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Microsoft Research
One Microsoft Way

Redmond, WA 98052
martinro@microsoft.com

Rainer Steinwandt
Florida Atlantic University

Department of Mathematical Sciences
Boca Raton, FL 33431
rsteinwa@fau.edu

November 15, 2013

Abstract

Improving over an earlier construction by Kaye and Zalka [1], in [2] Maslov et al. describe an
implementation of Shor’s algorithm, which can solve the discrete logarithm problem on ordinary binary
elliptic curves in quadratic depth O(n2). In this paper we show that discrete logarithms on such curves
can be found with a quantum circuit of depth O(log2 n). As technical tools we introduce quantum
circuits for F2n -multiplication in depth O(log n) and for F2n -inversion in depth O(log2 n).

1 Introduction

The practical significance of the discrete logarithm problem on ordinary binary elliptic curves (see, e. g., [3])
renders these groups a natural target for implementing Shor’s algorithm [4]. To implement an actual discrete
logarithm computation, efficient quantum circuits to implement the pertinent curve arithmetic are needed,
and a number of authors have explored circuits to implement the relevant elliptic curve operations [1, 2, 5].
When considering a complete implementation of Shor’s algorithm in such a group, Maslov et al.’s proposal
in [2] shows that a quadratic depth circuit is sufficient. The reason for the quadratic depth is essentially two-
fold: a double-and-add computation to compute the relevant scalar multiplications in Shor’s algorithm and a
finite field inversion are the dominating operations. As shown in [5,6], inversion in F2n can be implemented
in depth O(n log n), and so one may hope that the quadratic depth bound can indeed be overcome.

Our contribution. Below we show that an appropriate organization of the scalar multiplication(s) in
Shor’s algorithm in combination with an improved F2n-arithmetic enables a solution to the discrete log-
arithm problem on ordinary binary elliptic curves in depth O(log2 n). To implement the necessary group
operations we use complete binary Edwards curves as described in [5].

Structure of the paper. In the next section we briefly review some background on elliptic curves and
Shor’s algorithm. In particular we recall the the definition of binary Edwards curves as needed for the main
part of the paper. Section 3 details how with this curve representation the addition of any two curve points
can be implemented in logarithmic depth. Thereafter we discuss different options to organize the scalar
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multiplications in Shor’s algorithm, including a tree-based approach with polylogarithmic depth. After ad-
dressing the technical point of deriving a unique representation of group elements, in Section 4 we establish
our main result.

2 Technical tools

This section reviews some known results on ordinary binary elliptic curves and on computing discrete loga-
rithms with Shor’s algorithm.

2.1 Quantum circuits for binary elliptic curve arithmetic

For n ∈ N a positive integer, we denote by F2n a finite field of size 2n—for a cryptographic application,
e. g., a digital signature scheme, a typical choice would be n = 163 or n = 233 [3]. To represent elements
in F2n we use a polynomial basis representation. In other words we fix an irreducible polynomial p ∈ F2[x]
with coefficients in the integers modulo 2 and identify F2n with the quotient F2[x]/(p), so that each α ∈ F2n

has a unique expression of the form α =
∑n−1

i=0 αi · (xi + (p)) with (α0, . . . , αn−1) ∈ Fn
2 .

Using a short Weierstrass form, each ordinary binary elliptic curve can be represented by a polynomial
equation

y2 + xy = x3 + a2x
2 + a6, (1)

where a2, a6 ∈ F2n with a6 6= 0 [7, Chapters 13.1.4 and 13.1.5]. More precisely, the elliptic curve repre-
sented by Equation (1) consists of the points Ea2,a6(F2n) := {(u, v) ∈ F2n : v2 + uv = u3 + a2u

2 + a6} ∪
{O}, where O ∈ Ea2,a6(F2n) is the unique projective point that is obtained when homogenizing Equa-
tion (1). Hasse’s bound implies that the size of Ea2,a6(F2n) differs from 2n by no more than 21+(n/2) + 1,
and the subgroups of Ea2,a6(F2n) considered in cryptographic applications typically have a very small co-
factor. Hence n is a natural parameter to measure the complexity of a quantum circuit to solve the discrete
logarithm problem in a Ea2,a6(F2n).

The set Ea2,a6(F2n) has a group structure, but implementing this group law directly comes at a certain
inconvenience: case distinctions have to be made, which require the implementation of a (nested) if-then-
else statement (cf. the discussion in [5, 8]). To avoid this issue, subsequently we use complete binary
Edwards curves as introduced by Bernstein et al. [9]. For n ≥ 3 each ordinary elliptic curve is birationally
equivalent to a complete binary Edwards curve, and we can represent such a curve by an equation

d1(x+ y) + d2(x
2 + y2) = xy + xy(x+ y) + x2y2 (2)

with d1 ∈ F∗
2n being non-zero, d2 ∈ F2n and Tr(d2) = 1.1 By EB,d1,d2(F2n) we denote the points in F2

2n

satisfying Equation (2). The group law on EB,d1,d2(F2n) is given by the formula

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x21)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x21)(x2 + y2)
and

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y21)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y21)(x2 + y2)
,

where (x1, y1), (x2, y2) ∈ EB,d1,d2(F2n) can be arbitrary curve points—including the identity element
(0, 0). To derive efficient addition formula one can (similarly as for a Weierstrass form) pass to projective

1The condition Tr(d2) = 1 can equivalently be expressed as
∑n−1

i=0 d2
i

2 = 1.
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coordinates. Bernstein et al. [9] show that from projective representations (X1, Y1, Z1), (X2, Y2, Z2) of two
points one can derive a projective representation (X3, Y3, Z3) of their sum by means of 21 multiplications
in F2n , four multiplications by one of the constant d1, d2, one squaring and 15 additions in F2n .

W1 = X1 + Y1, W2 = X2 + Y2, A = X1 · (X1 + Z1), B = Y1 · (Y1 + Z1),
C = Z1 · Z2, D = W2 · Z2, E = d1C

2, H = (d1Z2 + d2W2) ·W1 · C,
I = d1Z1 · C, U = E +A ·D, V = E +B ·D, S = U · V,
X3 = S · Y1 + (H +X2 · (I +A · (Y2 + Z2))) · V · Z1,
Y3 = S ·X1 + (H + Y2 · (I +B · (X2 + Z2))) · U · Z1,
Z3 = S · Z1.

From an asymptotic point of view, it suffices to observe that the number of field operations is constant. It is
not necessary, however, to perform these field operations sequentially, and [5] suggest some parallelization,
establishing the following upper bound for the depth of a point addition circuit, whereDM (n) stands for the
depth of an F2n-multiplier |α〉 |β〉 |γ〉 7→|α〉 |β〉 |γ + αβ〉.
Proposition 2.1 ( [5, Proposition 3.3]). Let (X1, Y1, Z1) and (X2, Y2, Z2) be projective representations of
two (not necessarily different) points P1, P2 ∈ EB,d1,d2(F2n). Then the addition map

|X1〉 |Y1〉 |Z1〉 |X2〉 |Y2〉 |Z2〉 |0〉 |0〉 |0〉 −→|X1〉 |Y1〉 |Z1〉 |X2〉 |Y2〉 |Z2〉 |X3〉 |Y3〉 |Z3〉,
where (X3, Y3, Z3) is a projective representation of P1 + P2, can be implemented in depth 5 ·DM (n) + 4 ·
max(DM (n), 2n) + O(1).

From [2] it follows that we can choose DM (n) ∈ O(n), and in Section 3.1 we will show that through a
suitable use of trees DM (n) can be chosen to be of logarithmic depth. As the number of field operations to
add to curve points is constant, this establishes immediately the existence of a logarithmic depth circuit for
point addition. To optimize the circuit depth, we can exploit the bound from Proposition 2.1: looking into
the proof of [5, Proposition 3.3], one recognizes that the term 2n occurring as argument of the maximum
in Proposition 2.1 describes the multiplication of a binary n × n-matrix with a binary vector. In the next
section we will see that such a multiplication can be realized in logarithmic depth as well.

A technical issue that we address in Section 3.2.3 is the derivation of the unique (affine) representation
from a projective representation of a curve point: The natural way to realize this is by means of an inversion
in F2n , but for none of the division circuits described in [1, 2, 5] a polylogarithmic depth bound is available.
We modify the construction in [5] to achieve polylogarithmic depth.

2.2 Shor’s algorithm

For our discussion we assume that a generator P ∈ EB,d1,d2(F2n) of a cyclic subgroup of EB,d1,d2(F2n) is
fixed and the order ord(P ) of this group generator is known. Moreover, we assume that a group element Q
in the subgroup generated by P is fixed; our goal is to find the unique integer r ∈ {1, . . . , ord(P )} such that
Q = r · P . The algorithm proceeds as follows. First, two registers of length n + 1 qubits2 are created and
each qubit is initialized in the |0〉 state. Then a Hadamard transform H is applied to each qubit, resulting in
the state 1

2n+1

∑2n+1−1
k,`=0 |k, `〉. Next, conditioned on the content of the register holding the label k or `, we

add the corresponding multiple of P and Q, respectively, i. e., we implement the map

1

2n+1

2n+1−1∑
k,`=0

|k, `〉 7→ 1

2n+1

2n+1−1∑
k,`=0

|k, `〉 |kP + `Q〉.

2Hasse’s bound guarantees that ord(P ) can be represented with n+ 1 bits.
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Hereafter, the third register is discarded and a quantum Fourier transform QFT22·(n+1) on 2 ·(n+1) qubits is
computed. Finally, the state of the first two registers—which hold a total of 2 · (n+1) qubits—is measured.
As shown in [4,10], the factor r can be computed from this measurement data via classical post-processing.
The corresponding quantum circuit is shown in Figure 1. In the following sections, we will be concerned
with parallelizing the parts of the circuit in this figure. In Section 3.2.3 we will address the problem of
having a non-unique representation of curve points, as the above description of Shor’s algorithm implicitly
assumes group elements to have a unique representation.

+P 

H 

H 

+2P +2nP 

H 

H 

H 

H 

+Q +2Q +2nQ 

QFT22n+2 

Figure 1: Shor’s algorithm to compute the discrete logarithm in the subgroup of an elliptic curve generated
by a point P . The input to the problem is a point Q, and the task is to find r ∈ {1, . . . , ord(P )} such that
Q = r · P . The circuit naturally decomposes into three parts, namely (i) the Hadamard layer on the left,
(ii) a double scalar multiplication (in this figure implemented as a cascade of point additions), and (iii) the
quantum Fourier transform QFT at the end. We show that each of these parts can be implemented in a
circuit depth of O(log2 n) to obtain the main result of this paper.

3 Parallelizing Shor’s algorithm

To reduce the circuit depth, we parallelize Shor’s algorithm on two different levels: (i) the computation of
F2n-multiplications is parallelized and (ii) the computation of the scalar products k ·P +` ·Q is parallelized.
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3.1 Multiplying F2n-elements in depth O(log n)

A simple observation that will be useful is that we can implement the map

|x〉 |0〉 . . . |0〉︸ ︷︷ ︸
m

7−→|x〉 |x〉 . . . |x〉︸ ︷︷ ︸
m

(x ∈ {0, 1})

in depth O(logm) by arrangingm CNOT gates as a tree. Figure 2, which derives from [11, Figure 2], shows
such a ‘multi-fan-out CNOT with |0〉-input’ for the case m = 7. We note that in general such a tree is not
functionally equivalent to a CNOT with fan-out greater than 1, but for the case of a |0〉-input this equivalence
holds, and for our purposes this is the only case needed.

|q0〉 = |x〉 • • •

|q1〉 = |0〉 ⊕

|q2〉 = |0〉 ⊕ •

|q3〉 = |0〉 ⊕

|q4〉 = |0〉 ⊕ • •

|q5〉 = |0〉 ⊕

|q6〉 = |0〉 ⊕ •

|q7〉 = |0〉 ⊕

Figure 2: obtaining m ‘copies’ of a qubit in depth O(logm)

As starting point to implement multiplication in F2n we use the circuit proposed by Maslov et al. in [2]—
which builds on a classical Mastrovito multiplier [12–14]. This construction reduces the task of multiplying
two elements in F2[x]/(p) to implementing a quantum circuit that evaluates two matrix-vector multipli-
cations with a Toeplitz matrix, one matrix-vector multiplication with a matrix that depends only on the
polynomial p, and an addition in Fn

2 . More specifically, the coefficients (γ0, . . . , γn−1) of the product
(
∑n−1

i=0 αi · (xi+(p))) · (∑n−1
i=0 βi · (xi+(p))) are obtained as follows, whereM ∈ Fn×(n−1)

2 is independent
of the specific field elements to be multiplied; the matrix M depends only on the irreducible polynomial p
defining the underlying finite field F2[x]/(p):

~γ =


α0 0 . . . 0 0
α1 α0 . . . 0 0
...

...
. . .

...
...

αn−2 αn−3 . . . α0 0
αn−1 αn−2 . . . α1 α0


︸ ︷︷ ︸

=L

·~β +M ·


0 αn−1 αn−2 . . . α2 α1

0 0 αn−1 . . . α3 α2
...

...
...

. . .
...

...
0 0 0 . . . αn−1 αn−2

0 0 0 . . . 0 αn−1


︸ ︷︷ ︸

=U

·~β (3)

3.1.1 Computing the products L · ~β and U · ~β
To implement the multiplications of L and U with ~β respectively, we first observe that—considering both
the computation of L · ~β and U · ~β combined—each coefficient αi (i = 0, . . . , n − 1) occurs in exactly n
products of the form αiβj . Similarly, each coefficient βj (j = 0, . . . , n − 1) occurs in a total of exactly n
products. We want to compute all of these F2-products in parallel. So we ensure that n ‘copies’ of each of
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β0, . . . , βn−1 are available, using a ‘multi-fan-out CNOT with |0〉-input’ for each βi. As the CNOT trees
for βi and βj with i 6= j operate on disjoint wires, they can be executed in parallel and implemented in
depth O(log n). Analogously, using a ‘multi-fan-out CNOT with |0〉-input’ for each of α0, . . . , αn−1 we
can—in depth O(log n) and in parallel to the trees for copying the βi-values—provide n ‘copies’ of each of
α0, . . . , αn−1.

Having, at the cost of O(n2) qubits, all these copies at our disposal, we can now, in depth 1, compute all
products αi ·βj that are necessary to find L · ~β and U · ~β in parallel, using n2 Toffoli gates. Having evaluated
all these products we can simply compute each entry of L · ~β and U · ~β by using a a depth O(log n) addition
tree for each entry of these two vectors. Only CNOT gates (and no further ancillae) are needed for this.
Figure 3 shows an example for the case n = 2, i. e., we have

L =

(
α0 0
α1 α0

)
, U =

(
0 α1

)
.

In this case all occurring multiplications can be evaluated in depth 1 = log2(2), and the final addition trees
reduce to a single CNOT gate to compute the ‘last’ entry α1β0 + α0β1 of L · ~β.

|q0〉 = |α0〉 • •

|q1〉 = |0〉 ⊕ •

|q2〉 = |α1〉 • •

|q3〉 = |0〉 ⊕ •

|q4〉 = |β0〉 • •

|q5〉 = |0〉 ⊕ •

|q6〉 = |β1〉 • •

|q7〉 = |0〉 ⊕ •

|q8〉 = |0〉 ⊕

|q9〉 = |0〉 ⊕ •

|q10〉 = |0〉 ⊕ ⊕

|q11〉 = |0〉 ⊕

Figure 3: computing L · ~β and U · ~β for n = 2: all four multiplications occur in parallel

3.1.2 Multiplication by the constant matrix M

From Equation (3), we see that the vector ~η = U · ~β ∈ Fn−1
2 needs to be multiplied from the left with the

fixed n× (n−1)-matrixM . Writing hw(Mi) for the Hamming weight of the ith column ofM and denoting
by ηi the ith entry of ~η, we first create hw(Mi) ≤ n copies of ηi (i = 1, . . . , n− 1), requiring O(n2) qubits.
For this we use again ‘multi-fan-out CNOT gates with |0〉-input’ that operate in parallel and can be realized
in depth O(log n). This allows us to compute all n entries of M · ~η in parallel: for each entry of the result
we can use an O(log n)-depth addition tree that computes the scalar product of the corresponding row of M
with ~η. As the matrix M is fixed, this can be done by means of CNOT gates. Figure 4 shows a ‘worst case
tree’ of depth 3 = log2(8) for the case n − 1 = 8: multiplying a matrix row consisting entirely of 1s with
(η0, . . . , η7).

6



|q0〉 = |η0〉 •

|q1〉 = |η1〉 ⊕ •

|q2〉 = |η2〉 •

|q3〉 = |η3〉 ⊕ ⊕ •

|q4〉 = |η4〉 •

|q5〉 = |η5〉 ⊕ •

|q6〉 = |η6〉 •

|q7〉 = |η7〉 ⊕ ⊕⊕

Figure 4: computing (1, 1, 1, 1, 1, 1, 1, 1) · (η0, η1, η2, η3, η4, η5, η6, η7)t in depth 3

Finally, to complete the evaluation of Equation (3), we add the binary vector L · ~β to M · (U · ~B) by
means of n CNOT gates that operate in parallel. With all involved steps—computing L · ~β and U · ~β, finding
M · U~β, and determining L~β +MU~β—being realizable in depth O(log n) we obtain the following result.

Theorem 3.1 (F2n-multiplication in logarithmic depth). There is a polynomial-size quantum circuit of depth
O(log n) which on input polynomial basis representations of α, β ∈ F2n computes a polynomial basis
representation of the product α · β ∈ F2n .

The above-described technique to multiply a vector with the fixed matrix M can also be used to imple-
ment other matrix-vector multiplications: Given a binary n× n matrix A ∈ Fn×n

2 and a vector ~γ ∈ Fn
2 , we

first use n ‘multi-fan-out CNOT with |0〉-input’ to create n copies of ~γ, investing O(n2) qubits. Handling
all entries of ~γ in parallel, this can be done in depth O(log n). Hereafter we can use an addition tree to
compute the necessary n scalar products in parallel, just as in the discussion of the matrix M . We can apply
this observation to the matrix multiplications occurring in the proof of Proposition 2.1 given in [5], which
replaces the argument 2n of max with a function in O(log n). In combination with Theorem 3.1, we obtain
the following.

Corollary 3.1. Using projective coordinates, a projective representation of the sum of two points on a
complete binary Edwards curve EB,d1,d2(F2n) can be computed in depth O(log n).

3.2 Organizing the computation of k · P + ` ·Q
An essential part of an implementation of Shor’s algorithm is a circuit which on input (binary representations
of) k =

∑n
i=0 ki2

i and ` =
∑n

i=0 `i2
i computes a (unique) representation of k · P + ` · Q—because of

Hasse’s bound, we can assume that k and ` are represented with (at most) n+ 1 qubits each.

3.2.1 Sequential double-and-add

The approach taken in [2, 15] can be seen as implementation of a right-to-left version of the double-and
add-algorithm3:

3More specifically, Maslov et al. first perform all necessary additions of the points 2i · P and then continue with the necessary
additions of the points 2i ·Q; this change of addition order does not affect the circuit depth.
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R← O # initialize result to identity
for i = 0 to n step 1

if ki = 1 then R← R+ 2i · P
if `i = 1 then R← R+ 2i ·Q

return R # R = kP + `Q

Applying Corollary 3.1, each point addition requires circuit depth O(log n), and so we immediately
obtain an O(n log n)-depth circuit to compute kP +`Q. A feature of this particular strategy is that all points
2iP and 2iQ can be precomputed classically, and in all adders involved one argument is constant. This can
be exploited to simplify the addition circuits, but for a realistic value of n several hundred different addition
circuits are involved. A left-to-right formulation of the double-and-add algorithm offers an alternative that
involves only three types of circuits, but this uniformity comes at the cost of a general doubling circuit:

R← O # initialize result to identity
if kn = 1 then R← R+ P # adjust starting value based on most significant bit
if `n = 1 then R← R+Q
for i = n− 1 to 0 step − 1

R← 2 ·R
if ki = 1 then R← R+ P
if `i = 1 then R← R+Q

return R # R = kP + `Q

This algorithm processes k and ` simultaneously, so that the total number of doublings is n (rather than
2n)—the latter technique goes back to Straus [16] and is also known as Shamir’s trick (cf. [17]). Realizing
point doubling and addition of P respectively Q in depth O(log n), this yields again an O(n log n)-depth
circuit to find kP + `Q.

3.2.2 Parallelized double-and-add

To find kP + `Q with a quantum circuit of smaller depth, we parallelize the computation of kP + `Q. To
simplify the description we assume that the length n+1 of the binary representation of k and of ` is a power
of 2—if this is not the case, the binary expansions can be padded with 0s accordingly.

(R
(log2(n+1))
0 , . . . , R

(log2(n+1))
n )← (k0 · 20P, . . . , kn · 2nP )

(S
(log2(n+1))
0 , . . . , S

(log2(n+1)
n ))← (`0 · 20S, . . . , `n · 2nS)

for i = log2(n+ 1)− 1 to 0 step − 1

(R
(i)
0 , . . . , R

(i)
j , . . . , R

(i)

2i−1
) = (R

(i+1)
0 +R

(i+1)
1 , . . . , R

(i+1)
2j +R

(i+1)
2j+1 , . . . , R

(i+1)

2i+1−2
+R

(i+1)

2i+1−1
)

(S
(i)
0 , . . . , S

(i)
j , . . . , S

(i)

2i−1
) = (S

(i+1)
0 + S

(i+1)
1 , . . . , S

(i+1)
2j + S

(i+1)
2j+1 , . . . , S

(i+1)

2i+1−2
+ S

(i+1)

2i+1−1
)

return R(0)
0 + S

(0)
0

The summation computed here is essentially the same as in the first sequential version of the double-and-
add algorithm we discussed, therewith following the approach in [2, 15]. Like Maslov et al. we parallelize
the execution of gates that operate on disjoint wires, but we process more than one point 2iP respectively
2jQ at a time. The (affine) points 20P, . . . , 2nP and 20Q, . . . , 2nQ can be precomputed classically, and the
leaves can be initialized with a sequence of CNOT gates, conditioned on the individual bits of the binary
representation of k and `. Using ‘multi-fan-out CNOTs with |0〉-input’, we can create 2n copies of the binary

8



kP + `Q

kP

∑
i<n+1

2

kiPi

...

k02
0P k12

1P

...

∑
i≥n+1

2

kiPi

...
...

`Q

∑
i<n+1

2

`iQi

...
...

∑
i≥n+1

2

`iQi

...
...

`n−12
n−1Q `n2

nQ

Figure 5: computing kP + `Q: parallelized double-and-add

representation of k and 2n copies of the binary representation of ` in depth O(log n). Each leaf corresponds
to a separate quantum register of linear length, initialized with |O〉 =|(0, 0, 1)〉, and hence the CNOT gates
for different points operate on disjoint wires. Having 2n copies of each coefficient ki and `j available, we
can copy all 2n qubits representing a point 2iP or 2jQ on EB,d1,d2(F2n) in constant depth.4 In particular,
the complete initialization can be realized in depth O(log n).

To proceed from one tree level to the next, a layer of addition circuits is used that operate in parallel, each
circuit adding two curve points. Realizing each such addition circuit in logarithmic depth as in Corollary 3.1
results in a quantum circuit of depth O(log2 n) to compute kP + `Q. Figure 5 shows the resulting tree
structure to compute kP + `Q. We obtain the following lemma.

Lemma 3.1. Using projective coordinates, for a complete binary Edwards curve the map

|k〉 |̀ 〉 |0〉 7→|k〉 |̀ 〉 |kP + `Q〉,

where 0 ≤ k, ` < 2n+1, can be realized in depth O(log2 n).

3.2.3 Deriving a unique point representation

In our discussion of the elliptic curve arithmetic we focused on the use of projective coordinates, as this
avoids the use of a (costly) F2n-inversion. We pay for this by a non-unique point representation, however.
To pass from projective coordinates (X1, Y1, Z1) ∈ F3

2n for a point on EB,d1,d2(F2n) to the unique affine
coordinates (X1/Z1, Y1/Z1), it is sufficient to compute the inverse of Z1 ∈ F∗

2 followed by two multipli-
cations in F2n . From Theorem 3.1 we know that these two multiplications can be implemented in depth
O(log n), and we are left with the task of computing Z−1

1 . In [5] a depth O(n log n) circuit is proposed for
this task which builds on a classical algorithm by Itoh ans Tsuji [18]. This algorithm consists of two main
parts followed by a final squaring in F2n .

The two main parts require a total of O(log n) multiplications in F2n and O(log n) exponentiations with
fixed powers of 2. The latter maps are bijective and F2-linear and can be implemented as matrix-vector

4The ‘projective coordinate’ of 2iP and 2jQ is always 1.
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multiplications with a fixed matrix. Consequently all necessary computations in these two parts can be
implemented in depth O(log2 n). The final squaring operation can again be realized as a matrix-vector
multiplication with a fixed matrix, and so the complete inversion can be implemented in depth O(log2 n).

Theorem 3.2. There is a polynomial-size quantum circuit of depth O(log2 n) which on input a polynomial
basis representation of α ∈ F∗

2n computes a polynomial basis representation of the inverse α−1 ∈ F∗
2n .

Implementing an F2n-inverter in this way and combining it with two multiplication circuits as in The-
orem 3.1, we can derive the unique affine representation of a curve point in polylogarithmic depth. More
specifically, we have the following.

Corollary 3.2. There is a polynomial-size quantum circuit of depth O(log2 n) which on input a projective
representation (X1, Y1, Z1) of a point on EB,d1,d2(F2n), returns the affine representation (X1/Z1, Y1/Z1)
of this point.

4 Computation of a discrete logarithm in depth O(log2 n)

We now have all the pieces in place to establish our main result.

Corollary 4.1. Shor’s algorithm to compute the discrete logarithm on a complete binary Edwards curve
can be implemented using a quantum circuit of polynomial size and depth O(log2 n).

Proof: Referring to the three stages as in Figure 1, we first note that the Hadamard gates on the left can be
implemented in depth 1. Next, as shown in Subsection 3.2.2, we can implement the operation that computes
kP+`Q in depth O(log2 n) with a circuit of size polynomial in n. In order to complete the proof, we have to
bound the depth of the Fourier transform QFT22n+2 . For this, we use a result shown in [19] that the Fourier
transform onm qubits with target error ε can be implemented with a circuit of depth O(logm+log log 1/ε)
and polynomial size. Choosing m = n + 1 and ε = 1/22m is sufficient for Shor’s algorithm to find the
discrete logarithm with constant probability of success [4], i. e., we can upper bound the depth of the QFT
by O(log n) and hence the overall depth of the circuit by O(log2 n). �

5 Conclusion and outlook

The above discussion shows that the depth O(n2) bound for discrete logarithm computations on ordinary
binary elliptic curves can be improved exponentially: using parallelization at multiple levels, we can im-
plement Shor’s algorithm on complete binary Edwards curves in depth O(log2 n). To show our result we
introduced the first sublinear-depth circuits for F2n-multiplication and F2n-inversion, which may be of in-
dependent interest. The price for the exponential reduction in depth is the introduction of ancillae—a paral-
lelized F2n-multiplier as discussed in Section 3.1 adds O(n2) additional qubits. Depending on the number of
qubits available, for cryptographically significant parameters, say n ≥ 163, trade-offs that put less emphasis
on depth-optimization could be interesting. For instance, one could combine the parallelized double-and-add
computation with a linear-depth field arithmetic. Even though not being depth-optimal, thousands of qubits
could be saved in this way. One could also try to avoid the general point addition circuits in the parallelized
double-and-add procedure (which involve many field multiplications) and instead rely on a sequential depth
O(n log n) solution with specialized point addition circuits as discussed in Section 3.2.1. It is not clear at
this point how the best trade-off for a large-scale discrete logarithm computation looks like.
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It is interesting to compare our findings for bounding the depth of Shor’s algorithm over an additive
group on an ordinary binary elliptic curve to the case of factoring. In both cases the high-level structure—
namely, phase estimation over an abelian group—of the algorithm is the same, however, the details on how
to implement the arithmetic differ significantly. In the case of the elliptic curve arithmetic, the bottle neck
are the addition formulae for points on the curve which involve finite field divisions. Our polylogarithmic
depth implementation of Shor’s algorithm may be compared with the findings of [20] in which an O(log2 n)
upper bound on the depth for Shor’s algorithm for integer factorization was given for a 2D nearest neigh-
bor architecture and to [21], where a circuit of depth O(n2) was derived, albeit on a 1D nearest neighbor
architecture. The circuits presented in this paper assume an arbitrary coupling model and we leave it as an
open problem whether they can be adapted to a 2D nearest neighbor architecture while maintaining the same
upper bound on the circuit depth.

To enable parallelization, we make intensive use of ‘multi-fan-out CNOTs with |0〉-input’, and one may
hope for further depth improvements if multi-fan-out gates are provided. At the moment we do not know
how to derive an asymptotic benefit of such gates that goes beyond a constant factor improvement. The
remaining bottleneck for an asymptotic improvement in the F2n-arithmetic seems the logarithmic depth for
parity computations. Finally, Amy et al.’s [22] observation that F2n-multiplication can be realized in T -
depth 2 suggests another natural direction for follow-up research: minimizing T -depth and the number of
T -gates necessary to compute discrete logarithms on binary elliptic curves.
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