
Preferential Path Profiling: Compactly Numbering
Interesting Paths

Kapil Vaswani
Indian Institute of Science, Bangalore

kapil@csa.iisc.ernet.in

Aditya V. Nori
Microsoft Research India
adityan@microsoft.com

Trishul M. Chilimbi
Microsoft Research

trishulc@microsoft.com

Abstract
Path profiles provide a more accurate characterization of a pro-
gram’s dynamic behavior than basic block or edge profiles, but are
relatively more expensive to collect. This has limited their use in
practice despite demonstrations of their advantages over edge pro-
files for a wide variety of applications.

We present a new algorithm called preferential path profiling
(PPP), that reduces the overhead of path profiling.PPP leverages
the observation that most consumers of path profiles are only inter-
ested in a subset of all program paths.PPP achieves low overhead
by separating interesting paths from other paths and assigning a set
of unique and compact numbers to these interesting paths. We draw
a parallel between arithmetic coding and path numbering, and use
this connection to prove an optimality result for the compactness of
path numbering produced byPPP. This compact path numbering
enables ourPPP implementation to record path information in an
array instead of a hash table. Our experimental results indicate that
PPP reduces the runtime overhead of profiling paths exercised by
the largest (ref) inputs of theSPEC CPU2000 benchmarks from
50% on average (maximum of 132%) to 15% on average (maxi-
mum of 26%) as compared to a state-of-the-art path profiler.

Categories and Subject DescriptorsD.2.5 [Software Engineer-
ing]: Testing and Debugging; E.4 [Coding and Information The-
ory]: Data Compaction and Compression

General Terms Algorithms, Measurement, Reliability

Keywords Profiling, preferential paths, arithmetic coding, dy-
namic analysis

1. Introduction
Path profiles are a succinct and pragmatic abstraction of a pro-
gram’s dynamic control-flow behavior. Recording program paths
has proved valuable in a wide variety of areas such as computer
architecture, compilers, debugging, program testing, and software
maintenance [4]. Path profiles capture much more control-flow in-
formation than basic block or edge profiles, and are much smaller
than complete instruction traces. Several compiler optimizations
perform better when trade-offs are driven by accurate path pro-
files [1]. Program paths are also a more credible way of measuring

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’07 January 17–19, 2007, Nice, France.
Copyright c© 2007 ACM 1-59593-575-4/07/0001. . . $5.00

coverage of a given test suite. In addition, abstractions of paths can
help automatic test generation tools generate more robust test cases.
Finally, program path histories often serve as a valuable debugging
aid by revealing the instruction sequence executed in the lead up to
interesting program points.

Unfortunately, the benefits of using path profiles come at a cost
– profiling paths is expensive. Our measurements of an implemen-
tation of a state-of-the-art path profiler [3] indicate an average exe-
cution time overhead of 50% with as much as a 132% overhead in
the worst case and other studies report similarly high overheads [6].
This high overhead has limited the use of path profiles in favor
of basic block or edge profiles. Basic block and edge profiles are
cheaper to collect but less accurately capture a program’s dynamic
behavior as compared to paths. While Ball et al. found that 80% of
program paths could be attributed from an edge profile [5], more re-
cent work found that just 48% of paths could be attributed from an
edge profile [6]. In both cases, the most complex (and likely most
interesting) paths were not predictable from an edge profile. This
represents an opportunity as basic block and edge profiles are still
preferred over path profiles for measuring test coverage and driving
profile-guided optimizations such as code placement, inlining, un-
rolling, and superblock scheduling.

Apart from these traditional usage scenarios, we envisage the
use of path profiling in several other cost-sensitive enviornments.
For instance, in residual path profiling, a user is interested in de-
termining the set of paths that a deployed program executed in
the field that were not exercised during testing. This information
could be used to improve and augment test suites, and if included
with bug reports resulting from field failures, could help pinpoint
the root cause of errors. Another scenario involves ascertaining
whether paths that were identified as hot paths during testing and
used to optimize the program continue to remain hot during field
usage. In addition, we might want to gather detailed information
about these paths, such as cache misses, page faults, and variations
in execution time, without resorting to sampling techniques [12].
Finally, we might be interested in efficiently tracking a subset of
paths in deployed software that meet a certain criteria, for example,
paths that access safety or security critical resources, or that exer-
cise an error prone code region. A common trait in all these sce-
narios is the need for efficiently and accurately profiling a known
subset of paths.

Let us first examine why existing path profiling schemes incur
relatively high overhead. The efficient path profiling scheme pro-
posed by Ball and Larus, which forms the basis of all path profil-
ers, assigns weights to edges of a control flow graph (CFG) such
that all paths are allocated unique identifiers (i.e., the sum of the
weights of the edges along every path is unique) [3]. During pro-
gram execution, the profiler accumulates weights along the edges
and updates an array entry that corresponds to this path identifier.
Unfortunately, for functions with a large number of paths, allocat-

procedure computeBLIncrements(G)
Assume:
(a)G = (V, E, s, t) is aDAG.
(b) W : E → Z is an empty map.
Returns: The mapW defined for all edges such that every path in
G is assigned a unique weight.

1: Nt := 1;
2: for all nodesv ∈ V in reverse topological orderdo
3: Nv := 0;
4: for all edgese ∈ out(v) do
5: W (e) := Nv;
6: Nv := Nv + Ndest(e);
7: end for
8: end for

Figure 1. The Ball-Larus Algorithm.

ing an array entry for all program paths is prohibitively expensive,
if not infeasible. Consequently, path profiler implementations are
forced to use a hash table to record path information for such func-
tions. Although using a hash table is space efficient as program’s
typically execute only a small subset of all possible paths, it in-
curs significantly higher execution time overhead as compared to
updating an array entry. Previous work has shown that hash tables
account for a significant fraction of the overhead attributable to path
profiling [8].

To address this problem, we proposepreferential path profil-
ing (PPP), a novel path profiling scheme that efficiently profiles
arbitrary path subsets, which we refer to asinteresting paths. Our
algorithm can be viewed as a generalization of the Ball-Larus al-
gorithm, which forms the core of most existing path profiler im-
plementations. As mentioned earlier, the Ball-Larus algorithm as-
signs weights to the edges of a givenCFG such that the sum of the
weights of the edges along each path through theCFG is unique.
Our algorithm generalizes this notion to a subset of paths; it as-
signs weights to the edges such that the sum of the weights along
the edges of the interesting paths is unique. Furthermore, our algo-
rithm attempts to achieve a minimal and compact encoding of the
interesting paths; such an encoding significantly reduces the over-
heads of path profiling by eliminating expensive hash operations
during profiling. In addition, our profiling scheme separates inter-
esting paths from other paths and is able to classify paths during
program execution. The ability to classify paths is important for
many scenarios such as residual path profiling described earlier.

Interestingly, we find that both the Ball-Larus algorithm and
PPP are essentially a form of arithmetic coding [13, 15], a tech-
nique commonly used for universal data compression. We make use
of this connection to prove an optimality result for the compactness
of path numbering produced byPPP. We have implementedPPP
and our experimental evaluation using benchmarks from the SPEC
CPU2000 suite shows thatPPP reduces the overheads of profiling
paths exercised by their largest (ref) inputs from 50% on average
(maximum of 132%) to 15% on average (with a maximum of 26%)
as compared to Ball-Larus profiling.

This paper makes the following main contributions. First, we
describe a new algorithm, called preferential path profiling (PPP),
for compactly numbering arbitrary path subsets that improves upon
Ball-Larus numbering (Section 3). Next, we draw a parallel be-
tween arithmetic coding and path numbering, and use this connec-
tion to prove an optimality result for the compactness of path num-
bering produced byPPP (Section 4). Finally, we present an exper-
imental evaluation of ourPPP implementation that demonstrates
that it results in significantly lower overheads than Ball-Larus pro-
filing (Section 5).

Figure 2. Assignment of weights to edges using the Ball-Larus
algorithm

2. Preliminaries
In this section, we briefly describe the Ball-Larus algorithm for pro-
filing acyclic, intra-procedural paths through aCFG of a program
and motivate our problem using a simple example.

2.1 Definitions

Profiling algorithms for acyclic, intra-procedural paths (hence-
forth referred to aspaths) first convert theCFG of a proce-
dure into adirected acyclic graph(DAG). EachDAG is a graph
G = (V, E, s, t), whereV represents nodes or basic blocks in the
procedure, andE is the set of edges between nodes. The maps
src(e) and dest(e) denote the source and destination nodes re-
spectively, of an edgee. For every nodev ∈ V , out(v) denotes
the set of edges emanating fromv in G, andsucc(v) represents all
the immediate successor nodes ofv. Each acyclic, intra-procedural
pathp is a sequence of nodes froms to t. The functionpaths(G)
refers to all acyclic, intra-procedural paths in G. The function
pathsG(e) : E → 2paths(G) represents all paths inG that tra-
verse an edgee. Conversely, the functionedges : P → 2E maps
every pathp in G to the set of edges that belong top.

An assignment of weights to the edges ofG is represented as
a mapW : E → Z (whereZ is the set of integers). The relation
pathid : P → Z maps each path to apath identifier, and is defined
as follows.

pathid(p)
def
=

X

e∈edges(p)

W (e)

2.2 Ball-Larus Profiling

Given a DAG G for a procedure, the Ball-Larus algorithm as-
signs weights to the edges of the graph such that for every path
p ∈ paths(G), pathid(p) is unique, and is equal to a number
between0 andN − 1, whereN = |paths(G)|. The algorithm
computeBLIncrements, shown in Figure 1, performs one bottom-
up pass throughG and processes its nodes in reverse topological
order. With each nodev, the algorithm associates a countNv that
indicates the number of paths fromv to the exit nodet (Line 5).
At each node, thecomputeBLIncrementstraverses the list of suc-
cessor nodes and assigns weights to the corresponding outgoing
edges. This algorithm is based on a simple idea that is stated in the
following lemma [3].

LEMMA 1. Let G = (V, E, s, t) be aDAG. The number of paths
from any nodev in G to the exit nodet is equal to the sum of the
number of paths from each ofv’s successor nodes tot.

Figure 2 illustrates howcomputeBLIncrementsuses this invari-
ant to compute an edge assignment. Assume that the algorithm is
processing nodea with two successorsb andc that haveNb andNc

paths to the exit nodet. Also assume that these paths have already
been assigned identifiers from0 to Nb−1 andNc−1 respectively.
The algorithm assigns a weight0 to the edge(a, b), and a weight
Nb to the edge(a, c). This ensures that the paths froma to t are
assigned identifers from0 to Nb + Nc − 1, which is also equal to
Na − 1 (from Lemma 1). In general, the weight assigned to an

Figure 3. Motivating example forPPP. (a) A DAG G with 6 paths with edges numbered using the Ball-Larus algorithm. (b)G with edges
having onlyPPP assigned numbers for three interesting pathsI = {sacdt, sact, sbct}. (c) G with edges assigned two numbers, aPPP
number and a Ball-Larus number (in parenthesis). The path array is accessed using thePPP counter.

procedure computePathIdentifier(G, W, p)
Assume:
(a)G = (V, E, s, t) is aDAG.
(b) The mapW : E → Z.
(c) A pathp is a sequence of nodes throughG.
Returns: The path identifier for the pathp

1: return
P

e∈edges(p) W (e);

Figure 4. Computing the Ball-Larus identifier of a path from an
edge assignment.

edge is equal to the sum of the number of paths from all previously
processed successor nodes tot (Line 6).

The Ball-Larus path profiler instruments the edges of theCFG
with instructions to increment a counter by the weight assigned to
the edge. When the instrumented program executes, it simulates the
procedurecomputePathIdentifier(Figure 4). When a path termi-
nates, the value in the counter represents the path that just executed
and can be used for book-keeping.

2.3 An illustrative example

We start with an example that illustrates a drawback of the Ball-
Larus profiling scheme, and also shows how our profiler works
on this example. Consider the function in Figure 3(a). TheDAG
G in Figure 3(a) is obtained from theCFG of the function. This
figure also shows the weights assigned by the Ball-Larus algorithm
to edges ofG. Note that the sum of the weights of edges along
every path from the start nodes to the final nodet is unique, and
all paths are allocated identifiers from0 to N − 1, whereN is the
total number of paths froms to t. If N is reasonably small (less
than some threshold value), the profiler can allocate an array of
counters of sizeN , and track path frequencies by indexing into the
array using the path identifier and incrementing the corresponding
counter. However, the number of potential paths in a procedure
can be arbitrarily large (exponential in the number of nodes in the
graph) and allocating a counter for each path can be prohibitively
expensive, even infeasible in many cases. Path profilers overcome
this problem by using a hash table of counters instead of an array,
relying on the fact that only a small number of paths are traversed
during any given execution. Therefore, a combination of a suitably
sized hash table and a good hash function almost always guarantees
the absence of conflicts. In the current example, if the threshold
value is set to4, the Ball-Larus profiler would use a hash table
since there are6 paths froms to t.

Let us assume that we are interested in profiling only a sub-
setI = {sacdt, sact, sbct} (interesting paths) of paths. The Ball-
Larus identifiers for the pathssacdt, sact, sbct are0, 1 and5 re-
spectively. This means that one would have to allocate a hash table
even though there are only3 paths of interest. In such a scenario, it
would be ideal if we could compute an edge assignment that allo-
cates identifiers0, 1 and2 to these paths, and identifiers> 2 to the
other paths. In Section 3, we show that computing an edge assign-
mentW and a numberβ such that (a)∀p ∈ I, pathid(p) ≤ β, and
(b) ∀p 6∈ I, pathid(p) > β is not always feasible. Therefore, we
relax the constraints on this problem by eliminating condition (b)
(which is a condition over uninteresting paths), and ask the ques-
tion if it is possible to label the edges inG such that the paths in
the setI have path identifiers in{0, 1, 2}. Figure 3(b) shows that
such an assignment of weights to edges indeed exists, and this is
precisely the assignment computed by the preferential path profil-
ing PPP algorithm described in Section 3. Therefore, our profiler
incurs lower overheads since we can now use an array to track fre-
quencies instead of a hash table. Note that while the interesting
pathssacdt, sact, sbct have been assigned unique identifiers from
0 to 2, the uninteresting pathssabct andsbcdt alias with the inter-
esting pathssacdt andsact respectively. We resolve these “aliases”
using Ball-Larus path identifiers, which are unique for every path.
In PPP, edges are annotated with a second weight computed using
the Ball-Larus algorithm (these weights are shown in parentheses
in Figure 3(c)). The profiler also stores the Ball-Larus identifiers
of all interesting paths along with their counters. The occurrence
of an interesting path can be detected by comparing the Ball-Larus
identifier computed during the traversal with the Ball-Larus identi-
fier stored in the array – a match indicates that an interesting path
was just traversed and vice versa. For example, when the uninter-
esting pathsbcdt (PPP identifier is 2 and Ball-Larus identifier is 4)
occurs, before incrementing the count at index 2 in the path array,
the Ball-Larus identifier at index 2 is compared with the Ball-Larus
identifier ofsbcdt – since they are different, the profiler infers that
this path is not interesting (or it might be a residual path not exer-
cised by the test suite) and takes necessary action.

3. Preferential Path Profiling
We will now address the problem of encoding arbitrary subsets
of paths over aDAG G = (V, E, s, t). Informally, we wish to
compute an edge assignment that allows us to uniquely identify
paths as well as differentiate interesting paths from uninteresting
ones. First, consider the possibility of finding an edge assignment

Figure 5. A counterexample for separation of paths.

that separatesinteresting and uninteresting paths using a non-
negative integerβ ∈ Z≥0.

LEMMA 2 (Separation of paths). Given aDAG G = (V, E, s, t)
and a set of interesting pathsI ⊆ paths(G), a mapW : E → Z
that satisfies the following conditions may not always exist.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q).
2. separation: ∃β ∈ Z≥0 such that

(a) ∀p ∈ I, pathid(p) ≤ β, and
(b) ∀p 6∈ I, pathid(p) > β.

Proof: Consider the simpleDAG in Figure 5. Assume that
we are interested in profiling pathssacet andsbcdt. Assume that
there exists an edge assignmentW that satisfies all conditions in the
lemma. Letw, x, y andz represent the cumulative weights of the
sub-pathssac, sbc, cdt andcet respectively. From condition 2(a),
we havew + z ≤ β andx + y ≤ β, and from condition 2(b), it
follows thatw + y > β andx + z > β. This implies that

x + y + w + z ≤ 2β

x + y + w + z > 2β

which is a contradiction and the lemma follows.

We find that separating arbitrary sets of interesting and uninter-
esting paths is almost always infeasible, primarily due to the pres-
ence of many shared edges. We therefore simplify the problem by
relaxing condition 2(b) in Lemma 2. Edge assignments that cause
interesting paths to alias with uninteresting paths are acceptable as
long as the interesting paths are assigned minimal unique identi-
fiers. As described in Section 2.3, a second counter that computes
the Ball-Larus identifiers of all paths can be used to resolve the
aliases. This relaxation allows us to reason about interesting paths
only, an aspect critical to the solution we propose. However, it turns
out the even this simplified problem may not have a perfect solution
as the following lemma indicates.

LEMMA 3 (Perfect edge assignment). Given aDAG
G = (V, E, s, t) and a set of interesting pathsI ⊆ paths(G), a
mapW : E → Z that satisfies the following conditions may not
always exist.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q),
2. perfect assignment: ∀p ∈ I, 0 ≤ pathid(p) < |I|.

Proof: Consider the graph in Figure 6. Say we are interesting
in profiling the pathssadft, sadgt, sbdet, sbdgt, scdet, andscdft.
For simplicity, we represent the sum of the edges along the sub-
pathssad, sbd, scd, det, dft anddgt asu, v, w, x, y andz. Con-

Figure 6. A counterexample for perfect edge assignment.

sider the sum of the identifiers of all these paths.

sum = (u + y) + (u + z) + (v + x)

+(v + z) + (w + x) + (w + y)

= 2(u + v + w + x + y + z)

Hence, the sum of the path identifiers of these paths is necessarily
even. However, for a perfect assignment, these paths must be allo-
cated identifiers between 0 and 5. Since the sum of numbers from
0 to 5 is odd, we conclude that a perfect edge assignment for this
graph and set of interesting paths does not exist.

Since a perfect edge assignment for interesting paths may not
always exist, even an optimal edge assignment may induce a path
assignment with “holes” in the interval of path identifiers. In light
of this lemma, we restate our problem as follows.

Problem A (Optimal Edge Assignment): Given aDAG G =
(V, E, s, t) and a set of interesting pathsI ⊆ paths(G), compute
an edge assignmentW : E → Z that satisfies the following
conditions.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q),

2. compactness: The compactness measureδ defined by

δ
def
=

(maxp∈I pathid(p)−minp∈I pathid(p)) + 1

|I|
is minimized.

It is easy to see thatδ ≥ 1. A perfect edge assignmentW in-
duces aδ = 1. Lemma 3 shows that a solution withδ = 1 does
not always exist. Hence solutions with lower values ofδ are pre-
ferred. We find that for arbitrary graphs and arbitrary set of paths,
even characterizing the optimalδ seems to be a hard problem. In
the next section, we propose an algorithm that computes an edge
assignment that attempts to minimizeδ, and later prove an opti-
mality result for this algorithm by establishing a connection with
arithmetic coding.

3.1 The Preferential Path Profiling Algorithm

The preferential path profiling (PPP) algorithm is a generalization
of the Ball-Larus algorithm with the added capability of biasing
the edge assignment towards an arbitrary set of interesting paths.
Before we describe the algorithm, we introduce some notation and
state some of the key observations that the algorithm is based on.

Let G = (V, E, s, t) be aDAG, and letI ⊆ paths(G) be
a set of interesting paths. Consider a nodev ∈ V and an edge
e ∈ out(v). Let pathsI(e) represents the set of interesting paths

Figure 7. Critical nodes for pairs of paths.

that contain the edgee. Let prefix(p, e) denote the sequence
of nodes froms to src(e) along the pathp. Then prefixI(e)
denotes the set of all prefixes{prefix(p, e)}p∈I . Given a pair
of interesting pathsp, p′ ∈ I, lcp(p, p′) represents the longest
common prefix ofp andp′ in G. Note thatlcp(p, p′) is trivially
the start nodes if p andp′ are edge disjoint. We define thecritical
nodefor a pair of interesting pathsp andp′ as follows.

critical(p, p′)
def
= the last node in lcp(p, p′)

For any pair of paths, the critical node is unique since the longest
common prefix is uniquely defined. For example, in Figure 7, node
a is the critical node for pathsp1 andp2, whereas nodeb is the
critical node for pathsp1 andp3. Again, the critical node for a set
of paths is trivially the start nodes if the set of paths are edge
disjoint inG.

We also define a mappid : I → Z to trackpartial identifiers
allocated to paths during the execution of an edge assignment
algorithm. Assuming that all edges are initialized with a weight
⊥ (this denotes the undefined value), the partial identifier of a path
is defined as follows.

pid(p) =
X

e∈edges(p)∧W (e) 6=⊥

W (e)

From the statement of ProblemA, it is evident that an edge as-
signment must simultaneously satisfy two constraints, uniqueness
and compactness of path identifiers. We now describe howPPP
satisfies these constraints.

Uniqueness. We first define an invariant thatany algorithm com-
puting an edge assignment by processing nodes in reverse topolog-
ical order must satisfy, in order to ensure that all interesting paths
are allocated unique identifiers1.

LEMMA 4 (Invariant for uniqueness). Consider a nodev being
processed by the algorithm. Ifv is the critical node for any pair of
interesting pathsp andp, thenp andp′ should be assigned different
partial identifiers after the nodev has been processed.

Proof: Follows from the definition of critical nodes, and the
fact that the algorithm assigns weights to edges in reverse topolog-
ical order.

1 A similar invariant based on suffixes can be defined if the algorithm were
to perform a top-down traversal, processing nodes in topological order.

ThePPP algorithm computes an edge assignment that attempts
to achieve the most compact path numbering (lowδ) that maintains
this invariant at every node. However, to make the algorithm sim-
pler and more amenable for analysis (Section 4),PPP makes the
following approximation. Instead of explicitly checking the partial
identifiers of paths at a critical node,PPP works overintervalsof
path identifiers. Given an edgee, the intervalinte,q represents the
range of partial identifiers allocated to all interesting paths through
e that have a prefixq. Formally,

inte,q = [min
p∈pathsI (e)∧prefix(p,e)=q

pid(p),

max
p∈pathsI (e)∧prefix(p,e)=q

pid(p)]

At every node,PPP computes an intervalinte,q for every (edge,
prefix) pair, and assigns weights to the edges to maintain the fol-
lowing invariant.

LEMMA 5 (Invariant for uniqueness over intervals). Consider a
nodev being processed byPPP. Assume that a prefixq induces a
set of intervalsSv,q = {inte,q | e ∈ out(v)} on the outgoing
edges ofv. To ensure uniqueness, the intervals inSv,q should not
overlap afterv has been processed. Furthermore, this condition
must hold for every prefixq ∈

S
e∈out(v) prefixI(e).

Proof: It is easy to see that if a prefixq induces an interval at
two or more outgoing edges of a nodev, thenv is the critical node
for all pathsp with the prefixq. By preventing overlap between
all such intervals for a given prefix,PPP automatically ends up
separating all paths with prefixq for which nodev is critical. If this
condition is satisfied for all prefixes, all interesting paths for which
nodev is critical are distinguished, and hence the Lemma 4 holds.

Compactness. We will now describe howPPP ensures compact-
ness. At any nodev ∈ V , consider the set of intervalsSv,q =
{[mini, maxi]i∈[1,|out(v)|]} induced on edgese1, e2 . . . e|out(v)|
by a prefixq. If q is the only valid prefix atv, PPP usescom-
pactionto compute aminimaledge assignmentW (ei)i∈[1,|out(v)|]
which ensures that these intervals do not overlap. To achieve com-
paction, eachW (ei) is computed as follows:

W (ei) =
X

j∈[1,(i−1)]

(maxj −minj + 1)−mini (1)

= cisi−1 −mini (2)

wherecisi−1 represents the cumulative interval size of all inter-
vals induced on previous edges. However, this simple compaction
method cannot be used if multiple prefixes induce intervals on the
outgoing edges of a node. In such situations,PPP performs ajoin
operation over the intervals at all edges with two or more inter-
vals. Thejoin operation computes the weights induced by different
prefixes on the edge, and conservatively assigns a weight equal to
the maximum among all these weights. Due to thejoin, interesting
paths associated with all but one of the prefixes will be assigned
a weight higher than what is required to separate its intervals, cre-
ating holes in the path numbering. However, it is easy to see that
this choice of weight leads to the most compact numbering that is
feasible.

Figure 8 illustrates the scenarios thatPPP deals with. In Fig-
ure 8(a), all interesting paths through the nodea have the same
prefix q1 and traverse the edgee2 (represented by the shaded re-
gion). Since the intervalinte2,q1 is the only interval in the setSa,q1 ,
no overlap between intervals exist and the invariant for uniqueness
(Lemma 5) is trivially satisfied. A similar situation occurs in Figure
8(b), where paths through the edges do not share any prefixes. The
interval setsSa,q1 andSa,q2 are singletons and no conflicts occur.

Figure 8. The assignment of weights to edges under four scenarios

Figure 8(c) represents a scenario where the interesting paths induce
two intervals for the prefixq1. PPP uses Equation 1 to compute
weights and ensures that these intervals do not overlap. Finally, Fig-
ure 8(d) illustrates the scenario where the interesting paths through
edgese1 ande2 share prefixesq1 andq2. Figure 9 illustrates the ef-
fect of a join on two sets of intervals induced by prefixesq1 andq2.
Since we need a larger weight (sayw computed by Equation 1) to
separate intervals induced by prefixq1 (as compared to the weight
w′ required to separate intervals induced by prefixq2), PPP assigns
w to e2, leading to a hole in the interval for the prefixq2.

Figure 9. The effect of using thejoin operator to conservatively
assign weights to edges. (a) Intervals induced by the prefixes before
the join, and (b) effective intervals after the join.

Figure 10 describes thePPP algorithm in detail. For each node
v ∈ V and each outgoing edgee ∈ out(v), the algorithm iterates
over all prefixes and computes the beginning of the intervalinte,q

(mine,q at Line 5). It uses an auxiliary mapcis to determine the
cumulative interval size of intervals through previously processed
outgoing edges ofv with the prefix q (as per Equation 1) and
computes the weight induced byq on the edge (Line 7). Finally,
the join operation (Lines 10 and 11) selects the maximum over
the weights induced by each prefix and assigns this weight to the
edge. After the edge is assigned a weight,PPP updates the partial
identifiers of all paths through the edge and also computes the new
cis(q) for the next iteration on this edge.

In summary, at every nodev ∈ V , computePPPIncrements
recursively merges intervals of each prefixq into the most compact
single intervalintv,q. At the start node s, this interval defines the
range of identifiers allocated to the interesting paths. The time
complexity ofPPP is O(|E| × |I|), whereE is the set of edges
in G, andI is the set of interesting paths.

procedure ComputePPPIncrements(G)
Assume:
(a)G = (V, E, s, t) is aDAG.
(b) a mappathsI : E → 2P .
(c) pid : P → Z≥0 initialized to 0 for all interesting paths.
(d) cis : prefix → Z≥0, initialized to 0 for all prefixes of
interesting paths.
Returns: A edge assignmentW : E → Z.

1: for all nodesv ∈ V in reverse topological orderdo
2: for all edgese ∈ out(v) s.t.e ∈ edges(p) for somep ∈ I

do
3: for all prefix q ∈ prefix(e) do
4: // compute the beginning of the intervalinte,q

5: mine,q := minp∈pathsI (e)∧prefix(p,e)=q pid(p);
6: // compute weight induced by prefixq
7: weightq := cis(q)−mine,q;
8: // the join: compute the maximum weight
9: if ((W (e) = ⊥) ∨ (W (e) < weightq)) then

10: W (e) := weightq;
11: end if
12: end for
13: // update partial identifers of all paths throughe
14: for all pathsp ∈ pathsI(e) do
15: pid(p) := pid(p) + W (e);
16: end for
17: for all prefixesq ∈ prefix(e) do
18: // determine new cumulative interval size for prefixq
19: cis(q) := maxp∈pathsI (e)∧prefix(p,e)=q pid(p) + 1;
20: end for
21: end for
22: end for

Figure 10. The preferential path profiling (PPP) algorithm for
computing an edge assignment for a set of interesting paths.

3.2 Example

We now walk-through an example illustrating how thePPP algo-
rithm works. Let us assume that we are interested in profiling the
pathssacdt, sact andsbct in theDAG from Figure 3. The follow-
ing steps trace the manner in whichPPP assigns weights to edges
of the DAG.Step nj denotes that at stepi, PPP processes noden.

Step 1t Initialize the partial identifiers of all paths to0 and cumu-
lative interval sizes of all prefixes to0.

Step 2d Noded is not a critical node for any pair of paths since it
has only one outgoing edge. The prefixsacd induces an interval
[0, 0] on the edge(d, t). Sincecis(sacd) = 0, W ((d, t)) =
0− 0 = 0.

Step 3c Nodec is a critical node for pathssacdt andsact. Say
the edge(c, d) is processed first. Both prefixessac and sbc
induce an interval[0, 0] on this edge. HencePPP assigns a
weight W ((c, d)) = 0 − 0 = 0 to this edge.PPP updates
the mapcis as follows→ cis(sac) = 1 and cis(sbc) = 1.
Next PPP processes the edge(c, t). The prefixsbc induces an
interval [0, 0] on this edge. Sincecis(sbc) = 1, PPP assigns a
weightW ((c, t)) = 1 − 0 = 1 The partial identifiers of paths
sact andsbct are also updated to1.

Step 4b Node b has one outgoing edge(b, c). The prefixsb in-
duces an interval[1, 1] on this edge.PPP assigns a weight
W ((b, c)) = 0 − 1 = −1 to this edge sincecis(sb) = 0. The
partial identifier of the pathsbct is now updated to1+−1 = 0.

Step 5a Nodea has two outgoing edges, but only the edge(a, c)
has interesting paths through it. The prefixsa induces an in-
terval [0, 1] at this edge.PPP assigns a weightW ((a, c)) =
0− 0 = 0 to the edge.

Step 6s Node s has two outgoing edges with three paths, all
sharing a common prefixs. This prefix induces an interval
[0,1] at the edge(s, a), and the interval[0, 0] at the edge
(s, b). PPP processes the edge(s, a) first and assigns a weight
W ((s, a)) = 0 − 0 = 0 to the edge. ThenPPP updates
cis(s) = 1 + 1 = 2, and processes the edge(s, b). Since
cis(s) = 2, the edge(s, b) is assigned a weightW ((s, b)) =
2−0 = 2. The partial identifier of the pathsbct is also updated
to 2.

On termination,PPP assigns the identifiers0, 1 and 2 to the
interesting pathssacdt, sact andsbct respectively.

3.3 Discussion

In summary,PPP attempts to achieve a compact path numbering
by (1) only numbering the edges required to distinguish interest-
ing paths, and (2) computing the smallest weights such that the
interesting paths are assigned unique identifiers. Our experiments
suggest thatPPP achieves good compactness measures for a vast
majority of the procedures, even when a large number of interesting
paths are specified. However, despite its best efforts,PPP does not
always achieve the best possible compactness measure. Figure 11
illustrates one scenario in whichPPP fails to assign an optimal
numbering although such a numbering clearly exists. Consider the
graphG1 and assume thatPPP has assigned identifiers to a set of
interesting paths. Also assume that the interval of allocated identi-
fiers contains two holes of sizek1 andk2 respectively. As shown
in the figure, we can construct a new graphG and select a set of
interesting paths such that there exists an edge assignment which
achieves theδ = 1. HereG is obtained via a parallel composition
of three graphsG1, G2 andG3 such that|paths(G2)| = k1 and
|paths(G3)| = k2. Furthermore, the set of interesting paths now
includes all paths throughG1 andG2. An optimal numbering for
this set of interesting paths is obtained by assigning a weightI1 to
the edge(s, s2) andI2 to the edge(s, s3), filling up the holes in
the interval of graphG1. However, PPP fails to compute such as-
signments since we restrict ourselves to the class of solutions where
edge intervals do not overlap. As we show in the next section, this
constraint allows us to establish an optimality condition by drawing
a connection with arithmetic coding.

4. Path Profiling - an information theoretic
perspective

In this section, we give an information theoretic characterization
of the preferential path profiling algorithm. We begin by intro-
ducing the notion of arithmetic coding and context modeling. We
then show that the Ball-Larus path profiling algorithm is a special

Figure 11. Figure illustrating a scenario in whichPPP assigns a
sub-optimal numbering but an optimal numbering clearly exists.

instance of arithmetic coding. After drawing this connection, we
reformulateProblem A described in Section 3 so that it is more
amenable to analysis, and provide a theoretical analysis of our al-
gorithm for preferential path profiling.

4.1 Arithmetic Coding

Arithmetic coding [13, 15, 7] is a well-known universal, lossless
compression technique that achieves close-to-optimal compression
rates. Much like other compression schemes, arithmetic coding re-
lies on the observation that in any given input stream, a small frac-
tion of characters/substrings are likely to occur frequently. Arith-
metic coding achieves compression by encoding these frequently
occurring characters/substrings using a smaller number of bits. An
arithmetic coder uses aprobability modelto identify frequent char-
acters. In the simplest of cases, the probability modelD is an as-
signment of probabilities to characters of the input alphabetΣ, and
is easily obtained from the frequency counts of characters in a rep-
resentative string.

An arithmetic coder encodes strings into a single positive num-
ber less than1. To compute this number, the arithmetic coder main-
tains arangeor aninterval, which is set of[0, 1) at the beginning of
the coding process. As each symbol of the input string is processed,
the coder iteratively narrows the range based on the probability of
the symbol. After the last symbol is read, any number within the
resulting range uniquely represents the input string. Moreover, this
number can be uniquely decoded to create the exact stream of sym-
bols that went into its construction. We illustrate the encoding an
decoding process by way of an example (adapted from [15]).

Symbol Probability Range
a 0.2 [0, 0.2)
b 0.3 [0.2, 0.5)
c 0.1 [0.5, 0.6)
d 0.2 [0.6, 0.8)
e 0.1 [0.8, 0.9)
! 0.1 [0.9, 1)

Table 1. A sample probability model for the alphabetΣ =
{a, b, c, d, e, !}.

Example. Let Σ = {a, b, c, d, e, !} be the finite alphabet, and let
a fixed model that assigns probabilities to symbols fromΣ be as

shown in Table 1. Suppose we wish to send the messagebacc!.
Initially, both the encoder and the decoder know that the range
is [0, 1). After seeing the first symbolb the encoder narrows it
down to [0.2, 0.5) (this is the range that the model allocates to
symbol b). For the second symbola, the interval is further nar-
rowed to one-fifth of itself, sincea has been allocated[0, 0.2).
Thus the new interval is[0.2, 0.26). After seeing the firstc the nar-
rowed interval is[0.23, 0.236), and after seeing the secondc the
new interval is[0.233, 0.2336). Finally on seeing!, the interval is
[0.23354, 0.2336); knowing this to be the final range, the decoder
can immediately deduce that the first character wasb. Now the de-
coder simulates the action of the encoder, since the decoder knows
that the interval[0.2, 0.5) belonged tob, the range is expanded to
[0.2, 0.26). Continuing this way, the decoder can completely de-
code the transmitted message. It is not really necessary for the de-
coder to know both ends of the range produced by the encoder.
Instead, a single number in the range (say0.23355 in our example)
will suffice.

Note thatthe ranges for any probability model (for example, the
one in Table 1) are non-intersecting; this condition is critical for
arithmetic coding to work. If the ranges associated with the input
symbols were intersecting, two or more strings could map to the
same interval and the decoder has no way of distinguishing these
strings.

From the discussion, it should be clear that for arithmetic cod-
ing to be effective, the frequency of occurrence of characters in the
input string must be skewed and the skew must be accurately re-
flected in the probability model. In other words, better compression
rates are achieved if the model makes accurate predictions about
the nature of the input string. We now describe a technique known
as finite context modeling, which is commonly used to obtain more
accurate probability models.

Finite context modeling.In a finite context scheme, the probabili-
ties of each symbol are calculated based on thecontextthe symbol
appears in. In its traditional setting, the context is just the sym-
bols that have been previously encountered. Theorderof the model
refers to the number of previous symbols that make up the context.
One way of compressing data is to make a single pass over the
symbols to be compressed (to gather statistics), and then encode
the data in a second pass. The statistics collected are the relative
frequencies of occurrences of the respective symbols. These rela-
tive frequencies are then used to encode/decode the symbol as ex-
plained in earlier. Essentially, the model in this setting consists of
a set of tables for every possible context up to sizek for any order
k model. Each context is a state, and each entry corresponding to
a symbol frequency is indicative of its probability of occurrence in
that context. Anoptimalmodel is one that represents the best pos-
sible statistics for the actual data that is to be compressed. Unfortu-
nately, computing an optimal model in general is undecidable [9].

It can be shown that arithmetic coding achieves optimal com-
pression2 for a given probability modelD [7]. Specifically, ifX is
a random variable representing events over a setX with a proba-
bility distribution D, then the average number of bits required to
encode any event fromX using arithmetic coding is equal to the
entropy[7] of D which is defined as follows.

H(D)
def
= −
X

x∈X

P(X = x) log2 |P(X = x)|

Note: H(D) is thebinary entropy function, andP(X = x) is the
probability of occurrence of the eventX = x.

2 In order to achieve optimal overall compression of data, the model must
be an optimal model for that data.

procedure computeBLModel(G)
Assume:
(a)G = (V, E, s, t) is aDAG.
(b) ∀v ∈ V , a mapD : E → [0, 1] that is initially undefined.
Returns: a modelD such that∀v ∈ V,

P
e∈out(v) D(e) = 1.

1: Nt := 1;
2: for all nodesv ∈ V in reverse topological orderdo
3: Nv :=

P
e∈out(v) Ndest(e);

4: for all edgese ∈ out(v) do
5: D(e) := Ndest(e)/Nv;
6: end for
7: end for

Figure 12. The Ball-Larus algorithm as a model computation
process.

Example. For the modelD described in Table 1, the entropy
H(D) = −P(a) log2 |P(a)|−P(b) log2 |P(b)|−P(c) log2 |P(c)|−
P(d) log2 |P(d)| − P(e) log2 |P(e)| − P(!) log2 |P(!)| =
−(0.2 log2 |0.2|+0.3 log2 |0.3|+0.1 log2 |0.1|+0.2 log2 |0.2|+
0.1 log2 |0.1|+ 0.1 log2 |0.1|) = 2.45 bits.

4.2 The Ball-Larus algorithm and Arithmetic coding

We will now show that the Ball-Larus profiling algorithm is
in fact an instance of arithmetic coding for paths in aDAG
G = (V, E, s, t). We first observe that both path numbering and
arithmetic coding have similar objectives, i.e., tocompactly and
uniquelyencode strings from an input alphabet. In path numbering,
the input alphabet is the set of edges through aDAG, and the input
strings are paths through theDAG. We also find that the process
of assigning weights to the edges of the DAG corresponds to the
process of computing a probability model. However, unlike arith-
metic coding where computing an optimal model is undecidable in
general, an optimal model for paths through a DAG can in fact be
computed for the following reasons: (a) the set of strings that can
occur is knowna priori; this is precisely the set of all paths through
the DAG, and (b) the order in which edges can occur in paths is
determined by the structure of the graph, which is also knowna
priori . Based on these observations, we derive a model computa-
tion procedure for paths through a DAG that is equivalent to the
Ball-Larus algorithm. The procedurecomputeBLModel, shown in
Figure 12, takes aDAG G as an input and assigns a probability
D(e) to every edgee in the graph. The resulting model is a finite
context model, where the context of an edge is its source node, and
the probability assigned to an edge is the probability of the edge
being traversed given that the source node has been reached. One
can easily verify that∀v ∈ V ,

X

e∈out(v)

D(e) = 1

For every pathp ∈ paths(G), the probabilityP(p) induced by the
modelD is defined as follows.

P(p)
def
=

Y

e∈edges(p)

P(e)

It also follows by a simple counting argument that for everyp ∈
paths(G), P(p) = 1/|paths(G)| and

P
p∈paths(G) P(p) = 1.

Denote byDG, the probability distribution over the setpaths(G)
– it follows immediately that the entropyH(DG) is equal to
log2 |N |.

Figure 13. Example for the procedurecomputeBLModel.

Symbol Probability Range
e1

e2

2/3
1/3

[0, 2/3)
[2/3, 1)

e3

e4

1/2
1/2

[0, 1/2)
[1/2, 1)

e5 1 [0, 1)
e6

e7

1/2
1/2

[0, 1/2)
[1/2, 1)

e8 1 [0, 1)

Table 2. The Ball-Larus probability modelDG for the graphG in
Figure 13 computed bycomputeBLModel.

procedure pathEncoder(p, D, N)
Assume:
G = (V, E, s, t) is a DAG andp = (v1, . . . , vk) ∈ paths(G),
{vi ∈ V }1≤i≤k.
Returns: path identifier forp.

1: in := [0, N);
2: for all i = 1 to k − 1 do
3: e := (vi, vi+1);
4: [x, y) := in;
5: n := y − x;
6: let [r, r′) be the range fore defined byD;
7: in := [x + brnc, x + dr′ne);
8: end for
9: [x,) := in;

10: returnx;

Figure 14. The coding algorithm that takes a modelD and path
p ∈ paths(G) as input, and returns the path identifier or the
encoding forp.

Example.Consider the graphG shown in Figure 13. The modelD
computed by the procedurecomputeBLModelis given in Table 2.

We will now describe the procedurepathEncoderthat takes a
pathp ∈ paths(G), the modelD computed bycomputeBLModel
andN = |paths(G)| as input, and computes its Ball-Larus iden-
tifier. This is the analogous to the procedurecomputePathIdentifier
in Section 2.2.

Since arithmetic coding is optimal [7], that is, it achieves the
entropy of the input model,pathEncoder(which is an arithmetic
coder) is also optimal. We will make this connection explicit in the
following example.

Example. Consider the graphG shown in Figure 13. LetD be
the model computed by the procedurecomputeBLModelas given
in Table 2. For an input pathsbcdt, pathEncoder(sbcdt, D, N)
works as follows. We haveN = 6, and the algorithm starts by
assigningin := [0, 6). The first edge encountered along this path
is e2, and therefore the intervalin is set to[4, 6). After seeing the
next edgee5, pathEncoderchooses the same intervalin = [4, 6).
For the next edgee6, the interval is narrowed down toin = [4, 5),
and finally for the last edgee8, the interval is set toin = [4, 5).
Therefore,pathEncoderreturns4 as the path identifier for the path
sbcdt. Note that this is precisely the Ball-Larus identifier for this
path as is evident from Figure 3.

4.3 ThePPP algorithm and arithmetic coding

In Section 3.1, we described an algorithm that compactly num-
bers a subset of interesting pathsI ⊆ paths(G) in a DAG
G = (V, E, s, t). We now show that thePPP algorithm is equiv-
alent to an arithmetic coding scheme that uses amaximal con-
text model for encoding paths inG. As described in Section 3.1,
the procedurecomputePPPIncrementscomputes for every pair
(e, q) ∈ E × prefix(p, e), an intervalinte,q that represents the
range of partial identifiers of interesting paths throughe. At every
nodev ∈ V , these intervals are used to compute the weights as-
sociated with edges emanating fromv. It can be shown that this
procedure is equivalent to computing a finite context model with
prefixes as the context. Consider the simple case of a nodev with
two outgoing edgese1 ande2. Assume that a single prefixq induces
intervalsinte1,q andinte2,q on the edgese1 ande2 respectively.
Define cisv,q = inte1,q + inte2,q, andp =

inte1,q

cisv,q
. Then the

modelDv,q at nodev is defined as follows.

Symbol Probability Range
e1 p [0, p)
e2 1− p [p, 1)

Computing the model is more involved when multiple prefixes in-
duce intervals on the outgoing edges of a node. The problem arises
because each outgoing edge may be associated with multiple prob-
abilities, one for each valid prefix at nodev. However, unlike tra-
ditional context models, an edge in theDAG cannot be associated
with multiple probabilities. We overcome this problem by using the
join operator (defined in Section 3.1) to compute a conservative ap-
proximation of the individual models (which we refer to asDv).
Due to thejoin, certain edges may be assigned smaller probabilites
than required. Consequently, the number of bits required to encode
interesting paths through those edges may increase. The final model
DG is a combination of all modelsDv, v ∈ V .

Finally, the process of computing thePPP identifier for an
interesting pathp ∈ I corresponds to calling the procedurepa-
thEncoder with parametersp, DG andN = |ints,s| (assigned to
the start nodes ∈ V).

Example.Consider the graphG shown in Figure 13. Let the set of
interesting paths beI = {sacdt, sact, sbct}. Then the probability
modelDG computed bycomputePPPIncrementsis shown in Ta-
ble 3. For the input pathsact, pathEncoder(sact, DG, N) works
as follows. We haveN = 3, and the algorithm starts by assigning
in = [0, 3). The first edge encountered along this path ise1 (model
= Ds,s), and therefore the intervalin is set to[0, 2). After seeing
the next edgee4 (model =Da,sa), pathEncoderchooses the same
interval in = [0, 2). For the next edgee7 (model =Dc,sac), the
interval is narrowed down toin = [1, 2), and thereforepathEn-
coder returns1 as the path identifier for the pathsact. Note that

Model Symbol Probability Range

Ds,s
e1

e2

2/3
1/3

[0, 2/3)
[2/3, 1)

Da,sa
e3

e4

0
1

empty
[0, 1)

Db,sb e5 1 [0, 1)

Dc,sac
e6

e7

1/3
2/3

[0, 1/3)
[1/3, 1)

Dc,sbc
e6

e7

1/3
2/3

[0, 1/3)
[1/3, 1)

Dd,sacd e8 1 [0, 1)

Table 3. The PPP probability modelDG for the graphG in
Figure 13 computed bycomputePPPIncrements.

this is precisely thePPP identifier for this path as is evident from
Figure 3.

This characterization ofPPP as a model computer and encoder of
paths works due to the fundamental invariant that the intervals in
PPP do not overlap (this follows from Lemma 5).

4.4 Analysis of thePPP algorithm

The Ball-Larus algorithm computes an edge weight assignment
such thatδ (the objective function forProblem A) is equal to 1.
Therefore, it is an optimal algorithm for thoseproblem A instances
for which the interesting paths are all paths, that is,I = paths(G).
Information theoretically, this corresponds to saying that all paths
in the graph are equally likely (and there is no bias towards any
set of paths) – from the previous section, the entropy for such a
distribution (say D) is equal tolog2 |paths(G)| ⇒ paths(G) =
2H(D).

In the previous section, we also saw that the procedurecom-
putePPPIncrementscomputes a probability model for aDAG G
and a set of interesting pathsI ⊆ paths(G). Intuitively, this cor-
responds to computing a probability distributionD that is biased
towards the interesting paths over the uninteresting ones. Since
PPP essentially mimics an arithmetic coder, the total number of
bits required to represent the set of paths distributed according to
the modelD is equal to the entropyH(D) ⇒ the interval size
thatPPP computes is equal tod2H(D)e. Therefore, the compact-

ness thatPPP achieves is2H(D)

|I| , and this is parameterized over
how “precise” the modelD is. In Theorem 1, we show that this
modelD computed bycomputePPPIncrementsis indeed optimal.
We now state a variant ofProblem A and prove thatPPP computes
the optimal solution to this problem.

Problem B (Optimal Edge Assignment): Given aDAG G =
(V, E, s, t) and a set of interesting pathsI ⊆ paths(G), compute
an edge assignmentW : E → Z that satisfies the following
conditions.

1. uniqueness: ∀p, q ∈ I, pathid(p) 6= pathid(q),

2. compactness: The compactness measureγ defined by

γ
def
=

2H(D)

|I|
is minimized, whereD is any probability distribution on
paths(G) induced by a modelDG.

We now state and prove the main result in our analysis.

THEOREM 1. Given a DAG G = (V, E, s, t) and a setI ⊆
paths(G), the procedure computePPPIncrements computes the
optimal solution toProblem B.

Proof: It follows from Section 4.3 that thePPP algorithm
computes amaximalcontext modelDG for a given set of interest-
ing paths inG. The model is a precise context model because it
uses the largest context possible, which is the entire prefix. Since

the modelDG is optimal,γ = 2
H(Dpaths(G))

|I| (whereDpaths(G)

is the probability model overpaths(G) induced byDG) is also
optimal (this follows from the optimality of thepathEncoderpro-
cedure, which essentially mimics an arithmetic coder), and the
theorem follows.

From Section 3.3, it is clear that any algorithm (such asPPP)
that maintains the invariant stated in Lemma 5 will not be able com-
pute an optimalδ. On the other hand, our experiments described in
Section 5 also indicate that the objective functionγ minimized by
our algorithm is close to the minimalδ (the objective function for
Problem A) for most graphs and their associated interesting paths,
and the interval size is small enough for the path profiler to use an
array to track interesting paths.

5. Experimental evaluation
We have implemented the preferential path profiling algorithm
using the Scale compiler infrastructure [10]. A few key features
of our implementation are listed below.

• Representing paths and prefixes.While a user is free to specify
the set of interesting paths in several ways, we choose to rep-
resent the interesting paths using their Ball-Larus identifiers.
Similarly, we represent a prefix using the cumulative sum of
the Ball-Larus weights along the edges of the prefix. It is easy
to see that this sum is unique for each prefix leading to a given
node.

• Register usage.Unlike traditional path profiling, preferential
path profiling requires two registers, one forPPP counts and
one for Ball-Larus counts. Our experiments suggests that the
use of two registers instead of one does not add to the overheads
of profiling.

• Counter optimizations.All counter placement optimizations [3]
used in the Ball-Larus algorithm also apply to thePPP counter.
These include reducing the number of initialization and incre-
ment operations by placing weights only on the edges that do
not belong to a maximal spanning tree of the DAG, pushing
counter initialization downwards along the edges of the DAG
and merging the initializations with the first increments. In
our implementation, we ensure that bothPPP and Ball-Larus
counter updates occur on the same edges.

• Hash table usage policy.The default Ball-Larus profiler is con-
figured to use a hash table instead of an array when the total
number of paths through the procedure exceeds a threshold.
However, the policy for hash table use in preferential path pro-
filing depends on the specific scenario in which the profiler is
used. For instance, in residual path profiling, where the goal
is to detect the occurrence of untested (uninteresting) paths, a
hash table may never be used, even when thePPP identifers
allocated to the tested (interesting) paths are large. Here, the
profiler implementation may decide to ignore all tested paths
with PPP identifiers greater than a threshold, in essence treat-
ing them as untested paths. As a result, a few of the tested paths
may appear as untested during program execution. Such false
positives may be acceptable sincePPP ensures that interesting
paths are assigned compact numbers. In addition, they can be

easily weeded out off-line. A policy that switches to using hash
tables when thePPP identifiers are large may also be used in
other applications. Although our implementation supports both
modes, we report our results using the former policy.

• Additional checks.Before indexing the path array usingPPP
identifiers, our profiler must check for an underflow/overflow,
which can result when an uninteresting path occurs. Our exper-
iments suggest that these additional checks do not add to the
cost of preferential profiling since they are highly biased and
easy to predict.

We evaluated our profiler implementation using benchmarks
from theSPEC CPU2000 suite. We simulated a realistic residual
profiling scenario. We first collected a path profile of the bench-
marks using the Ball-Larus profiler for the standard reference in-
put. We then assumed that all paths exercised during the reference
run were interesting (including procedures where several hundred
paths were exercised). These were fed to the preferential profiler,
which generated a new instrumented binary. All binaries were run
to completion using the reference input on an Alpha 21264 proces-
sor running Digital OSF 4.0. Each binary was executed 5 times and
the minimum of the execution times (measured using hardware cy-
cle counts) was used for comparison.

Figure 15 shows the percentage overheads of the two schemes
relative to execution time of the un-instrumented binary. We find
that Ball-Larus profiling incurs an average overhead of 50% with a
maximum of 132%. On the other hand, the preferential path profiler
incurs an average overhead of 15%, with a maximum of 26%. We
attribute the low profiling overheads ofPPP to (a) elimination of
expensive hash operations, and (b) judicious allocation of counters
for profiling (the size of the counter array is proportional to the
number of interesting paths and not the number of potential paths).

Figure 15. Overheads of preferential path profiling.

Although reflected in the overheads, the real efficacy of the
preferential profiling algorithm lies in the compactness measureδ
that it achieves. We illustrate the compactness measure achieved
by our algorithm in Figure 16, which plots the size of the interval
allocated to interesting paths vs. the number of interesting paths
for procedures from programs in theSPEC CPU2000 benchmark
suite. As aforementioned, all paths exercised during one reference
run were selected as interesting paths. The figure suggests that our
profiling scheme achieves aδ close to 1 for a vast majority of
the procedures, although the value tends to increase for procedures
with a large number of paths (100-300). We also found a very small
number of cases withδ > 10 (not shown in this figure), most
of them in the benchmarkcrafty, a chess program known to have
complex control flow.

Figure 16. δ values achieved by preferential path profiling.

6. Related work
Several researchers have proposed a variety of techniques to re-
duce the overhead of Ball-Larus style path profiling [2, 8, 6]. Selec-
tive path profiling uses a variation of Ball-Larus numbering where
edges are visited in a specific order to ensure that interesting paths
are assigned a unique number that is higher than the non-unique
numbers assigned to other paths, while minimizing the number of
counter updates needed to compute the path number. However, they
found that once the number of interesting paths was five or larger,
their edges covered most of theDAG and their technique offered
little advantage over Ball-Larus numbering. In addition, they made
no attempt to ensure that the interesting paths are compactly num-
bered. Instead of minimizing the number of counter updates needed
to compute a path number, we optimize the compactness of num-
bers assigned to interesting paths. This reduces overhead by en-
abling the use of a path array in place of a hash table. Our compact
numbering scheme is effective even when the number of interesting
paths is large.

Both targeted path profilingandpractical path profilingattempt
to efficiently profile hot program paths starting from an edge profile
by eliminating unneeded instrumentation. Targeted path profiling
eliminates profiling cold paths by excluding cold edges and not
instrumenting paths that the edge profile predicts well. It uses Ball-
Larus numbering for labelling the remaining paths. Practical path
profiling attempts to improve over targeted path profiling using
a variety of techniques to eliminate a larger number of paths.
It also performs intelligent instrumentation placement to further
reduce overhead. To minimize overhead, practical path profiling
may need to classify warm edges as cold and consequently could
compromise the quality of the path profile. It also uses Ball-Larus
numbers to uniquely identify the remaining paths. Our technique is
orthogonal to both as it proposes a new dense numbering scheme
for interesting paths that minimizes the overhead of profiling these
paths. It is also more general as it can be applied to scenarios such
as residual path profiling (detecting paths not exercised by a test
suite), where the techniques that targeted/practical path profiling
use to reduce instrumentation overheads do not apply.

Other work in path profiling has focused on collecting richer
path profiles. Interprocedural path profiling extends Ball-Larus pro-
filing beyond intraprocedural paths [11]. Tallam et al. proposed a
technique to profile overlapping path fragments from which inter-
procedural and cyclic paths can be estimated [14]. Both these tech-

niques have considerably higher overhead than the Ball-Larus tech-
nique for profiling intraprocedural, acyclic paths and our scheme
can potentially help reduce this overhead.

7. Conclusion
This paper presents preferential path profiling, a new technique
that profiles a specified subset of all program paths with very low
overhead. Preferential path profiling labels the paths of interest
compactly using a novel numbering scheme. By drawing parallels
between arithmetic coding and path numbering we establish an
optimality result for our compact path numbering scheme. This
compact path numbering allows our implementation to use array-
based counters instead of hash table-based counters for gathering
path profiles and significantly reduces execution time overhead.

Acknowledgments
We thank Sriram Rajamani, Stefan Schwoon and Aditya Thakur for
helpful comments on this work. Special thanks are due to Stefan for
proving Lemma 3.

References
[1] G. Ammons and J. R. Larus. Improving data-flow analysis with path

profiles. InACM SIGPLAN Symposium on Programming Language
Design and Implementation (PLDI), pages 72–84, 1998.

[2] T. Apiwattanapong and M. J. Harrold. Selective path profiling. In
Workshop. on Program Analysis for Software Tools and Engineering
(PASTE), pages 35–42, 2002.

[3] T. Ball and J. R. Larus. Efficient path profiling. InInternational
Symposium on Microarchitecture (MICRO), pages 46–57, 1996.

[4] T. Ball and J. R. Larus. Programs follow paths. Technical Report
MSR-TR-99-01, Microsoft Research, 1999.

[5] T. Ball, P. Mataga, and S. Sagiv. Edge profiling versus path profiling:
The showdown. InACM SIGPLAN Symposium on Principles of
Programming Languages(POPL), pages 134–148, 1998.

[6] M. D. Bond and K. S. McKinley. Practical path profiling for dynamic
optimizers. InInternational Symposium on Code Generation and
Optimization (CGO), pages 205–216, 2005.

[7] T. M. Cover and J. A. Thomas.Elements of Information Theory. John
Wiley & Sons, Inc., N. Y., 1991.

[8] R. Joshi, M. D. Bond, and C. B. Zilles. Targeted path profiling: Lower
overhead path profiling for staged dynamic optimization systems. In
International Symposium on Code Generation and Optimization
(CGO), pages 239–250, 2004.

[9] A. Kolmogorov. Three approaches to the quantitative definition of
information.Prob. Peredach Inform, 1(1):3–11, 1965.

[10] K. S. McKinley, J. Burrill, M. D. Bond, D. Burger, B. Cahoon,
J. Gibson, J. E. B. Moss, A. Smith, Z.Wang, and C. Weems. The
Scale compiler.http://ali-www.cs.umass.edu/Scale, 2005.

[11] D. Melski and T. W. Reps. Interprocedural path profiling. In
Proceedings of the 8th International Conference on Compiler
Construction (CC), pages 47–62, 1999.

[12] E. Perelman, T. M. Chilimbi, and B. Calder. Variational path profiling.
In Parallel Architectures and Compilation Techniques ’05 (PACT),
pages 7–16, 2005.

[13] J. Rissanen and G. G. Langdon. Arithmetic coding.IBM J. Res.
Develop., 23(2):149–162, 1979.

[14] S. Tallam, X. Zhang, and R. Gupta. Extending path profiling
across loop backedges and procedure boundaries. InInternational
Symposium on Code Generation and Optimization (CGO), pages
251–264, 2004.

[15] I. H. Witten, R. M. Neal, and J. G. Cleary. Arithmetic coding for data
compression.Communications of the ACM, 30(6):520–540, 1987.

