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This is the companion page for our paper entitled "Identifying Recurrent and Unknown 

Performance Issues based on Hidden Markov Random Field Model”. This page gives more details 

about the proposed HMRF-based approach. If you have any comments or questions regarding this 

research work, please feel free to contact Dr Jian-Guang Lou at: jlou@microsoft.com. 

 

1. More Details about the HMRF-based Diagnostic Approach 

We focus on deriving a clustering objective function in terms of discretization thresholds and 

cluster representatives from the posterior probability of a HMRF model. Suppose that there exist 𝑣 

instances of performance issue where each of which belongs to one of the 𝑘 issue types for 𝑘 ≤

𝑣. The 𝑣 issue instances and the non-issue instances (e.g. compliance instances) together form 

𝑣 + 1 sets of temporal-neighboring constraints. Being bound by such 𝑣 + 1 sets of constraints, 

the 𝑇 records will eventually be grouped into 𝑘 + 1 clusters to indicate which of the performance 

issues are similar and which are not. Note that one of the 𝑘 + 1 clusters is reserved for the 

non-issue instances.  

The issue types can be modeled as a hidden Markov random field 𝐿 = {𝐿𝑡, 𝑡 ∈ ℸ}, where ℸ =

{1,2, … , 𝑇} denotes a set of time-epoch indices. The hidden variable 𝐿𝑡 represents the issue type 

(0 for non-issue and 1~𝑘 for 𝑘 issues) corresponding to each record at the 𝑡-th epoch. The hidden 

variables are mutually related via a neighborhood system 𝒩 = {⋃ 𝒩𝑝𝑝∈{0,1,…,𝑣} } where 𝒩𝑝 =

{𝑡𝑝1
, … , 𝑡𝑝𝑦

, … } ⊂ ℸ  denotes the 𝑝 -th non-overlapping neighborhood such that 𝑡𝑝𝑦
∉

𝒩{0,1,…,𝑣}\{𝑝}. 

On the other hand, each metric component 𝑥𝑡,𝑖 is discretized into a binary value �̅�𝑡,𝑖 according 

to a metric threshold 𝜏𝑖 (an unknown parameter to be identified through optimization in Section 

IV). If 𝑥𝑡,𝑖 has a value larger (resp. not larger) than 𝜏𝑖, then �̅�𝑡,𝑖 = 1 (resp. 0), signifying that 𝑥𝑡,𝑖 

is more likely to come from the distribution of values associated with SLO violation (resp. SLO 

compliance). The discretization can be written as 

𝒙𝒕,𝒊 = 𝑼(𝒙𝒕,𝒊 − 𝝉𝒊) = {
𝟎     𝐢𝐟(𝒙𝒕,𝒊 − 𝝉𝒊) ≤ 𝟎 

𝟏     𝐢𝐟(𝒙𝒕,𝒊 − 𝝉𝒊) > 𝟎 
 (1) 

The discretized metric vectors can then be modeled as an observable random field �̅� =

{�̅�𝑡, 𝑡 ∈ ℸ}, in which each metric vector 𝑋𝑡 follows a conditional probability distribution 𝑝(�̅�𝒕|𝑙𝑡) 

determined by its underlying violation state 𝑙𝑡. 

Let 𝓵 be a configuration of 𝐿 and 𝝌 be a metric configuration of �̅�, the posterior probability 

of configuration 𝓵 can be obtained as 

𝑷(ℓ|𝜒) =
𝑷(𝜒|ℓ) 𝑷(ℓ)

𝑷(𝜒)
 (2) 
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1) Likelihood 𝑃(𝝌|𝓵) 

By assuming that the probability density takes an exponential form, the conditional probability 

of 𝝌 given 𝓵can hence be expressed as 

𝑷(𝜒|ℓ) = 𝒑(𝜒, {�̅�𝑙}𝒍=𝟎
𝒌 ) =

𝟏

𝒁𝟐

∏ 𝒆−𝑫(�̅�𝑡,�̅�𝑙𝑡
)

𝒕∈ℸ

 (3) 

Note that the conditional probability in (3) can be described in terms of a distortion measure 𝐷 and 

a normalization constant 𝑍2. More specifically, the distortion measure quantifies the intra-cluster 

distance between �̅�𝒕and�̅�𝒍𝒕
in a 𝑀-dimensional Hamming space such that 

𝑫(�̅�𝑡 , �̅�𝑙𝑡
) = �̅�𝑡 ⊕ �̅�𝑙𝑡

 (4) 

where⊕ denotes the XOR operator. Note that since the records are represented in binary, the 

distortion is measured in terms of Hamming distance. In our scenario, the way to minimize the 

distortion is to optimize the underlying discretization thresholds that have a direct influence on the 

binary records �̅�𝒕. 

 

2) Prior probability 𝑃(𝓵) 

According to Hammersley-Clifford theorem, the prior probability of 𝓵 in a HMRF can be 

written as 

𝑷(ℓ) =
𝟏

𝒁𝟏

𝒆−𝑽(ℓ) =
𝟏

𝒁𝟏

𝒆
− ∑ 𝑽𝓝𝒑(ℓ)𝓝𝒑∈𝓝  (5) 

where 𝑍1 is a normalizing constant, 𝑉(𝓵) denotes the configuration potential function that can be 

expressed as a sum of potentials 𝑉𝒩𝑝
(𝓵)  over 𝑣 + 1 neighborhoods corresponding to 𝑣 

performance issue instances and a non-issue instance in the violation-state configuration 𝓵. We 

restrict the MRF over the hidden variable to have pairwise potentials by levying a 

temporal-neighboring constraint on every possible pair of discretized records within each 

neighborhood 𝒩𝑝, leading to (𝑛𝑝

2
) constraints with 𝑛𝑝 denoting the number of elements in 𝒩𝑝. 

With this, 𝑉𝒩𝑝
(𝓵) can be defined as 

𝑽𝓝𝒑
(ℓ) = 𝒘𝒑 ∑ 𝕝[𝒍𝒕 ≠ 𝒍𝒕′]

∀𝒕,𝒕′∈𝓝𝒑,

𝒕≠𝒕′

 (6) 

where 𝕝  denotes an indicator function (𝕝[true] = 1, 𝕝[false] = 0)  and 𝑤𝑝  denotes the 

normalizing weight for the total violations of temporal-neighboring constraint in the 𝑝 -th 

neighborhood. The potential 𝑉𝒩𝑝
 in (6) acts as a penalty function that punishes poor clustering 

configuration and shapes towards an ideal cluster formation where instances from a neighborhood 

are perfectly enclosed within one of the 𝑘 + 1 clusters. 

Note that the total temporal-neighboring constraints within every neighborhood are likely to be 

different, since the quantity of records in each neighborhood is not equal. For instance, as violation 

instances are relatively uncommon, each compliance record in 𝒩0 is bound with a higher number 

of constraints than the violation records. Consider that a cut has to be applied to separate a minority 

of records from a neighborhood (i.e., into two clusters) during the clustering optimization process. 

In such a case, small violation neighborhoods (short performance issues) are always preferred as it 

incurs a lower count of constraint violations. To avoid such an unfair selection, a normalization 

factor 𝑤𝑝 is added for normalizing 𝑉𝒩𝑝
(𝓵) to the range of [0,1]. Let 𝑛𝑝,𝑙  be the number of 

elements of the 𝑝-th neighborhood in the 𝑙-th cluster, |𝒩𝑝| = ∑ 𝑛𝑝,𝑙
𝑘
𝑙=0  be the cardinality of the 

𝑝-th neighborhood, 𝜆𝑝 = ∑ 𝕝[𝑛𝑝,𝑙 ≠ 0]𝑘
𝑙=0  be the number of clusters that contain at least an 



element of 𝑝-th neighborhood, and 𝑟𝑝 =
|𝒩𝑝|

𝜆𝑝
 be the number of the 𝑝-th neighborhood elements 

being divided equally to each of the 𝜆𝑝 clusters. Finally, 𝑤𝑝 can be described as 

𝒘𝒑 =
𝝀𝒑

(
𝝀𝒑

𝟐
)𝒓𝒑

𝟐
. (7) 

Although two or more non-adjacent performance issue instances (usually separated by long 

compliance phases) might belong to the same type of performance issue (e.g., caused by the same 

type of reason), we do not bind the records with temporal-neighboring constraints across these 

issues. This is because we do not have sufficient information to differentiate similar performance 

issues from different issues under such an unsupervised scenario. On the other hand, compliance 

instances in the training set, regardless of whether they are connected in time, are annotated with a 

single value indicating that the system is healthy. 

 

3) The objective function 

To obtain the maximum-a-posteriori configuration of HMRF, we minimize the posterior energy 

of HMRF (negative logarithm of 𝑃(𝓵|𝝌)) through optimizing the 𝑀 discretization thresholds 

𝝉 = {𝜏𝑖}𝑖=1
𝑀  and the 𝑘 + 1 cluster representatives {�̅�𝒍}𝑙=0

𝑘 .In accordance with (3) and (5), the 

objective function can be expressed as 

 

Note that 
1

𝑍
=

1

𝑍1𝑍2𝑍3
 is a constant. The second factor (𝐷  component) is resulted from the 

probability of generating the discretized records based on the corresponding conditional probability 

distribution, which are parameterized by the cluster representatives and the discretization thresholds. 

The minimization of 𝐷 component encourages binary representation of the discretized metric 

instances �̅�𝒕  to be driven towards the corresponding binary cluster representative �̅�𝒍𝒕
via 

optimizing the discretization thresholds. The minimization of the third factor 𝑉  component 

optimizes the cluster formation characterized by the representatives �̅�𝒍𝒕
and the cluster assignment 

of the records to satisfy most of the temporal-neighboring constraints. 

To prevent 𝐽𝑜𝑏𝑗 being dominated by either 𝐷 or 𝑉 component, two normalizing constants are 

introduced: 𝑤𝐷 =
1

∑ �̅�𝒕⊕�̅�𝟎𝑡∈ℸ
 and w𝑉 =

1

𝑣
 for𝐷  and 𝑉  components respectively to normalize 

them to a similar range: [0, 1]. Substituting (1), (4), (6) and (7) into (8), the minimization of 𝐽𝑜𝑏𝑗 

eventually becomes 

 

 

  

𝑱𝒐𝒃𝒋 = − 𝐥𝐨𝐠 (
𝟏

𝒁
) + ∑ 𝑫(�̅�𝑡 , �̅�𝑙𝑡

)
𝒕∈ℸ

+ ∑ 𝑽𝓝𝒑
(ℓ)

𝓝𝒑∈𝓝

. (8) 

𝐚𝐫𝐠 𝐦𝐢𝐧
𝜏={𝝉𝒊}𝒊=𝟏

𝑴 ,{�̅�𝑙}𝒍=𝟎
𝒌

(
𝟏

∑ �̅�𝑡 ⊕ �̅�0𝒕∈ℸ
∑ 𝑼(𝑥𝑡 − 𝜏) ⊕ 𝑼(𝜇𝑙𝑡

− 𝜏)
𝒕∈ℸ

+
𝟏

𝒗
∑

𝝀𝒑

(
𝝀𝒑

𝟐
)𝒓𝒑

𝟐
∑ 𝕝[𝒍𝒕 ≠ 𝒍𝒕′]

∀𝒕,𝒕′∈𝓝𝒑,

𝒕≠𝒕′𝓝𝒑∈𝓝

). 
(9) 

 



2. More Details about the Threshold and Clustering Optimization 

The minimization of 𝐽𝑜𝑏𝑗 can be solved with an iterative EM-like approach. As binary data is 

in concern, it does not make much sense to compute the mean of the binary data within each cluster 

to obtain the corresponding cluster representative. Therefore, our algorithm adopts a variant of 

mean, called medoid Error! Reference source not found.that is one of the data points belonging 

to the dataset, as a representative of a cluster. Our algorithm shown in Figure 1 begins with an 

initialization of metric thresholds and medoids. Given the records being discretized in accordance 

with the initial threshold configuration, the first stage (Step_A) searches for a decent clustering 

configuration that reduces the objective value with a k-medoidError! Reference source not 

found. like process. In the second stage, Step_B then seeks for a good threshold for a particular 

metric based on the resultant clustering configuration. These two stages of the algorithm re-iterate 

one after another until a pre-specified maximum number of iterations is reached. Ultimately, the 

records will be categorized into 𝑘 + 1 clusters corresponding to a compliance and 𝑘 issue types. 

At the same time, the optimal threshold for each metric can also be obtained during the iterative 

optimization. Based on this, our approach extends the original HMRF model to find metric 

discretization thresholds along with cluster parameters. 

 

Initialization. Good initializations of both discretization thresholds and medoids are important 

in producing satisfactory outcome. The value of initial metric thresholds should not be fixed too 

low or too high, as this would lead to too few data points being considered for selection of initial 

medoids. That is, the extreme case where almost all violation records being represented by a 

common binary representation should be avoided. The detailed procedures are given in Figure 1. 

As for the medoids, the selection of initial values is repeated 𝑁𝑖𝑛𝑖𝑡 times and the cluster 

configuration associated with the lowest 𝐷 component of 𝐽𝑜𝑏𝑗is chosen. Our intent is to seek for a 

configuration that achieves minimum intra-cluster distance to begin with, although such a 

configuration might violate most of the temporal-neighboring constraints. In fact, this initialization 

leads to a cluster configuration that is inclined to capture data points uniformly, while getting the 

medoids well separated at the same time. Note that among the 𝑘 + 1 medoids, the binary medoid 

of the compliance cluster is set as an all-zero binary string, while the 𝑘 remaining medoids are 

chosen from the 𝑣 performance issues instances that are associated with SLO violation for the 

evaluation of 𝐷 component. 

Optimization. Based on the data {�̅�𝒕
(𝑞−1)

}
𝑡=1

𝑇
discretized using metric thresholds from the 

previous iteration, Step_A evaluates every clustering configuration {�̅�𝒍}𝑙=1
𝑘  by switching a medoid 

with every non-medoid and repeatedly reassigning the labels of the non-medoids affected by such a 

switch. This process is repeated for all clusters until 𝐽𝑜𝑏𝑗 converges to a local minimum. On the 

other hand, Step_B focuses on selecting a good threshold from a set of threshold candidates for a 

given metric (say the 𝑖-th metric) by taking distortion with respect to the single-dimensional 

medoids {�̅�𝑙,𝑖
(𝑞)

}
𝑙=0

𝑘
 (single-dimensional 𝐷 component of 𝐽𝑜𝑏𝑗) as a goodness measure. These 

threshold candidates are determined by sorting the observed metric values and computing the 

average value of every adjacent pair of sorted values. Every update of a single metric discretization 

threshold in Step_B is followed by a search of better medoids in Step_A. Both steps are re-iterated 

until all metrics are optimized 𝑁𝐸𝑀(𝐵) times. 



 

 

It is worth to note that threshold optimization in Step_B is carried out a metric at a time instead 

of considering all the metrics at once. This is because the latter may incur massive combinations of 

candidate for consideration that would eventually render the search of the optimum threshold 

configuration exhaustively infeasible. Note also that since 𝑉 component of 𝐽𝑜𝑏𝑗 is not considered 

in Step_B, the selected threshold for a given metric might violate additional constraints and cause 

𝐽𝑜𝑏𝑗 to increase in many iterations. However, these interim increases of 𝐽𝑜𝑏𝑗 are essential to avoid 

Input: A set of contiguous records {𝑥𝑡}𝑡=1
𝑇 , number of estimated clusters 𝑘, neighborhood 

annotation of the records {𝑎𝑡}𝑡=1
𝑇 ∈ {0,1, … , 𝑣}, medoid of the compliance cluster �̅�0

(𝑞=0)
⟵

{0 … 00}, iteration variables 𝑁𝑖𝑛𝑖𝑡 and 𝑁𝐸𝑀(𝐵). 

Output: 𝑘 non-overlapping partitions and 𝑀 metric discretization thresholds such that the 

objective function 𝐽𝑜𝑏𝑗 in (9) is minimal. 

1. Initialization: 𝑖 = 𝑞 = 0. Iterate steps (b) and (c) for 𝑁𝑖𝑛𝑖𝑡 times and select threshold  

𝜏⋆and clustering configurations {�̅�𝑙
⋆}𝑙=1

𝑘  associated with 𝐷⋆ (the lowest 𝐷 component of 

𝐽𝑜𝑏𝑗 in (9)) and set 𝜏(𝑞=0) = 𝜏⋆, {�̅�𝑙
(𝑞=0)

}
𝑙=1

𝑘
= {�̅�𝑙

⋆}𝑙=1
𝑘  and 𝐽𝑜𝑏𝑗

(𝑞=0)
= 𝐷⋆ + 𝑉. 

2. select 𝑀  initial metric thresholds 𝜏 = {𝜏𝑗}
𝑗=1

𝑀
 and discretize the records {𝑥𝑡}𝑡=1

𝑇 ⟹

{�̅�𝑡}𝑡=1
𝑇 . 

a) initialize 𝑘 unique medoids {�̅�𝑙}𝑙=1
𝑘 ∈ {𝑥𝑡}𝑡=1

𝑇 (each with different annotation 𝑎) and 

assign cluster labels to the non-medoids. 

b) compute 𝐷 component of 𝐽𝑜𝑏𝑗. 

3. Step_A: 𝑞 ← 𝑞 + 1. Given {�̅�𝑡
(𝑞−1)

}
𝑡=1

𝑇
, repeat steps (d) to (f) for every non-medoid and 

every cluster 𝑙 (except 𝑙 = 0) until convergence. Find the best clustering configuration 

with {�̅�𝑙
⋆}𝑙=1

𝑘  that gives the lowest 𝐽𝑜𝑏𝑗
⋆  and let {�̅�𝑙

(𝑞)
}

𝑙=1

𝑘
← {�̅�𝑙

⋆}𝑙=1
𝑘 and𝐽𝑜𝑏𝑗

(𝑞)
← 𝐽𝑜𝑏𝑗

⋆ . 

c) swap �̅�𝑙 with a non-medoid in a cluster 𝑙. 

d) assign cluster labels to the non-medoids. 

e) compute 𝐽𝑜𝑏𝑗. 

4. Step_B: 𝑖 ← 𝑖 + 1 (mod 𝑀). Given {�̅�𝑙
(𝑞)

}
𝑙=0

𝑘
, repeat steps (g) and (h) over all the 

available threshold candidates for the 𝑖-th metric. Find the best threshold configuration 𝜏𝑖
⋆ 

for the 𝑖-th metric that gives the lowest 𝑖-th single dimensional 𝐷 component of 𝐽𝑜𝑏𝑗 

and let 𝜏𝑖
(𝑞)

← 𝜏𝑖
⋆ and {�̅�𝑡,𝑖

(𝑞−1)
}

𝑡=1

𝑇
= {�̅�𝑡,𝑖

⋆ |𝜏𝑖
⋆}

𝑡=1

𝑇
. 

f) swap τ
i

(q)

 with a threshold candidate and re-discretize {xt,i}t=1

T
. 

g) compute the i-th single dimensional D component of Jobj. 

5. Reiterate Step_A and Step_B for NEM(B) × M times and output the best clustering and 

threshold configuration that achieves the lowest  Jobj. 

Figure 1. HMRF-kMedoid-EM Algorithm 



the solution being stuck in a poor local minimum. We found that it is a necessary step to obtain a 

better configuration that achieves a much lower value of  𝐽𝑜𝑏𝑗 at a later time. 

Exploitation of Supervised Data. Recall that each record is associated with a known SLO state 

(i.e. violation or compliance). Different from the existing approaches, we wisely exploit this 

knowledge to make our optimization robust and efficient. First, in the computation of 𝐷 

component of 𝐽𝑜𝑏𝑗, all the compliance data points should be compared against the medoid of the 

compliance cluster �̅�𝟎 , even if they fall within a violation cluster in that specific iteration. 

Similarly, the intra-cluster distance of the violation data points should be computed based on the 

nearest medoid of violation clusters and should not be computed based on the compliance cluster 

medoid within which they might fall during the optimization process. Second, in the context of 

system diagnosis, the value of a metric measurement within the compliance epochs is usually 

treated as a normal value (See (1)). Therefore, the binary medoid of the compliance cluster is fixed 

(neither initialized, nor shifted) to an all-zero binary string throughout the optimization process. 

This helps the values of thresholds to not be trapped into local minimums (e.g., the extreme low 

threshold values). 

 

Convergence Rate. Figure 2 exemplifies the convergence rate of HMRF-kMedoid-EM 

algorithm in one of the 4-fold cross-validated experiment conducted on synthetic dataset where the 

details of such a dataset can be found in Section 5.1. In this fold of the experiment, there are 𝑀 =

62 metrics whose measurement values are not constant and therefore the measurements of such 62 

metrics were considered for the optimization of discretization thresholds. 

 

Figure 2. Convergence rate of HMRF-kMediod-EM 

In Figure 2, each objective value corresponds to the computed value of 𝐽𝑜𝑏𝑗 upon Step_B. 

Each value of 𝑁𝐸𝑀(𝐵) indicates the number of rounds where the threshold optimization of all 62 

metrics has been completed. It is observed that our algorithm takes 120 iteration steps (or 

approximately two rounds) to converge. The objective value decreases drastically in the first round 

of threshold optimization and the decrement occurs rather progressively via gradual refinement of 

metric thresholds during the second round of optimization. As a result, the convergence happens 

slightly above 0.15 during the second round of optimization. The threshold and cluster 

configurations associated with the lowest objective value at 𝑞 = 120 are selected as the optimum 

configurations. 
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3. Diagnosis with Clustering Results 

The medoids are derived from the objective function and may not be appropriate for realizing 

all our diagnosis objectives (metric attribution, recurrent-issue association, and unknown-issue 

detection). This is because the objective function of our algorithm does not depend merely on the 

intra-cluster distance.In fact, the medoids are used to define the best partitions that satisfy most of 

the temporal-neighboringconstraints and minimize the data distortion concurrently. In addition, the 

position of a medoid could simply be adjusted with respect to the adjacent medoids to induce the 

desired boundary and thus may not best characterize the data distribution within such a cluster. To 

realize the diagnostic tasks more effectively, we need to rely on another pure distance-based cluster 

representative known as distrep. Similar to medoid, distrep is one of the data points that has a 

minimum sum of distance from all other points in a cluster. Considering 𝑄 points being captured 

by a cluster, the index of a data point for distrep assignment can be identified as follows: 

𝒄⋆ = 𝐚𝐫𝐠 𝐦𝐢𝐧
𝑐={1,…,𝑄}

∑ (�̅�𝑞 ⊕ �̅�𝑐)
𝑸

𝒒=𝟏
 (10) 

With this, �̅�𝑐⋆is assigned as the distrep of the cluster. This is applied to all the clusters for 

distrep assignment. Distrep appears to be a better cluster representative than medoid due to: (1) it is 

more robust to outliers in the cluster; (2) it is selected solely based on the distribution of the data 

points within the cluster and is independent of data points in the adjacent clusters. 

Metric Attribution. Since distrep is a better cluster representative than medoid, we identify the 

attributed metrics from the encoded bits of each cluster distrep for representing the symptom of the 

corresponding issue. Intuitively, the binary ‘1’s in each distrep reflect the attributed metrics 

relevant to the corresponding issue, since the discretization of distrep is optimized with respect to 

the intra-cluster distance and the temporal-neighboring constraints. The root cause of each type of 

issue can often be identified through analyzing these attributed metrics. 

Recurrent-Issue Association and Unknown-Issue Detection. Given a query record (unknown 

testing record), it would be desirable if past similar records can be associated accurately so that past 

diagnoses can be leveraged and appropriate repairs can be identified. On top of this, a good 

diagnostic approach should be capable of detecting unknown violation issues when the query 

records and all previous records are sufficiently dissimilar. Once the optimized thresholds and 

medoids are obtained from the HMRF-kMedoid-EM algorithm, the distrep assignment is 

performed according to (10). A Hamming similarity threshold 𝜏𝑠𝑖𝑚is then defined with reference 

to each distrep as a similarity measure. With the discretization thresholds, medoids, distreps, and 

similarity thresholds, the recurrent-issue association and unknown-issue detection can be performed 

as follows: First, the query records of a performance issue are discretized using the optimized 

threshold configuration. The records are then associated with the nearest medoid and annotated 

with the corresponding cluster index. Based on the distrep of the same cluster, a query issue is 

deemed belonging to the issue type that the distrep represents if majority of the discretized records 

within the issue have a distance not larger than 𝜏𝑠𝑖𝑚as compared to the distrep. Otherwise, if most 

records give larger distance than 𝜏𝑠𝑖𝑚, the issue is tagged as unknown. 

 

  



 

 

 

--- End ---  
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