hence high computational overhead is still involved in the
clustering stage.

Then is it possible to explore a smaller and more flexible
structure? In real world, there are some kinds of micro-groups
in trajectory stream. For examples, couples would like to stay
together on trips, military units operate in teams, families of
birds, deer and other animals often move together in species
migration. Such objects stay closer to each other than outside
members. Even though they might not be as big as the
companion, their information can be used to help clustering.
Since they are way smaller than the cluster, their maintenance
cost is much lower.

Definition 6 (Traveling Buddy): Let s be a snapshot of
the trajectory stream and δγ be the buddy radius threshold,
traveling buddy b is defined as a set of objects satisfying: (1)
b ⊆ s; (2) for ∀oi ∈ b, dist(oi, cen(b)) � δγ , where cen(b) is
the geometry center of b. The buddy’s radius γ is defined as
the distance from cen(b) to b’s farthest member.

The traveling buddies can be initialized by incrementally
merging the objects in two steps: (1) treating all objects as
individual buddies; and (2) merging them with their nearest
neighbors. This process stops if the buddy’s radius is larger
than γ. The initialization step costs O(n2) time for n objects.
However, this step only needs to be carried out once and the
traveling buddies are dynamically maintained along the stream.

There are two kinds of operations to maintain buddies on the
data stream: namely split and merge, as shown in the following
example.

Example 5: Fig. 8 shows the traveling buddies in two
snapshots. Traveling buddy b1 is split into three parts in
snapshot s2. At the same time, b2, b3 and a part of b1 are
merged as a new buddy in s2.

s1 s2

b1

b2

b3

b1'

b2'

b3'

Fig. 8. Example: Merge and Split Buddies

When the data of a new snapshot st+1 arrive, the main-
tenance algorithm first updates the center of each buddy b.
For object oi ∈ b, the system calculates the shift (Δxi, Δyi)
between st+1 and st. And the new center is updated as:

cent+1(b) = cent(b) +
∑

oi∈b

(Δxi, Δyi)

Then every object oi ∈ b checks its distance to the buddy
center; if the distance is larger than δγ , oi will be split out

as a new buddy. The cen(b) is also updated by subtracting the
shift of oi.

The second operation is to merge the buddies that are close
to each other. If two buddies bi and bj satisfy the following
equation, they should be merged as a new buddy.

dist(cen(bi), cen(bj)) + γi + γj � 2δγ

Suppose bi has mi objects and bj has mj objects, the new
buddy bk’s center is computed as cen(bk) = (mi ∗ cen(bi) +
mj ∗cen(bj))/(mi+mj). Therefore, the system does not need
to access the detailed coordinates of each object to merge
buddies, the computation can be done with the information
from the old buddy’s center and size.

The detailed steps of buddy maintenance are shown in Fig.
9. When the data of a new snapshot arrives; the algorithm first
updates the center of each buddy (Line 2). Then each buddy
member is checked to see whether a split operation is needed
(Lines 3 – 7). At last, the system scans the buddy set and
merges the buddies that are close to each other. (Lines 10 –
13).

Algorithm 3. Traveling Buddy Maintenance

Input: the radius threshold , the traveling buddy set B and

the coming snapshot s

Output: updated buddy set B'

1. for each bi in B do

2. update cen(bi);

3. for oj in bi, do

4. if dist(oj, cen(bi)) > then // Split Operation

5. split oj out as a new buddy bj;

6. add bj to B';

7. update cen(bi);

8. add bi to B';

9. //Merge Operation

10. for each bi, bj in B', bi bj do

11. if dist(cen(bi), cen(bj)) + i+ j 2 then

12. merge bi, bj as bk;
13. remove bi, bj and add bk to B';

14. return B';

Fig. 9. Algorithm: Buddy Maintenance

Proposition 2: Let m be the average number of traveling
buddies and n be the number of objects. The time cost of
Algorithm 3 is O(n + m2).

Proof: The split operation needs to check each object and
the time cost is O(n). The merge operation has to check the
buddies pairs with time complexity O(m2). Therefore the total
maintenance cost is O(n + m2).

In the worst case, if the objects are sparse and each of them
is an individual buddy, where m = n. The maintenance cost is
still O(n2). However the number of m is usually much smaller
than n and the algorithm is likely to strike a relatively high
efficiency.

B. Buddy-based Clustering
In the clustering step, the system has to check the density

connectivity for each object. The traveling buddies can help
the clustering process avoid accessing those object details. To
bring down computational overhead, we introduce following
lemmas.

Lemma 2: Let b be a traveling buddy, ε be the distance
threshold and μ be the density threshold. If b’s size is larger
than μ+1 and the buddy radius γ � ε/2, then all the objects in
b are directly density reachable to each other. Such a traveling
buddy is called a density-connected buddy.

Proof: Note that γ � ε/2, thus for ∀oi, oj ∈ b, dist(oi, oj) �
2γ � ε. Then all the members of b are included in Nε(oi). If
b’s size is larger than μ+1, then |Nε(oi)| � μ. By Definition
1, oi and oj are directly density reachable.

Lemma 2 shows that, if a traveling buddy is tight and large
by itself, then all its members can be considered as density
connected. Lemma 2 also gives the directions that the radius
threshold δγ should not be set larger than ε/2.

Lemma 3: Let bi and bj be two traveling buddies with
radius γi and γj , and ε be the distance threshold. If
dist(cen(bi), cen(bj)) − γi − γj > ε, then the objects in bi

and bj are not directly density reachable.

Proof: As shown in Fig. 10(a):
if dist(cen(bi), cen(bj))−γi−γj > ε, then for ∀oi ∈ bi, oj ∈
bj , dist(oi, oj) > ε. Therefore, oj does not belong to Nε(oi)
and they are not directly density reachable.

Lemma 3 tells us that, when searching for the directly
density reachable objects for a traveling buddy, if another
buddy is too far away, then the system can prune all its
members without further computation. This lemma is very
helpful. In the experiments it helps prune more than 80% of
the objects.

For the traveling buddies that are close to each other, the
detailed distance computation still needs to be carried out.
But with the following lemmas, the system does not need to
compute distances between all the pairs. Lemma 4 provides
heuristics to speed up the computation.

Lemma 4: Let bi, bj be two density-connected buddies and
ε be the distance threshold. If ∃oi ∈ bi, oj ∈ bj such that
dist(oi, oj) � ε, then all the objects of bi and bj are density
connected.

Proof: As Fig. 10 (b) shows, since bi is a density-connected
traveling buddy and |Nε(oi)| � μ, if dist(oi, oj) � ε, then
oi and oj are directly density reachable. Since all the objects
in bi and bj are directly density reachable from oi and oj ,
respectively. Therefore, all the objects in the two traveling
buddies are density connected.

Based on Lemma 4, once the system finds a pair of objects
close to each other, it ends the computation and considers
the corresponding buddies density-connected. The detailed
algorithm is listed in Fig. 11. The algorithm first updates the
buddy set in a new snapshot (Line 1). Then it randomly picks
a buddy and checks the density connectivity to others (Lines 2

dist (cen(bi), cen(bj))

dist (bi, bj)

i
j

dist (oi, oj)

bi bj

dist (oi, oj)

bi bj

(a) (b)

Fig. 10. Proof of Lemma 3 and 4

– 4). The far-away buddies are filtered out (Lines 5 – 6). With
the help of Lemma 4, the algorithm searches density reachable
buddies and objects and adds them to the cluster (Lines 7 –
13). Finally, the algorithm outputs clustering results when all
the buddies are processed (Line 15).

Algorithm 4. Buddy-based Clustering

Input: the distance threshold , the density threshold μ, the

coming snapshot s and the buddy set B.

Output: the cluster set C

1. update buddy set B; //Algorithm 3

2. randomly pick a buddy bi in B;

3. initialize cluster ci bi, add ci to C;

4. for bj in B, bj bi, do

5. if dist(cen(bi), cen(bj)) - i - j > , then

6. continue; // Lemma 3

7. for each oi in bi, oj in bj, do

8. if dist(oi, oj) , then

9. if bi , bj are density connected then

10. add bj to ci; //Lemma 4

11. break;

12. else if oj is density reachable then

13. add oj to ci;
14. repeat steps 2 - 13 until all buddies are processed;

15. return the cluster set C;

Fig. 11. Algorithm: Buddy-based Clustering

In the worst case, Algorithm 4 is still with O(n2) time
complexity, where n is the number of objects. But in most
cases, Lemmas 3 and 4 can prune majority buddies and save
time for distance computation. The experiment results show
that buddy-based clustering is an order of magnitude faster
than the original clustering algorithm.

C. Companion Discovery with Buddies

The buddies are not only useful in clustering step, they are
also helpful for the intersection process to generate compan-
ions. When intersecting a candidate with a cluster, the system
needs to check whether each candidate’s objects appear in
the cluster or not. The information of traveling buddies can
provide a shortcut to this process: If a buddy stays unchanged
during the period, and it appears both in the candidate and
the cluster, then the system can put all its members into the
intersection result without accessing the detailed objects.

To efficiently utilize the buddy information, a buddy index
is designed to keep the candidates dynamically updated with
the buddies.

Definition 7 (Buddy Index): The buddy index is a triple
{BID, ObjSet, CanIDs}, where BID is the buddy’s ID,
ObjSet is the object members of the buddy, CanIDs records
the IDs of candidates containing the buddy.

As long as the buddy stays unchanged, the candidates only
store the BID instead of detailed objects. While making
intersections, the buddy is treated as a single object. When
the buddy changes, the system updates all the candidates in
CanIDs and replaces BID with the corresponding objects
in ObjSet. The buddy-based companion discovery algorithm
is listed in Fig. 12.

Algorithm 5. Buddy-based Companion Discovery

Input: Size threshold s, duration threshold t, candidate set

R, buddy index BI and the trajectory data stream S

Output: every qualified companion q

1. for each coming snapshot s of S;

2. initialize new candidate set R';

3. buddy based clustering; // Algorithm 4

4. update BI and corresponding candidates;

5. for each candidate ri in R, do

6. if size(ri) < s then break;

7. for each cluster cj in s, do

8. ri' buddy-based-intersection(ri, cj);

9. duration (ri') = duration (ri)+duration (s);

10. remove intersected objects and buddies from ri;

11. if size(ri') s then

12. add ri' to R';

13. if duration (ri') t then

14. output ri' as a qualified companion q;

15. for each cluster cj do

16. if cj is closed then add to R';

17. R R';

Fig. 12. Algorithm: Buddy-based Companion Discovery

When a new snapshot arrives, the algorithm performs
buddy-based clustering and updates the buddy index (Lines
2 – 4), then selects out the candidates with enough size
(Lines 5 – 6). The candidates are interested with the generated
clusters with the help of the buddy index (Lines 7 – 10).
The candidate’s duration and size are checked again after
the intersection, and the qualified ones are output as the
companions (Lines 11 – 14). Finally, the closed candidates
are added to the memory for further processing (Lines 15 –
17).

Example 6: Fig. 13 shows the running process for buddy-
based companion discovery. There are four buddies initialized
in snapshot s1. In the candidates, the buddy ID is stored
instead of detailed objects. In snapshot s2, the four buddies
stay the same and the algorithm makes intersections by only
checking their BIDs. Although the total intersection time is
not reduced, the time cost for each intersection operation has
been brought down. It is common that different candidates

s1 = 10m s2= 10m s3= 10m s4= 10m

r1 ={b1, b2},

10 m

r2 ={b3, b4},

10 m

r1 ={b1, b2 },

20 m
r2 ={b3, b4},

20 m
r3 ={b1, b2,

b3, b4, o5}, 10

m

r1 ={b1, b2},

30m
r2 ={o8, b4},

30 m

r3 ={b1, b2,

o5}, 20 m

r1 ={b1, b2 },

40 m
r2 ={b1, b2 ,

o5}, 30 m

o5

o6

o7
o9

o10

o2

o3

o4

o5

o1

o8

o5

o3

o1

o2

o4

o6

o7

o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6

b1 ={o1, o2 }
b2 ={o3, o4 }
b3 ={o6, o7,

o8}
b4 ={o9, o10 }

b1

b2

b3

b4

b1

b2

b3

b4

b1 ={o1, o2 }
b2 ={o3, o4 }
b3 ={o6, o7,

o8}
b4 ={o9, o10 }

b1 ={o1, o2 }

b2 ={o3, o4 }

b4 ={o9, o10 }

b1 ={o1, o2 }
b2 ={o3, o4 }

b1 b2

b4

b1 b2

R's size: 9

Intersect: 0

R's size: 10

Intersect: 2

R's size: 8

Intersect: 9

R's size: 5

Intersect: 12

Fig. 13. Example: Buddy-based Discovery

contain the same objects, such as r1 and r3 in s2. The buddy
index helps to keep only one copy of the objects and add only
pointers (the BIDs) to candidates. Therefore, the space cost
is further reduced. In s3, the buddy b3 is no longer valid, then
the system updates candidate r2, using the objects to replace
the buddy’s ID. In s4, traveling companion r1 is discovered as
{b1, b2}. With the help of buddy index, the system can easily
look up detailed objects and output the companion as {o1, o2,
o3, o4}.

V. PERFORMANCE EVALUATION

A. Experiment Setup

Datasets: We evaluate the proposed methods on both real and
synthetic trajectory datasets. The taxi dataset (D1) is retrieved
from the Microsoft GeoLife and T-Drive projects [32], [35].
The trajectories are generated from GPS devices installed on
500 taxis in the city of Beijing. The dataset is available to
public3. The military trajectory dataset (D2) is retrieved from
the CBMANET project [19], in which an infantry battalion
of 780 units, divided as 30 groups, moves from Fort Dix to
Lakehurst for a mission on two routes in 3 hours. Meanwhile,
to test the algorithm’s performance in large datasets, we also
generate two synthetic datasets (D3 and D4), being comprised
of 1,000 to 10,000 objects, with more than 10 million data
records.
Baselines: The proposed Smart-and-Closed algorithm (SC)
and Buddy-based discovery algorithm (BU) are compared with
Clustering-and-Intersection method (CI), which is used as the

3GeoLife GPS Trajectories Datasets. Released at:
http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-
daa38f2b2e13/default.aspx

framework to find convoy patterns [17]; and two state-of-
the-art algorithms: (1) The Swarm pattern (SW) [24] that
captures the objects moving within arbitrary shape of clusters
for certain snapshots that are possibly non-consecutive; (2)
The TraClu algorithm (TC) [20] that discovers the common
sub-trajectories with a density-based line-segment clustering
algorithm.
Environments: The experiments are conducted on a PC with
Intel 6400 Dual CPU 2.13G Hz and 2.00 GB RAM. The
operating system is Windows 7 Enterprise. All the algorithms
are implemented in Java on Eclipse 3.3.1 platform with JDK
1.6.0. The parameter settings are listed in Fig. 14.

Dataset Obj. # Duration Sample Freq. Snapshot# Record#

Taxi (D1) 500 4.2 hours 5 minutes 50 25,000

Military (D2) 780 3 hours 1 minute 180 140,400

Syn 1 (D3) 1,000 24 hours 1 minute 1,440 1.44 M

Syn 2 (D4) 10,000 24 hours 1 minute 1,440 14.4 M

The companion size threshold �s: 5 – 40, default 10

The companion duration threshold �t: 3 – 15, default 10

The clustering parameter � and � are set according to different datasets.

The buddy radius threshold ��: �/2– �/10, default �/2.

Fig. 14. Experiment Settings

B. Comparisons in Discovery Efficiency

In this subsection we conduct experiments to evaluate the
efficency of companion discovery algorithms. Since both SW
and TC cannot output the results incrementally, we take the
running time of entire dataset as the measure for time cost.
The size of candidate set (# of objects) is used to measure
the space cost of companion computation. The only exception
is TC, since the algorithm only carries out the sub-trajectory
clustering task and does not store any companion candidates,
TC’s space cost is not included in the experiment.

We first evaluate the algorithm’s time and space costs on
different datasets with default settings. Fig. 15 shows the
experiment results. Note that the y-axes are in logarithmic
scale. BU achieves the best performances on all the datasets.
In the largest dataset D4, BU is an order of magnitude faster
than CI and SW. BU’s space cost is only 20% of SW and less
than 5% of CI.

Figure 16 illustrates the influences of companion size
threshold δs in the experiments. The experiment is carried
on dataset D3. Based on default settings, we evaluate the
algorithms with different values of δs. Generally speaking,

100

1000

10000

100000

1000000

D1 D2 D3 D4

BU SC CI SW

1

10

100

1000

10000

D1 D2 D3 D4

BU SC CI SW TC

10
3

10
4

10
5

10
6

Time (second) Candidate size (#)10
7

(a) (b)

Fig. 15. Efficiency: (a) time, (b) space on diff. datasets

100

1000

10000

100000

1000000

10 20 30 40

BU SC CI SW

1

10

100

1000

10000

10 20 30 40

BU SC CI

SW TC

10
3

10
4

10
5

10
6

δs δs

Time (second)
Candidate size (#)

(a) (b)

Fig. 16. Efficiency: (a) time, (b) space vs. δs

1000

10000

100000

1000000

3 7 11 15

BU SC CI SW

1

10

100

1000

10000

3 7 11 15

BU SC CI

SW TC

10
3

10
4

10
5

10
6

t t

Time (second) Candidate size (#)

(a) (b)

Fig. 17. Efficiency: (a) time, (b) space vs. δt

when the size threshold grows larger, the filtering mechanism
is more effective to prune more companion candidates in each
snapshot. The space costs reduce significantly, and the running
times also decreases for fewer intersections.

We also study the influence of duration threshold δt. Based
on default settings, the experiments are conducted on dataset
D3. The value of δt is changed from 3 to 15, the algorithm’s
performances are shown in Fig. 17. BU, SC and CI are
all faster when δt grows larger, because many companion
candidates are not consistent enough to last for a long time.
When setting δt as 15 snapshots, BU can process the dataset
in less than 20 seconds (Fig. 17 (a)). It is almost an order
of magnitude faster than SC and CI. TC is not influenced by
δs and δt, since it is only a clustering algorithm and does not
generate any companion candidates. Beside TC, SW also could
not improve the performance when δt increases, the reason is
SW utilizes the object-growth strategy to prune candidates.
Such heuristics could only work with the size threshold δs,
but cannot benefit from larger δt.

C. Efficiency Analysis for Buddy-based Discovery

Why is the buddy-based discovery algorithm more efficient?
BU outperforms other methods in the efficiency evaluations,
especially in the scenarios of long lasting stream with large
number of objects. In this subsection we carry out the ex-
perimental analysis to reveal the advantages of buddy-based
discovery method.

In the beginning, we tune the parameters of BU to study
the factors that influence its efficiency. With δs and δt set
as default values, we test BU with different buddy radius
threshold δγ from ε/10 to ε/2, and record the average buddy
size |b|, buddy number and algorithm’s running time. Their
relationships are demonstrated in Fig. 18. One can clearly

0

100

200

300

400

1.26 2.22 4.31 9.17

B-Cluster BU

DBSCAN

0

300

600

900

1.26 2.22 4.31 9.17

Total# Split#

Merge# Same#

|b|

Buddy # Time (second)

|b|

(a) (b)

Fig. 18. Efficiency Analysis: (a) buddy number, (b) time vs. buddy size

learn from Fig. 18 (a) that the total buddy number is inversely
proportional to the average buddy size |b|. In addition, the
number of unchanged buddies decreases rapidly as |b| grows
larger. However, as shown in Fig. 18 (b), the running time
of both buddy-based clustering (B-Cluster) and BU decreases
with larger |b|. This phenomenon can be explained by Propo-
sition 2, the cost of buddy’s maintenance algorithm is O(n +
m2), where n is the number of objects and m is the number
of buddies. If n is fixed, then m is inversely proportional to
|b|. Hence BU costs less time if |b| is larger. Based on the
efficiency analysis, we recommend setting the buddy radius as
a relatively large value (such as ε/2). Fig. 18 (b) also records
the time cost of DBSCAN clustering algorithm as a reference.
Even if less than 20% buddies stay unchanged (which is rare
for real-world objects), as long as the average size of the
buddies is larger than 3, the buddy-based clustering algorithm
can still outperform DBSCAN. The experiment results show
that BU is especially feasible for processing a trajectory stream
with dense object clusters.

BU has three steps, namely the maintenance step (M-
step, Algorithm 3), clustering step (C-step, Algorithm 4) and
intersection step (I-step, Algorithm 5). To study the time cost
of each step, the system carries out BU on the four datasets and
record the time costs of each step, as well as their proportions
in the total running time, as shown in Fig. 19. The results
denote that the clustering step is actually the most efficient
in the three, it costs less than 5% of the total running time,
compared to the DBSCAN clustering which usually takes 40-
50% of the total running time of SC. BU spends an extra
10% to 15% time in maintaining the buddies to save more
time from the clustering task. The two lemmas, especially
Lemma 3, utilize the buddy information to filter out many
objects without accessing their details. In addition, the buddy
index helps to reduce the size of the candidate set, and so
decreases the intersection times of companion discovery.

D. Evaluations on Algorithm’s Effectiveness

The third part of the experiment is to evaluate the quality of
the retrieved companions. In dataset D2, an infantry battalion
of 780 units moves from Fort Dix to Lakehurst for a mission
on two routes in 3 hours. The objects are organized in 30
teams, each team has 25 to 30 units. The information of team
partitioning is retrieved as the ground truth. The algorithm’s
outputs are matched to the ground truth and the measures of
precision and recall are calculated as follows.

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

M% C% I%

1

10

100

1000

D1 D2 D3 D4

M-step C-Step I-Step Total

Time (second)

(a) (b)

Fig. 19. Efficiency Analysis: (a) running time, (b) percentage of BU steps
on diff. datasets

Precision: The proportion of true companions over all the
retrieved results of the algorithm. It represents the algorithm’s
selectivity in finding out meaningful companions.
Recall: The proportion of detected true companions over the
ground truth. This criteria shows the algorithm’s sensitivity for
detecting traveling companions.

We conduct experiments with different values of the size
threshold δs. The results of effectiveness evaluation are shown
in Fig. 20. BU and SC have same precision and recall
since they output identical companions. They have about 20%
precision improvement over SW, and near 40% precision
improvement over CI. SW generates the swarm patterns of
frequently meeting objects, which is actually a super set of
the companions. The swarm pattern is highly sensitive to help
find out all the companions (i.e., 100% recall), but SW also
generates more false positives that bring down the algorithm’s
selectivity. CI has the same problem with even lower precision.
Since there are many redundant and non-closed companions
in the results, more than half of CI’s results are not useful.

Again, TC is not affected by the parameters of δs and δt.
TC takes the movement direction as an important measure to
compute sub-trajectory clusters; its results reflect the major
directions of the object movements. However, such clusters
may not capture the information of companions, because the
companion member’s moving direction might be different. As
an illustration, please go back to Fig. 1. From snapshot s2 to
s3, the moving directions of o8 and o9 are different, hence
they may be put in different sub-trajectory clusters.

Another interesting observation is that, in Fig. 20, BU, SC,
CI and SW’s precisions all increase when δs becomes larger,
since fewer companions can pass a higher size threshold.
However, if δs is set too high (more than 25), several true
companions will also be filtered out and the algorithm cannot
achieve 100% recall.

Finally we study the influence of time threshold δt. Fig.
21 shows the precision and recall of the five algorithms with
different δt on D2. BU and SC achieve better performance
than SW and CI. When increasing δt, the algorithm’s precision
increases, but they can still keep a high recall. Since all the
true companions last for a long period in D2. If we set δt

greater than 11, both BU and SC can achieve 100% precision
and recall. Hence we suggest that in real applications, the
user should set a relatively high time threshold to filter out
false positives, but a moderate size threshold to guarantee the
algorithm’s sensitivity.

0%

20%

40%

60%

80%

100%

10 20 30 40

BU SC CI

SW TC

0%

20%

40%

60%

80%

100%

10 20 30 40

BU SC CI

SW TC

δs δs

Precision Recall

Fig. 20. Effectiveness: (a) precision, (b) recall vs. δs

0%

20%

40%

60%

80%

100%

3 7 11 15

BU SC CI

SW TC

0%

20%

40%

60%

80%

100%

3 7 11 15

BU SC CI

SW TC

δt δt

Precision Recall

Fig. 21. Effectiveness: (a) precision, (b) recall vs. δt

VI. DISCUSSIONS

In real world, the data items on streaming trajectories arrive
in different timestamps with various delays. The objects may
not report their positions at the same timestamp. With rigorous
constraints on time, it is difficult to discover meaningful com-
panions, the time cost is also high to process the companion
discovery at every data item’s arrival.

Suppose two travelers visit the same place in a very short
time interval (e.g., ten seconds), they can be seen as moving
together. In this study, we utilize the concept of snapshot as
the projection of all the objects’ spatial information in a given
time span. The snapshot can be formed in two ways:
• Equal length: A fixed time span is set according to the

reporting frequency of the devices, and one snapshot is
generated for each time span;

• Equal width: The minimum number of the objects in a
snapshot is defined according to the concern of precision.
The system does not generate new snapshot until enough
objects have reported their positions.
The snapshots can be generated by the sliding window

model in a batch processing mode. The sliding window stores
the object positions, and the window size equals the object
number. When a new data item arrives, the window updates
the position of corresponding objects. Once the window sat-
isfies the length or width requirements, the system clears the
window, outputs all the data items to generate a snapshot and
carries out the companion discovery task on that snapshot.

It is possible that there are multiple position reports for
a single object in a snapshot. Fig. 22 shows an example
of three snapshots. Object o2 has multiple position reports
in the time span of snapshot s2. In such case, the sliding
window updates o2’s position as the mean value of reported
coordinates. Another problem is missing data. In Fig. 22,
although o3 may travel together with o1 and o2 in snapshot

s1 and s3, since its position record is missing in s2, it will
not be included in the companion. A robust system should
tolerant such cases. In this study, we use the inactive period
to deal with missing data. It is a threshold for the max interval
between two position reports of the object. If the object is
missing in a snapshot, as long as the inactive period is less
than the threshold, the system still assumes that the object is
traveling together with the companion in previous snapshot.
In Fig. 22, if the inactive period threshold is larger than 16
seconds, the system assumes that o3 travels together with o1

and o2 in s2.

(O1, 9s)

(O1, 18s)

(O1, 25s)

(O2, 3s)

(O2, 27s)

(O3, 6s)

O3 is missing

(O3, 22s)

X

YT

O

S1

S2

S3

10s

20s

30s

(O21, 12s)
(O22, 16s)

(O23, 18s)

Fig. 22. Snapshots in the Trajectory Stream

We also conduct experiments to study the influence of
the inactive period. Since SW and TC are not affected by
this parameter, we run the algorithms of BU, SC and CI on
dataset D3 by tuning the inactive period threshold from 0 to
6 snapshots. Fig. 23 shows the algorithm’s time and space
cost. With larger inactive periods, all the algorithm’s space
costs increase since they cannot prune the candidates if several
objects temporally leave the companion. The system has to
spend more time to make intersections with a larger candidate
set.

The effectiveness experiment is carried out on dataset D2.
Since D2 is collected with high quality, there is no missing
data for any object. We randomly remove 10% data from
D2, and use the remaining parts for experiments. The inactive
period is changed from 0 to 6 snapshots, and other parameters
are set as default values. As shown in Fig. 24 (a), the precision
of companion discovery decreases with inactive period, since
more false positive companions are generated. However, the

1000

10000

100000

1000000

0 2 4 6

BU SC CI

0

20

40

60

80

100

0 2 4 6

BU SC CI

10
3

10
4

10
5

10
6

Inactive period

Time (second) Candidate size (#)

(a) (b)

Inactive period

Fig. 23. Efficiency: (a) time, (b) space vs. inactive period

0%

20%

40%

60%

80%

100%

0 2 4 6

BU SC CI

0%

20%

40%

60%

80%

100%

0 2 4 6

BU SC CI

Precision Recall

Inactive period Inactive period

Fig. 24. Effectiveness: (a) precision, (b) recall vs. inactive period

recalls increase as the inactive period grows (Fig. 24 (b)). Even
with 10% missing data, BU and SC can still achieve a high
recall near 95%.

VII. RELATED WORK

Gaffney et al. first proposed the fundamental principles of
clustering moving objects based on the theories of probabilistic
modelling [9], [6]. Lee et al. proposed a novel partition-and-
group framework to find the clusters based on sub-trajectories
[20]. Yang et al. proposed the idea of neighbor-based pattern
detection method for windows [30]. Ester et al. made the
progress to generate incremental clusters [7]. Zhang and Lin
used the k-centre clustering algorithm [11] to discover inter-
esting patterns [33]. More recently, Jensen et al. utilized the
velocity features to cluster objects and improved the clustering
effectiveness for trajectory data [16].

However, as pointed out in [17], the trajectory clustering
methods cannot be used directly for traveling companion
discovery. Most algorithms, such as [7], generate clusters from
the whole dataset. If the clusters are not retrieved snapshot by
snapshot, the companion patterns cannot be discovered from
the object relationships among snapshots.

Movement pattern discovery is a hot topic in recent years.
The problem has been variously referred to as the search
for flocks [12], moving clusters [18], spatial-tempo joins [4],
spatial co-locations [31], meetings [13], convoys [17], moving
groups [3], swarms [24] and so on.

One of the earliest works is flock discovery [13]. A flock
is defined as a group of objects moving together within a
circular region [12]. There are several variations of this model:
Variable flock permits the members to change during the time
span [5], meeting is a circle similar to flock but fixed in a
single location all the time [12]. However, such shapes are
restricted to circles and the results are also sensitive to the
parameter of radius.

Li et al. designed a flow scan algorithm for hot route
mining [22]. Liu et al. mined frequent trajectory patterns by
using RF tag arrays. Their work successfully demonstrated the
feasibility and the effectiveness of movement patterns in real
life [25]. Tao et al. proposed the technique of spatio-temporal
aggregation using sketch index. This method can process the
queries an order of magnitude faster than the previous works
[29]. Giannotti et al. proposed the interest region based mining
algorithm [10]. Zhang et al. propose the techniques to produce
intersections of streaming moving objects [34]. This method
is a big improvement from existing algorithms by the speed-
up of several orders of magnitude. Nutanong et al. use a safe
region to report objects that do not change over time [26]. The

proposed V*-Diagram has much smaller IO and computation
costs than previous methods. It outperforms the best existing
technique by two orders of magnitude. However, since the
above methods focus more on discovering hot spots, regions or
routes rather than object groups, they cannot be used directly
for companion discovery.

Kalnis et al. proposed the first study to automatic extract
moving clusters from large spatial datasets [18]. In a recent
work, Jeung et al. proposed the framework of convoy query
[17]. It is a significant step forward in the works of movement
pattern mining, since it allows the objects to organize in
arbitrary shapes. Li et al. further released the constraints of
convoy and proposed the swarm pattern to discover object
groups in a sporadic way [24].

The concepts of convoy and swarm patterns are similar
to traveling companion. The major differences are about the
discovery algorithms. The convoy algorithm needs to scan the
entire trajectory into memory to make trajectory simplification,
and the system also needs to load the whole dataset into
memory to search for swarms. Hence it is impractical to use
them in a data stream environment. In addition, the swarm
pattern is a frequent itemset-based concept. Since it is difficult
to detect large size frequent itemsets [36], the swarm pattern
has limited applicability for datasets with large scale objects.

VIII. CONCLUSION AND FUTURE WORK

In this study we investigate the problem of traveling com-
panion discovery on trajectory data streams. We propose the
algorithms of smart-and-closed discovery to efficiently gener-
ate companions from trajectory data. The model of traveling
buddy is proposed to help improve both the clustering and
intersection processes for companion discovery. We evaluate
the proposed algorithms in extensive experiments on both real
and synthetic datasets. The buddy-based method is shown to
be an order of magnitude faster than existing approaches. The
effectiveness of buddy-based algorithm also outperforms other
competitors in terms of precision and recall.

In the future, we plan to extend the companion discovery
technique to more complex scenarios, such as road networks.
We are also interested in integrating the methods to real
application cases such as battlefield monitoring systems and
traffic analysis services.

IX. ACKNOWLEDGEMENTS

The work was supported in part by U.S. NSF grants
IIS-0905215, CNS-0931975, CCF-0905014, IIS-1017362, the
U.S. Army Research Laboratory under Cooperative Agreement
No. W911NF-09-2-0053 (NS-CTA). The views and conclu-
sions contained in this document are those of the authors and
should not be interpreted as representing the official policies,
either expressed or implied, of the Army Research Laboratory
or the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation here on.

REFERENCES

[1] http://foursquare.com/.
[2] http://www.movebank.org.

[3] H.-H. Aung. Discovering moving groups of tagged objects. In Technique
Report, National University of Singapore, 2008.

[4] P. Bakalov, M. Hadjieleftheriou, and V. J. Tsotras. Time relaxed
spatiotemporal trajectory joins. In ACM GIS, 2005.

[5] M. Benkert, J. Guddmundsson, F. Hubner, and T. Wolle. Reporting flock
patterns. Comput. Geom. Theory Appl., 41(3):111–125, 2008.

[6] I. V. Cadez, S. Gaffney, and P. Smyth. A general probabilistic framework
for clustering individuals and objects. In SIGKDD, 2000.

[7] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu. Incremental
clustering for mining in a data warehousing environment. In VLDB,
1998.

[8] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In
SIGKDD, 1996.

[9] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of
regression models. In SIGKDD, 1999.

[10] F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Trajectory pattern
mining. In SIGKDD, 2007.

[11] T. Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, pages 293–306, 1985.

[12] J. Gudmundsson and M. v. Kreveld. Computing longest duration flocks
in trajectory data. In ACM GIS, 2006.

[13] J. Gudmundsson, M. v. Kreveld, and B. speckmann. Efficient detection
of motion patterns in spatio-temporal data sets. In ACM GIS, 2004.

[14] J. Han and M. Kamber. Data Mining: Concepts and Techniques Second
Edition. Morgan Kaufmann, 2006.

[15] S. Har-Peled. Clustering motion. Discrete and Computational Geometry,
31(4):545–565, 2003.

[16] C. S. Jensen, D. Lin, and B. C. Ooi. Continuous clustering of moving
objects. IEEE TKDE, 19(9):1161–1174, 2007.

[17] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery
of convoys in trajectory databases. In VLDB, 2008.

[18] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters
in spatial-temporal data. In SSTD, 2005.

[19] T. Krout. Cb manet scenario data distribution. In Technique Report of
BBN, 2007.

[20] J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: a partition-
and-group framework. In SIGMOD, 2007.

[21] M. Lee, W. Hsu, C. S. Jensen, B. Cui, and K. Teo. Supporting frequent
updates in r-trees: A bottom-up approach. In VLDB, 2003.

[22] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic density based
discovery of hot routes in road networks. In SSTD, 2007.

[23] Y. Li, J. Han, and J. Yang. Clustering moving objects. In SIGKDD,
2004.

[24] Z. Li, B. Ding, J. Han, and R. Kays. Swarm: Mining relaxed temporal
moving object clusters accurate discovery of valid convoys from moving
object trajectories. In VLDB, 2010.

[25] Y. Liu, L. Chen, J. Pei, Q. Chen, and Y. Zhao. Mining frequent trajectory
patterns for activity monitoring using radio frequency tag arrays. In
IEEE PerCom, 2007.

[26] S. Nutanong, R. Zhang, E. Tanin, and L. Kulik. The v*-diagram: A
query dependent approach to moving knn queries. In VLDB, 2008.

[27] L.-A. Tang, X. Yu, S. Kim, J. Han, C.-C. Hung, and W.-C. Peng. Tru-
alarm: Trustworthiness analysis of sensor networks in cyber-physical
systems. In ICDM, 2010.

[28] L.-A. Tang, Y. Zheng, X. Xie, J. Yuan, X. Yu, and J. Han. Retrieving
k-nearest neighboring trajectories by a set of point locations. In SSTD,
2011.

[29] Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias. Spatio-temporal
aggregation using sketches. In ICDE, 2004.

[30] D. Yang, E. A. Rundensteiner, and M. O. Ward. Neighbor-based pattern
detection for windows over streaming data. In EDBT, 2009.

[31] J. S. Yoo and S. Shekhar. A partial join approach for mining co-location
patterns. In ACM GIS, 2004.

[32] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang.
T-drive: driving directions based on taxi trajectories. In GIS, 2010.

[33] Q. Zhang and X. Lin. Clustering moving objects for spatial-temporal
selectivity estimation. In ADC, 2004.

[34] R. Zhang, D. Lin, K. Ramamohanarao, and E. Bertino. Continuous
intersection joins over moving objects. In ICDE, 2008.

[35] Y. Zheng, X. Xie, and W. Ma. GeoLife: A Collaborative Social
Networking Service among User, location and trajectory. IEEE Data
Engineering Bulletin, 2010.

[36] F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng. Mining colossal frequent
patterns by core pattern fusion. In ICDE, 2007.

