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Abstract. This paper presents a method for deriving an expression from the low-
level code compiled from an expression in a high-level language. The input is a
low-level control flow graph (CFG) and the derived expression is in a form that
can be used as input to an automatic theorem prover. The method is useful for
program verification systems that take as input both programs and specifications
after they have been compiled from a high-level language. This is the case for
systems that encode specifications in an existing programming language and do
not have a special compiler. The method always produces an expression, unlike
the heuristics for decompilation which may fail. It is efficient: the resulting ex-
pression is linear in the size of the CFG by maintaining all sharing of subgraphs.

0 Introduction

A program verifier checks that a given program satisfies its specifications. Some pro-
gramming languages such as Eiffel [15], Java with JML [11], or Spec# [3] provide the
programmer a nice syntax for writing the specifications in the source text. This has
many advantages, e.g., that programmers are immediately aware of the relationship be-
tween their code and its specification. However, in a multi-language platform like .NET,
one would like to have one program verifier that works for any language, regardless of
what special syntax, if any, each language may provide. In this paper, we consider one
issue that arises in such a multi-language setting.

Code Contracts for .NET [1] is a library-based framework for writing specifications
in .NET code. Programmers use the methods from the contract library to write specifi-
cations within their program (written in any .NET language, like C#, Visual Basic, or
F#) as stylized method calls at the beginning of a method’s body. For example, Figure 0
shows a method with a postcondition, expressed as a call to to Contract.Ensures. The
regular .NET compiler for the source program is invoked to produce bytecode. Code
Contracts then has several tools which operate on the resulting bytecode, for example
the runtime checker rewrites the bytecode to move the evaluation of postconditions to
all of the method body’s exit points.

We are connecting an existing program verifier to the Code Contracts framework by
translating the compiled bytecode into an intermediate verification language, Boogie 2
[0,14, 12], and then generating verification conditions for a theorem prover (we primar-
ily use the SMT solver Z3 [6]). Source-program uses of Code Contracts show up in the
bytecode as calls to the contract methods, preceded by a snippet of code that evaluates
the arguments. For the example in Figure 0, the bytecode computes the postcondition
and then passes that boolean value as the argument to Contract.Ensures.
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Therefore, expressions in the source language become code. In general, the code is
a linearized form of a DAG, with a high degree of sharing.

The problem is that the verification conditions needed by the theorem prover must
be first-order formulas. While there are various contexts in which this can be avoided,
the body of a quantifier must be a genuine expression, not code.

We propose to convert the code representing a boolean expression back into a gen-
uine expression in two steps. First, our program verifier identifies the code snippets in
the bytecode and converts them into code expressions of the form

{{ var b; S ; return e }}

where S denotes some code in the intermediate verification language, e denotes the
value returned by the code expression, and b denotes a list of local variables that may
be used in S and e . Defining code expressions in the intermediate verification language
has the advantage that we can make use of facilities in the intermediate verification
language that expect expressions, like pre- and postconditions and bodies of logical
quantifiers.

Second, we define the meaning of a code expression in terms of a first-order for-
mula. We show how to construct this formula from the code expression. The resulting
formula is “efficient”: it maintains the sharing in the DAG, and is thus linear in the size
of the control-flow graph of the code expression.

In this paper, we also give some healthiness conditions for what it means to interpret
code as a genuine expression.

1 The Starting Point

An example program in the C# programming language using Code Contracts is shown
in Figure 0. The example shows a simple method that has a postcondition (encoded

using System.Diagnostics.Contracts;

public class C {

public int[] M(int[] A, int k) {

Contract.Ensures(

Contract.Result<int[]>().Length == A.Length &&

Contract.ForAll(

0, Contract.Result<int[]>().Length,
i => A[i] == 0 || Contract.Result<int[]>()[i] == k/A[i]

)

);

...

}

}

Fig. 0. A portion of a C# program using Code Contracts
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using the method Contract.Ensures). It states that the return value (encoded with
Contract.Result) has the same length as the parameter A and that each element is the
division of k by the corresponding element of A, except in the case that the element is
zero 0. In order to state that, it uses a quantifier: the method Contract.Forall is given
three arguments, an inclusive lower bound, an exclusive upper bound, and an anony-
mous delegate. The latter is the .NET form for a lambda expression, i.e., a functional
value. The type of Forall restricts the function to take a single argument of type int
and return a boolean1. In the example, the function’s parameter is named i. In traditional
notation, the function would be written as (λ i : int . A[i ] 6= 0⇒ result [i ] = k/A[i ]).
Anonymous delegates are lexically scoped and “capture” references, such as to the
method’s parameter A.

The source-language compiler (in this case the C# compiler) is used to compile the
program to MSIL. Since we do not have control over the C# compiler, the specifications
are compiled into MSIL just as the “real” program is. In particular, short-circuit boolean
expressions are compiled into code expressions. These are a linearized DAG of basic
blocks with assignment statements and goto statements where the value of the boolean
expression is left on the stack. For the current example, Figure 1 shows the MSIL that
the anonymous delegate in Figure 0 compiles into. A more readable form written in C#
is:

bool Anonymous(int i) {
bool b;
if (A[i] == 0) goto L_0024;
if (result[i] == k/A[i]) goto L_0024;
b := false;
goto L_0028;
L_0024: b := true;
L_0028: return b;

}

2 The Midpoint: Boogie

An intermediate verification language serves a purpose analogous to that of an interme-
diate representation in a compiler: it separates the concerns of defining source-language
semantics from the concerns of generating formulas for a theorem prover. Many pro-
gram verifiers are built around an architecture that uses an intermediate verification
language (e.g., [0,9, 4]).

0 The method Contract.Result is generic and must be instantiated since its type cannot be
inferred from its arguments because it is a nullary method (hence the open-close parentheses).
Type instantiation is indicated by referring to the return type of the method, int[], within
angled brackets. This shows why it is so nice to have a language provide surface syntax for
specifications!

1 There is another version of Forall that allows a more general predicate.
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Fig. 1. The bytecode compiled from the body of the anonymous delegate in Figure 0. The labels
on each line are the byte offsets of the instructions. The code from offset 0x0 to 0x7 represents
the left disjunct A[i ] == 0. The right disjunct, Contract.Result<int[]>()[i] == k/A[i], is
computed in the code from offset 0x0a to 0x20. “arg 0” refers to this, the implicit receiver and
“arg 1” refers to the parameter i. There is an implicit receiver because the captured variables in an
anonymous delegate become fields on a compiler-generated class in order to retain the necessary
state in between invocations. In this case, there are fields for A and k.

2.0 Previously. . .

We reiterate the language from [2], which forms the core of the Boogie intermediate
verification language:

Program ::= Block+

Block ::= BlockId : Stmt ; Goto
Stmt ::= VarId := Expr | havoc VarId

| Stmt ; Stmt | skip
| assert Expr | assume Expr

Goto ::= goto BlockId∗

In our core language, a program consists of a set of basic blocks, where the unstructured
control flow between blocks is given by goto statements. A goto with multiple target
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labels gives rise to a non-deterministic choice; a goto with no target labels gives rise to
normal termination. The BlockId ’s listed in a goto statement are the successors of the
block.

The semantics of the core language is defined over traces, i.e., sequences of pro-
gram states. Each finite trace either terminates normally or ends in an error. There are
two assignment statements: x := e sets variable x to the value of expression e , and
havoc x sets x to an arbitrary value. Semi-colon is the usual sequential composition
of statements, and skip, which is the unit element of semi-colon, terminates normally
without changing the state. The assert statement assert e behaves as skip if e eval-
uates to true; otherwise, it causes the trace to end in an error (we say the trace goes
wrong). The assume statement assume e is a partial command [16]: it behaves as
skip if e evaluates to true; otherwise, it leads to no traces at all. The assume statement
is thus used to describe which traces are feasible.

The normally terminating traces of a block are extended with the traces of the
block’s successors.

Note that the core language does not have a method call as a primitive statement;
a method call is encoded as a sequence of statements that assert the method’s precon-
dition, use havoc statements to set the locations that the method may modify to an
arbitrary value, and then assume the method’s postcondition.

Verification condition generation proceeds by first converting the program into pas-
sive form, where loops are cut (see [2]) and where all assignment statements are re-
placed by assumptions expressed over a single-assignment form of the program vari-
ables [10]. For example, a statement

x := y ; x := x + y ; assert y < x

is converted into a passive form like

assume x1 = y0 ; assume x2 = x1 + y0 ; assert y0 < x2

where y0, x1, and x2 are fresh variables.
The passive program is turned into a formula via weakest preconditions [8]. For

any passive statement S and any predicate Q characterizing a set of post-states of S ,
wp[[S ,Q ]] is a predicate that characterizes those pre-states from which execution of S
will not go wrong and will end in a state described by Q . The weakest-precondition
equations for passive statements are as follows:

wp[[skip,Q ]] = Q
wp[[S ; T , Q ]] = wp[[S ,wp[[T ,Q ]]]]
wp[[assert e,Q ]] = e ∧Q
wp[[assume e,Q ]] = e ⇒ Q

In each of the last two equations, the occurrence of e on the left-hand side is an expres-
sion in Boogie, whereas its occurrence on the right-hand side must be an expression in
the input language of the theorem prover. These expressions are usually so similar that
we do not mind glossing over this difference; however, for code expressions this makes
an important difference.
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To deal with (unstructured) control flow, we introduce a variable Aok for every
block labeled A, and we define Aok to be true iff no execution from A goes wrong [2].
In particular, for any block A with body S and successors Succ(A), we define

Aok = wp[[S ,
∧

B∈Succ(A)

Bok ]]

2.1 Adding Code Expressions to Boogie

We extend the core language to include code expressions. Previously [2], we left im-
plicit the definition of Expr (and its implementation did not allow code expressions).
Now, we explicitly extend the definition of Expr to include them:

Expr ::= Expr op Expr | MethodCall | CodeExpr
CodeExpr ::= {{ LocalDecl∗ CodeBlock+ }}
LocalDecl ::= VarId : Type
CodeBlock ::= BlockId : Stmt ; Transfer
Transfer ::= Goto | Return
Return ::= return Expr

We need each code expression to be a self-contained unit. In order to achieve that,
we assume that each code expression is well-formed by meeting the following condi-
tions:

– A transfer command comprising a goto statement has at least one successor.
– All successors are other blocks within the code expression.
– No block in a code expression is a successor of any block not in the code expression.
– The graph induced on the blocks by the successor relation is acyclic.
– All paths within the code expression end with a block whose transfer command

comprises a return statement.

We also assume each code expression has a first block labeled “Start”, which is the
entry point to the code expression.

2.2 When Is Code an Expression?

It is one thing to syntactically allow code expressions in Boogie, but we still must
consider when a code expression really does represent a genuine expression, i.e., when
we are justified in using the same semantics for them as for genuine expressions. Thus
the question of this section: when can we look at a chunk of code and consider it a
genuine expression?

It must meet four requirements:

0. It must be deterministic. (All branches are mutually exclusive.)
1. It must be total in terms of not being a partial command.
2. It must be total, in the “expression sense”. That is, its execution does not go wrong

(i.e., failing an assertion, like dereferencing null or dividing by zero).
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3. It must not have any side effects (on variables other than the local variables it in-
troduces).

The first two requirements are not enforced (yet), but instead are left as the program-
mer’s responsibility. Code expressions originating in compiled .NET code meet both
requirements. In case a code expression contains a partial command, our scheme will
derive the value true in states where the partiality comes into play.

We enforce the third requirement by ignoring all assertions within a code expres-
sion. Many verifiers enforce such definedness checks [13] for expressions separately
from the expressions themselves by inserting extra checks which guarantee that the
expression is total.

The fourth requirement is enforced by making sure that all assignment statements
within a code expression are to its local variables and that all method calls are to pure
methods, i.e., methods whose Boogie encoding do not have any modifies clauses.

3 The Endpoint: Deriving an Expression from Code

But now we have a mismatch: we have code expressions in places where they need to
be translated to expressions in the prover’s language. We either need a new definition
for the weakest precondition when an expression is a code expression or we need a
translation scheme that produces a genuine expression from a code expression.

We take the latter approach and, for now, restrict ourselves to boolean code expres-
sions, i.e., the value they return is a boolean. For boolean code expressions that meet the
requirements in Section 2.2, we compute an equivalent boolean expression (that does
not contain any code expressions). For the code expression

{{ var b; S ; return e }}

the equivalent boolean expression is

(∀ b • wp[[S , e]] ) (0)

This presumes that S is a structured command, i.e., control flows from S to the return
statement. When the code expression is unstructured, then we form the block equations
as in Section 2.0. The only difference is that for any block A whose transfer statement
comprises a return statement return e , we define the block equation as:

Aok = wp[[S , e]]

Because code expressions are acyclic, we can avoid having to quantify over the block
variables by defining them via let-expressions. (Z3 supports the SMT-LIB format [17],
which allows let-expressions in the verification condition.)
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So the body of the anonymous delegate can be represented in Boogie as:

{{ b : bool;
Start : skip ; goto L0,L1;
L0 : assume A[i ] = 0 ; goto L2;
L1 : assume A[i ] 6= 0 ; goto L3,L4;
L2 : b := true ; goto L5;
L3 : assume result [i ] = k/A[i ] ; goto L2;
L4 : assume result [i ] 6= k/A[i ] ; b := false ; goto L5;
L5 : skip ; return b; }}

We first convert it into passive form by introducing a new incarnation of a variable each
time it is assigned. Join points (e.g., L5) also produce a new incarnation with equations
pushed into each predecessor relating the value of the variable in that branch with that
of the join point’s incarnation.

{{ b : bool;
Start : skip ; goto L0,L1;
L0 : assume A[i ] = 0 ; goto L2;
L1 : assume A[i ] 6= 0 ; goto L3,L4;
L2 : assume b0 = true ; assume b2 = b0 ; goto L5;
L3 : assume result [i ] = k/A[i ] ; goto L2;
L4 : assume result [i ] 6= k/A[i ] ; assume b1 = false ; assume b2 = b1 ; goto L5;
L5 : skip ; return b2; }}

Then the block equations, written as let-expressions, are:

let L5ok = wp[[skip, b2]] in
let L2ok = wp[[assume b0 = true ; assume b2 = b0,L5ok ]] in
let L3ok = wp[[assume result [i ] = k/A[i ],L2ok ]] in
let L4ok = wp[[assume result [i ] 6= k/A[i ] ; assume b1 = false ;

assume b2 = b1,L5ok ]] in
let L1ok = wp[[assume A[i ] 6= 0,L3ok ∧ L4ok ]] in
let L0ok = wp[[assume A[i ] = 0,L2ok ]] in
let Startok = wp[[skip,L0ok ∧ L1ok ]] in

Startok

After simplifying2 the expression is equivalent to:

let L5ok = b2 in
let L2ok = b0 = true ⇒ b2 = b0 ⇒ L5ok in
let L3ok = result[i ] = k/A[i ]⇒ L2ok in
let L4ok = result[i ] 6= k/A[i ]⇒ b1 = false ⇒ b2 = b1 ⇒ L5ok in
let L1ok = A[i ] 6= 0⇒ L3ok ∧ L4ok in
let L0ok = A[i ] = 0⇒ L2ok in
let Startok = L0ok ∧ L1ok in

Startok
2 Yes, we realize it doesn’t look particularly simple. We mean that we have applied the definition

of the weakest-precondition.
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If we denote that entire expression by R, then the genuine expression which is equiva-
lent to the body of the anonymous delegate is:

(∀ b0, b1, b2 • R )

and the entire postcondition of the method in Figure 0 is:

result.Length = A.Length ∧
(∀ i • 0 ≤ i < result.Length ⇒ (∀ b0, b1, b2 • R ))

Looking closely3, one can see that the truth value of this expression is equivalent to the
original postcondition.

We perform this translation in a depth-first traversal of the program, replacing each
code expression from innermost to outermost.

4 Non-Boolean Code Expressions

In this section, we extend our translation of boolean code expressions to code expres-
sions of any type. The basic idea is to distribute the non-boolean code expression to a
context where its value can be stated as a boolean antecedent.

Let G [·] denote an expression context with a “hole”. That is, if we place an expres-
sion e in the hole, written G [e], we get an expression with an occurrence of e as a
subexpression. We assume bound variables in G are suitably renamed so as to always
avoid name capture of the free variables of e .

Now, let e be a code expression of an arbitrary type (that is, not necessarily boolean),
and let VC [e] be the verification condition (in other words, the verification condition
contains an occurrence of e). We now show how to transform expression VC [e] to an
equivalent expression that does not contain this occurrence of e but instead contains a
boolean code expression. First, for any variable x occurring free in e and introduced in
the verification condition by a let binding let x = t in u , replace x by t in e . Then,
consider any context G such that G [e] is a boolean subexpression of VC [e]; that is,
G [e] is some subexpression of VC [e] such that the free variables of e are also free
variables of G [e]. Specifically, if e is contained in a quantifier, then G [e] can be the
body of the innermost such quantifier; if e is not contained in any quantifier, then G [e]
can simply be VC [e].

Since G [e] is boolean, it is equivalent to the expression

(∀ k • k = e ⇒ G [k ] )

where k is a fresh variable. Considering that e is a code expression, we have:

(∀ k • k = {{ var b; S ; return d }} ⇒ G [k ] )
= { distribute “k =” over the code expression }

(∀ k • {{ var b; S ; return k = d }} ⇒ G [k ] )

The transformation we have just showed can thus be used to replace non-boolean code
expressions with boolean ones, after which the semantics that we have defined for
boolean code expressions earlier in the paper can be used.

3 Squinting helps too.
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5 Related Work

An alternative means for recovering boolean expressions would be to decompile the
MSIL back into a high-level expressions [5]. For the trivial example with which we
have demonstrated our scheme, this clearly would be quite easy.

However, we believe all decompilers are heuristic and so may not always be able
to successfully decompile an expression, certainly not without perhaps introducing the
same redundancy as a tree-encoding of the DAG, compared to the linear size of our
derived expression. Also, a decompiler’s goal is to produce an expression which is
“close” to a boolean expression that a programmer would write. We are not concerned
with making the expression “readable”, but instead just need to be able to communicate
it to a theorem prover.

6 Conclusions

In Section 0, we noted that there are contexts in which code expressions do not need
to be converted back into a genuine expression. For instance, Boogie encodes precon-
ditions (respectively, postconditions) as assume (respectively, assert) statements in the
Boogie program itself. Instead of forming the verification condition P ⇒ wp[[S ,Q ]] for
a program S , precondition P , and postcondition Q , it computes the weakest precondi-
tion with respect to true of the program:

assume P ;
S ;
assert Q

This means that if P or Q are code expressions, they can be in-lined and the assume
(assert) “distributed” so that any return statement in the code expression, return e ,
becomes an assertion (assumption) on e . Then, the definitions of wp in Section 2 will
produce a first-order formula that is accepted by theorem provers.

But this cannot be done for quantifiers: instead they must be translated into an equiv-
alent quantifier in the input language of the theorem prover, which does not include code
expressions. Therefore, we need to perform our technique only for code expressions oc-
curring within a quantifier. As we progress with the implementation of this scheme in
Boogie, we will need to see if the introduction of the quantifier in Equation 0 leads to
problems with triggering. (A trigger is the pattern a Simplify-like SMT solver requires
before it instantiates a quantifier [7].)

In summary, in this paper, we have adapted our previous work on verification con-
dition generation [2] to provide a scheme for turning code that represents an expression
back into an expression in order for it to be easily translated into input for an automatic
theorem prover. The scheme avoids decompilation and is efficient. We also outlined four
healthiness conditions for ensuring that a code expression can be treated as a genuine
expression.
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