
A Semi-Supervised Approach to Modeling Web Search
Satisfaction

Ahmed Hassan
Microsoft Research

Redmond, WA
hassanam@microsoft.com

ABSTRACT
Web search is an interactive process that involves actions
from Web search users and responses from the search en-
gine. Many research efforts have been made to address the
problem of understanding search behavior in general. Some
of this work focused on predicting whether a particular user
has succeeded in achieving her search goal or not. Most of
these studies have faced the problem of the lack of reliable
labeled data to learn from. Unlike labeled data, unlabeled
data recording behavioral signals in Web search is widely
available in search logs. In this work, we study the plau-
sibility of using labeled and unlabeled data to learn better
models of user behavior that can be used to predict search
success more effectively. We present a semi-supervised ap-
proach to modeling Web search satisfaction. The proposed
approach can use either labeled data only or both labeled
and unlabeled data. We show that the proposed model out-
performs previous methods for modeling search success using
labeled data. We also show that adding unlabeled data im-
proves the effectiveness of the proposed models and that the
proposed method outperforms other strong semi-supervised
baselines.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Search Pro-
cess

Keywords
search engine evaluation, user behavior models, semi-supervised
learning

1. INTRODUCTION
Finding effective evaluation metrics for information re-

trieval systems has always received plenty of attention. The
need for good evaluation metrics increases as information re-
trieval systems advance leaving smaller rooms for improve-
ments. Traditionally, per-query metrics such as Mean Av-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’12, August 12–16, 2012, Portland, Oregon, USA.
Copyright 2012 ACM 978-1-4503-1472-5/12/08...$15.00.

erage Precision (MAP), Precision @k, and Normalized Dis-
counted Cumulative Gain (NDCG) have been widely used.
Recently, researchers started using behavioral signals for
evaluating information retrieval systems. Some of this work
still considered query-level evaluation [25], while other looked
at goal success [12]. Goal level success prediction is related
to another body of work that tries to understand different
patterns of user behavior in Web search like understand-
ing the behavioral differences between novice and expert
users [27], and studying how behavior changes in difficult
search tasks [4].

A major problem facing these research efforts is the lack
of labeled data to train effective learning algorithms. Hence,
most of this work has either been limited to small-scale stud-
ies [8], or large-scale analysis of unlabeled data [27, 4]. La-
beled data consists of all behavioral signals collected from
a user in a search goal and a label indicating whether the
user’s information need was satisfied or not.

Some approaches have been proposed to overcome the lim-
ited availability of labeled data by building frameworks for
collecting realistic labeled data. Hassan et al. [13] created a
toolbar that monitors search behavior and collects explicit
satisfaction ratings from users when they normally use Web
search. The toolbar asks users to rate their search experi-
ence after every search goal. The main problem with this
approach is the low adoption rates of users and the difficulty
of keeping users engaged with the toolbar. Ageev et al. [1]
suggested using a game like strategy where study partici-
pants are competing to find answers to questions using Web
search in a given amount of time. Like the first approach,
this approach suffers from the low adoption rates. It also
creates artificial information needs, rather than monitoring
the information needs of real user; which may affect user
behavior. Human judges were used to collect labeled search
goals in [12]. This process is noisy because judges have no
information about the actual intent underlying the informa-
tion need. Moreover, it is expensive and time consuming.
Hence, it does not scale when a large amount of annotated
data is needed.

Unlike labeled data, unlabeled data of behavioral signals
is readily available in search logs. In unlabeled data, we have
access to several signal describing the user behavior, but we
do not know whether the user succeeded in satisfying her
information goal or not. This suggests that algorithms that
can learn from both labeled and unlabeled data could be
very effective in modeling search success.

In this work, we look into ways of predicting success in
search by modeling user behavior. We introduce a new ap-

275

proach that can use either labeled data only, or labeled and
unlabeled data in a semi-supervised setting. We compare
the proposed method to previous work on Web search suc-
cess prediction using labeled data. We also compare it to
strong baselines that apply other semi-supervised learning
frameworks to the same problem. We discuss the advan-
tages and limitations of the proposed method, and highlight
the performance gains the proposed method achieves both in
the supervised and semi-supervised settings. We also show
empirically that adding unlabeled data improves prediction
accuracy.

The rest of this paper will proceed as follows. In Section 2,
we discuss related work. We provide a formal definition
of our problem is Section 3. In Section 4, we describe a
generative model for predicting success and show how it can
be extended to the semi-supervised case. Finally we present
experiments in Section 6, discussions in Section 7 and we
conclude in Section 8.

2. RELATED WORK
Evaluating information retrieval is a challenging problem

that received a lot of attention. Traditionally, search en-
gines have been evaluated using classical methodologies that
use query sets and relevance judgments. One of the most
frequently used metrics for evaluating ad hoc information
retrieval is Mean Average Precision (MAP). MAP is opti-
mized to cover both recall and precision while taking the
entire search result ranking into consideration. State of the
art measurements of query result relevance use discounted
cumulative gain (DCG) [18]. The intuition behind DCG is
that users are only interested in the first few results and
hence high early precision is desirable [14]. DCG metrics
lend themselves to a user model of scanning a ranked list of
results to some depth. DCG can be calculated using manual
query URL relevance judgments, or estimated query URL
relevance [2, 21]. Later, DCG evolved into the Normalized
Discounted Cumulative Gain (NDCG) [17]. NDCG normal-
izes DCG across queries by sorting documents of a result
set by relevance, computing the ideal DCG, and normal-
izing DCG with with the ideal DCG. DCG is additive in
nature and assumes that documents are independent. Ex-
pected Reciprocal Rank [6] is another metric inspired by the
cascade model that alleviates these problems. It is defined
as the expected reciprocal length of time that the user will
take to find a relevant document. Other metrics have been
also used like Precision @k.

All those methods are query based metrics. They evalu-
ate an information retrieval system by evaluating individual
queries. However, a single user information need may result
in one or more queries, and the same query may have differ-
ent underlying information needs. Hence, individual query
URL relevance may not always correlate with user satis-
faction. Moreover, all these metrics use human relevance
judgments which is expensive to collect and may be noisy
because human judges do not know the exact intent behind
an information need.

Mining search logs has been extensively studied by various
researchers. For example, Jansen et al. [16] studied user
query distribution, information needs, and sessions. Beitzel
et al. [5] studied the change in popularity of topically cat-
egorized queries. White et al. [28] studied search trails
including queries and page navigation from toolbar logs.

More specifically, other research has looked at mining search

logs for measuring search quality. Fox et al. [9] found that
a strong correlation exists between search log features and
user satisfaction. They used Bayesian modeling and deci-
sion trees to model explicit satisfaction ratings using sev-
eral kinds of features. They used clickthrough rate features,
dwell time features, and features describing how users end
their search sessions.

Huffman and Hochster [15] studied the correlation be-
tween user satisfaction and simple relevance metrics. They
reported a relatively strong correlation between user sat-
isfaction and linear models encompassing the query URL
relevance of the first three results for the first query in the
search task.

Radlinski et al. [26] showed that interleaving the results
of two ranking functions and presenting the interleaved re-
sults to users is a good predictor of relative search engine
performance. They also looked at using metrics including
abandonment rate, reformulation rate, and time to first click
to predict relative performance. They found out that those
metrics do not perform as well as interleaving results. Using
aggregated features extracted from user behavior is certainly
correlated with satisfaction. However, it has been shown
that modeling the transitions between actions performed by
users during search is a stronger predictor of satisfaction [12].

White and Morris [27] tried to understand the behavioral
differences between novice and expert users. They define
expert users as those who use advanced operators. They
show that the behavior of expert users is different compared
to non-expert ones. Aula et al. [4] studied how user behav-
ior changes in difficult search tasks. They performed a user
study to understand how users behave with difficult search
tasks. They found out that when faced with a difficult search
tasks, users tend to use more diverse queries, use advanced
operators, and spend more time on the search results page.
These studies provide many interesting observations about
user behavior. However, they do not try to model or pre-
dict success due to the lack of labeled data about goals and
success.

Hassan et al. [12] showed that modeling action sequences
representing user behavior is better than models based on
the query URL relevance of the first three results for the
first query. The main reasons are that different information
needs sometimes underlie the same query, and that the first
query does not tell the complete picture in terms of the
entire search task. A user study where firsthand satisfaction
ratings were directly collected from users, who opted in to
use a special toolbar, was presented in [13].

Piwowarski et al. [24] presented a model that uses Bayesian
Networks to predict document relevance in the absence of
document content models. They presented a Bayesian Net-
work approach to holistically model user behavior interac-
tions, and used it to identify distinct patterns of search be-
haviors. These patterns, along with a list of custom features,
were used to predict the relevance of a set of query document
pairs.

Ageev et al. [1] proposes an extension of the Markov Model
approach, described in [12], by augmenting the Markov Model
with additional search features. They also used a game like
strategy for collecting labeled data where they ask partici-
pants to find answers to questions using Web search. None
of those methods has considered using unlabeled data to
improve the effectiveness of the success prediction models.
They all faced the problem of the lack of labeled data and

276

came up with different solutions: human judges [12], tool-
bars [13], and games [1]. The amount of data collected is
still relatively small and does not allow further developments
targeting specific types of information needs, verticals, or
users.

Semi-supervised learning is a special form of machine learn-
ing where both labeled and unlabeled data are used in the
learning process. Labeled data is usually expensive, and
hard to obtain. This resulted in a huge interest in learning
techniques that can use unlabeled data as well as labeled
data. Semi-supervised learning is a very well established
area. Some of the earliest semi-supervised methods in the
literature is the self training wrapper algorithm which re-
trains a supervised model using unlabeled data that have
been labeled by the same model with high confidence [3,
10]. The closely related concept of transductive inference
has been studied in [11]. A very good introduction and sur-
vey of semi-supervised learning techniques could be found
in [31, 7, 29]. We will show in this work how semi-supervised
learning techniques can improve the effectiveness of success
prediction algorithms by using labeled and unlabeled data.

3. PROBLEM DEFINITION
We start by defining some terms that will be used through-

out the paper:
Definition: A search goal/task is a single information

need that may result in one or more queries [20, 12].
Definition: A search trail is an ordered sequence of ac-

tions performed by the user during a search goal.
Definition: A labeled dataset is a collection of search

goals associated with success labels. Every goal in the la-
beled data is labeled as successful or unsuccessful either by
a human judge or by collecting firsthand labels from users
conducting the search.

Definition: An unlabeled dataset is a collection of search
goals without success labels. This data is easier to collect
and does not need any human judges , or any special software
to collect labels (i.e. browser plugins).

Assume we have a stream of queries submitted to a search
engine. In response to each query, the engine returns a
search results page. The user may decide to interact with
this page by clicking on results, other search engine fea-
tures, or by reformulating the query. Every query is a part
of a search goal with the objective of satisfying a particu-
lar information need. Every search goal is represented with
a search trail. A search trail is represented by an ordered
sequence of user actions. Actions include all types of interac-
tions performed by the users while using the search engine.
Following [12], we use the set of actions described in Ta-
ble 1. Examples of a successful and an unsuccessful goals
are shown in Tables 2 and 3 respectively. In the successful
goal, the user started with the query “van gogh self portrait”,
and quickly decided to click on an image results. She spent
some time examining the result then she successfully ended
her search. In the unsuccessful goal, the user typed a query,
and briefly clicked on two search results. After that, she de-
cided to switch to the images vertical, but the image vertical
still did not have any relevant results so she reformulated her
query. Apparently, that still did not satisfy her information
need, and hence she gave up and ended her search.

The labeled data was collected during a user study where
search behavioral signals and explicit success ratings were
collected directly from users. This will be described in de-

Action Description
START the user starts a new goal

Q a query submission
RL a related Search Click
SP a spelling Suggestion Click
SR a search result click
AD a sponsored search result click
TB a switch to a different tab (search vertical)

END the user ends the search goal

Table 1: A list of possible user actions

Action
Query van gogh self portrait
IMG CLICK url1
END

Table 2: An Example of a Successful Goal

tails in Section 5. This is better than asking human annota-
tors to judge whether a user was successful with his search or
not because judges do not have access to information about
the actual user intent.

So given a search goal, our objective is to predict whether
that goal ended up being successful or not. We adopt a
semi-supervised learning approach to address this problem.
Our training data X can be divided into Xl, for which labels
Yl are provided, and Xu, for which no labels are provided.

4. APPROACH
Generative models specify a joint probability distribution

over observations and labels. Generative models are often
used in machine learning for classification. A conditional
distribution is formed from a generative model by use of
Baye’s rule. In this section, we define a generative model
for user behavior and describe how it can be used for both
supervised and semi-supervised learning.

4.1 A Generative Model for User Behavior
We assume that search trails are generated by a mixture

model. The mixture model has two mixture components
corresponding to success and failure. Every trail is generated
using a probability distribution defined by the parameters
of the mixture mode, denoted θ. Let there be a set of classes
C = [cs, cf] corresponding to the success and failure cases.

Actions in a search trail xi are generated using the selected
mixture component. Every trail xi is generated according
to a distribution P (xi|c, θ). Hence the likelihood of seeing
a trail xi is the sum of its probability over the success and
fail mixture components:

P (xi|θ) =
∑

c∈[cs,cf]

P (c|θ)P (xi|c; θ) (1)

Every search trail xi consists of a set of actions. For ev-
ery action we chose the next action by drawing from the
mixture distributions. Assuming every trail consists of a set
of actions: x = {a1, a2, ..., an} and that every action is de-
pendent only on the previous action and independent of the
trail length, then we can write:

P (x|c, θ) ∝
n∏

j=1

P (aj |aj−1; c; θ) (2)

277

Action
Query steven colbert painting
CLICK url1
CLICK url2
TAB SWITCH IMAGES
Query steven colbert recursive painting
END

Table 3: An Example of an Unsuccessful Goal

This leaves us with a set of parameters θa,a′,c ≡ P (a′|a; c; θ)
for every pair of actions a and a′, and every class c. In addi-
tion we have two more parameters θcs and θcf corresponding
to the prior class probabilities P (cs|θ) and P (cfθ). Hence,
the probability of generating any search trail x is:

P (x|θ) ∝
∑

c∈{cs,cf}

P (c|θ)
n∏

j=1

P (aj |aj−1; c; θ) (3)

where x is a search trail consisting of a set of actions
x = 〈a1, a2, . . . , an, 〉, n is the number of actions in trail
x, and aj is action number j in x . In our experiments,
we model the trail length by introducing one multinomial
distribution for each possible length. Alternatively, we can
assume that trail length is identically distributed to reduce
the number of parameters.

4.2 Supervised Classification
To use this model for classification, we need to learn an es-

timate θ̂ of the model parameters. To estimate these param-
eters, we may use maximum likelihood estimation (MLE)
or maximum a posterior (MAP) estimates. One potential
problem with MLE is that it may result in zero estimates
of some parameters if the corresponding transition has not
been seen in the training data. This problem is usually
solved by smoothing. Alternatively, we can use MAP esti-
mates with Dirichlet priors, which is identical to MLE with
Laplace smoothing. Hence, the action transition parameters
are estimated as:

θ̂ai,aj ,c ≡ P (ai|ai−1; c; θ̂) =
1 +Nai,aj ,c

|A|+Nai,c
(4)

where Nai,aj ,c is the empirical count of transitions from
ai to aj in trails in class c, Nai,c is the empirical count of
ai in the same trails, and |A| is the total number of actions.
Similarly, the class probabilities are estimated as:

θ̂c ≡ P (c|θ̂) =
1 +Nc

2 +N
(5)

where Nc is the fraction of trails in the training data with
class c, and N is the size of the training set.

Given these parameters we can derive a conditional prob-
ability distribution to classify new instances given the gen-
erative model:

P (c|xi, θ̂) =
P (c|θ̂)P (xi|c; θ̂)

P (xi|θ̂)
(6)

To classify a new trail we just need to compute:

PRED(xi) = argmaxc∈{cs,cf}P (c|xi, θ̂) (7)

This model has three advantages compared the one pre-
sented in [12]: (1) the model proposes a more principled way

of modeling user behavior, (2) the Markov model presented
in [12] makes decisions based on trail likelihood (P (x|c; θ)),
while the model we present here uses posterior class prob-
abilities instead (P (c|x, θ)). We will show later the advan-
tages of taking the prior distribution into consideration, and
(3) this model can be extended to the semi-supervised case
as will be shown in the next sections.

4.3 Modeling Time
We tried two different approaches to modeling time. In

the first approach, we treat transition time as a continuous
variable drawn from a Gamma distribution with parameters
k, and θ. We compute the distribution parameters for every
class (i.e. success or failure), and every transition. Then,
the probability of some value given a class, P (t = v|c), can
be computed by plugging v into the equation for the Gamma
distribution parameterized by the parameters we computed
earlier.

In the second approach, we replace every click action (e.g.
algorithmic result click, sponsored result click, etc.) with
one of three different actions based on the click dwell time.
For example instead of the action ”SR”, which denote a
search result click, we have ”SR-short” , ”SR”, and ”SR-long”.
Long clicks are defined to have a dwell time for longer than
30 seconds and have been shown to correlate with satisfac-
tion, as in previous work [9]. Similarly, short clicks are clicks
with a quick bounce back to the SERP and have dwell time
on the landing page of under 15 seconds [9]. SERP view
actions (e.g. query submission, related search click, etc.)
are replaced with one of two actions: short if dwell time is
less than 20 seconds, and long otherwise. Short time to first
click, which is the difference between the timestamp from
serving up the page and the timestamp of the first user click
on the page, has been previously shown to be correlated with
satisfaction [26].

4.4 Semi-Supervised Classification
The model we described in the previous subsections uses

labeled data only to estimate the model parameters. Due
to the high cost of obtaining labeled data for this task, and
the wide availability of unlabeled data, we would like to ex-
tend the model such that it uses labeled and unlabeled data
for learning. The model parameters, θ̂ have been estimated
using MAP estimations. This cannot directly handle unla-
beled data. However, we can do so by using the expectation
maximization (EM) algorithm. Semi-supervised classifica-
tion with EM has been successfully applied to different do-
mains before, including text categorization [23].

The EM algorithm is an iterative algorithms which can
be used to find the MAP estimates of parameters in sta-
tistical modeling. The algorithm has two main steps: the
Expectation step and the Maximization step. The Expecta-
tion (E) step of the algorithm computes the expectation of
the missing values; in this case the class membership distri-
bution of the unlabeled data. The Maximization (M) step
re-estimates the parameters by maximizing the likelihood of
the parameters using the previously computed expectations.
The algorithm works as follows:

• Estimate the parameters θ̂ from labeled data only

• Loop while the parameters improve:

– E: Use the current classifier to estimate P (cs|xi; θ̂),
and P (cf |xi; θ̂) for all unlabeled trails.

278

– M: Re-estimate model parameters, θ̂, using the
labeled data and the component memberships of
the unlabeled.

To take the component membership of the unlabeled data
into consideration during training, we modify Equation 4 to:

θ̂ai,aj ,c ≡ P (ai|ai−1; c; θ̂) =
1 +

∑
xi∈X δ(xi, c)N(xi, a, a

′)

|A|+
∑

xi∈X δ(xi, c)N(xi, a)

(8)
where X is the set of training data, N(xi, a, a

′) is the
number of transitions from a to a′ in xi, and N(xi, a) is
the number of occurrences of a in xi. For the labeled data,
δ(xi, c) is 1 if xi is in class c and 0 otherwise. For the unla-
beled data, δ(xi, c) is the component membership probabil-
ities calculated in the previous E step.

5. DATA
Our data includes search behavioral signals and explicit

success ratings collected directly from users. This data was
collected during a user study where firsthand success rat-
ings were collected from users. This is better than tradi-
tional ways of collecting data that use annotators to judge
whether a user has been successful or not [12]. The latter
method introduces more noise in the labels because judges
lack information about the actual intent behind the search
goal.

Study participants were instructed to install a toolbar.
The toolbar detects when a user submits a query to Google,
Bing, or Yahoo search engines. It then monitors and records
all actions performed by the user during search. Participants
were instructed to submit a binary success rating at the end
of every search goal. Participants were also allowed to ignore
a search goal, in which case, no data was collected about that
goal.

Every log entry contained a user identifier, a time-stamp
for every page view, and the URL of the visited page. Page
views included query submission, search result clicks, navi-
gation beyond the search results page originating from clicks
on links in a search result, and clicks on other search engine
features (e.g. spelling corrections, related searches, etc.).
Secure (https) URLs have not been collected and any iden-
tifiable information was removed from the data prior to any
analysis.

More than 10k unique searches were collected a long with
a label indicating whether the search was successful or not.
Every record included a search trail, and a success label. A
search trail originates with the submission of a query to a
search engine and contains all queries and post-query navi-
gation trails [27]. A search trail always begins with a query
and ends when the information seeking activity stops. A
search trail is represented by an ordered sequence of user
actions as described earlier.

6. EXPERIMENTS

6.1 The Supervised Setting

6.1.1 Baselines
We compare the proposed approach to three baselines in

the supervised setting. The first baseline poses the problem
as a classic machine learning problem where a set of features

Features
Number of queries
Number of clicks of all types
Number of algorithmic results clicks
Number of sponsored results clicks
Number of answer results clicks
Number of pagination clicks
Number of spell suggestion clicks
Number of related queries clicks
Average time between clicks
Time span of goal
Average time to first click
Average dwell time

Table 4: Static features for predicting success.

adopted from previous work, [26, 12], are used to train a
logistic regression classifier . The set of features we used are
summarized in Table 4

The second baseline is the Markov model approach de-
scribed in [12]. In this approach, two Markov models are
trained to characterize the behavior of users in successful
and failed goals. Features are described by a sequence of
actions as described earlier. A new goal x is classified as
successful if P (x|success) > P (x|failure).

The last baseline uses Conditional Random Fields to model
success [1]. We ran our approach on the data used in [1];
which was made publicly avaiable. We will report the results
from [1] and the results obtained by our approach using the
same data.

6.1.2 Experimental setup
We perform experiments using the data described in Sec-

tion 5. We used four supervised methods; the generative
model presented in this paper and three baselines. To com-
pare supervised methods, we report accuracy using 10-fold
cross-validation. Folds were created based on user ids. We
used the entire dataset described in Section 5. Users re-
ported success in approximately 80% of the goals in this
dataset and the rest reported failure. A different dataset
was used for the comparison against the CRF method, pre-
sented in [1], as will be described later.

6.1.3 Results
We start by comparing the two approaches we described

for modeling time and found that the difference in perfor-
mance was not statistically significant at the 0.05 level ac-
cording to the Wicoxon p-value. We will use the approach
based on time discretization in all following experiments.

We then compared the performance of all supervised meth-
ods using 10-fold cross validation over the entire dataset.
Figure 1 shows the performance of the proposed method
and the two baselines. We notice that the proposed ap-
proach outperforms the two baselines and the difference is
statistically significant at the 0.05 level. We notice that the
static features baseline has the worst performance. This
agrees with findings reported in previous work because the
static features describe an aggregate view of user behavior
and misses many important pieces of information. We also
see performance gains compared to the Markov model ap-
proach. Modeling the posterior probability of search goals
(P (c|x, θ) yields better results that modeling the likelihood
(P (x|c, θ) especially because the dataset is unbalanced with
respect to the proportion of successful and failed goals This

279

imbalance is typical in any random sample of query impres-
sions because most users achieve their search goals and dis-
satisfaction is usually the exception. For example, Ageev
et al. [1] performed a study where users were asked to find
answers to specific questions using Web search. In 87% of
the tasks, users reported success by finding and reporting an
answer. Hassan et al. [12] asked judges to label search goals
as successful or not and reported that more than 70% of the
goals were labeled as successful. In our dataset, where first-
hand success labels were collected from users, approximately
80% of the goals ended with users reporting that their in-
formation need was satisfied. When we had a closer look
at the performance of the proposed generative model and
the Markov model of [12], we noticed that the performance
slightly improved for the majority class (satisfied goals) and
significantly improved by over for the minority class (dissat-
isfied goals).

We also compared the performance of our approach to the
CRF approach presented in [1]. We used the same dataset
and the same experimental setup described in [1]. They
used a game like strategy where study participants are com-
peting to find answers to questions using Web search in a
given amount of time. The data was collected in 4 different
game rounds. We used 4-fold cross-validation where the data
from three games was used for training and the data from
the fourth was used for testing. Ageev et al. [1] defined four
different success criteria: 1) the user submitted an answer
and the answer was correct, 2) the user submitted an answer
that could be correct or not, 3) the user visited a good URL
that has relevant information to the question, and 4) the
user visited a good URL and it was last in the search ses-
sion. Like [1], we measured accuracy and macro-averaged
F-measure over the successful and unsuccessful results. For
the Markov model and the generative model approaches. We
modeled time using the discrete approach described in Sec-
tion 4.3. The results are shown in Table 5. The table shows
that both the CRF model and the generative model outper-
form the Markov model. The gap between the performance
of the generative model and the Markov model increases as
the data imbalance increases as expected. The performance
of the CRF and the generative model depends on the success
definition. The former is better for some definitions and the
latter is better for others. The difference in performance is
very small in all cases.

6.2 The semi-supervised setting
We compare the proposed approach to two baselines. The

first baseline is a transductive discriminative model trained
on features describing the transition between different ac-
tions. The second baseline is a graph based algorithm based
on random fields and harmonic functions. In the rest of this
section, we describe the baselines, experimental setup and
results.

6.2.1 Baseline 1: Transductive SVM
In this baseline, we can use the action transitions (i.e.

transition from a to a′ in search trails) as features and train
a discriminative model. The objective of this model is to
classify each search trail into one of two categories (success
or failure). The first step in this process is to transform
search trails into a representation suitable for the classifica-
tion task. One way to approach this problem is to compute
a set of aggregate features to describe the user behavior from

the search trail (e.g. number of clicks, number of queries,
average dwell time, etc.). Hassan et al. [12] looked at this
approach and showed that directly modeling transitions is
better than using aggregate features. They also showed that
transitions subsume information in aggregate features.

Instead of using aggregate features, we can derive features
that directly represents the search trail without losing much
information. We can use the transition between every two
consecutive actions as a feature. For example, given the
search trail: “Q Q SR END” where Q, SR, and END cor-
respond to query submission, search result click, and goal
termination respectively, we can extract the following three
features: Q-Q, Q-SR, and SR-END.

Generally, we will have |A|2 features where A is the set
of possible actions. Every feature corresponds to a possible
transition between two states. Every trail will be repre-
sented using those features. Feature values are simply the
number of times every transition has been observed in the
trail. The feature vector is expected to be sparse with most
of the features having a zero value. Transductive support
vector machines [19] extend SVMs in that they could han-
dle both labeled and unlabeled data in a semi-supervised
setting. SVMs use a set of labeled data, Xl, and a set of
corresponding labels Yl. SVM training algorithm builds a
model that assigns new examples into one category or the
other. In that, SVMs try to induce a general decision func-
tion for the learning task. Transductive SVMs use an un-
labeled set Xu along with Xl, and Yl. TSVMs take into
account a particular set of unlabeled data, Xu, and try to
minimize misclassification of this set of unlabeled data.

Joachims [19] used TSVMs for text classification and pro-
posed an algorithm for training TSVMs efficiently. Joachims
[19] argues that TSVMs are suitable for text classification
because of the high dimensional input space and the feature
vector sparseness. Although our feature space is smaller
than typical feature spaces in text classification, we believe
TSVMs is a strong baseline for this problem.

6.2.2 Baseline 2: Harmonic Functions
Another popular class of semi-supervised learning algo-

rithms is the graph based methods. Graph based learning
algorithms rely on building a graph representation of labeled
and unlabeled data points. Edges in the graph encode pair-
wise similarities between points. Graph based algorithms
have been successfully applied to a range of problems in
natural language processing, computer vision, and compu-
tational biology. Graph based methods are discriminative
and transductive in nature.

We construct a graph G(V,E), where V is the list of la-
beled and unlabeled trails. E is a set of edges connecting
similar points. Inspired by the bag of words model for rep-
resenting text documents, we represent every trail using a
bag of transitions. Every transition has a count associated
with it. Each transition corresponds to a dimension in high
dimensional space, and every trail is a vector in that space.
The frequency of every transition is used as its weight. Let
A be the set of possible user actions, |A| be the number
of such possible actions, and N(xi, a, a

′) be the number of
transitions from a to a′ in xi. Then every trail can be rep-
resented as vector as follows

~xi = (N(xi, a1, a1), N(xi, a1, a2), . . . , N(xi, an, an)) (9)

280

We use the popular Cosine similarity measure to com-
pute similarity between user behavior in different goals. The
vector representation of trails allows us to use the Cosine
similarity measure to compute similarity between any two
given trails. The Cosine metric measures the similarity by
computing the cosine of the angle between the two vectors
representing the search trails. Formally, this can be written
as:

Cos(~xa, ~xb) =
~xa · ~xb

| ~xa| × | ~xb|
(10)

To construct the graph, we create a node for every search
trail. Every pair of nodes is connected by an edge. The
weight of edges comes from one of the similarity measure
described above. The graph could be also represented by an
n × n symmetric matrix, where n is the number of search
trails. Every element M(i, j) represents the similarity be-
tween trail xi and trail xj .

Zhu et al. [30] presented a semi-supervised graph learning
approach based on Gaussian random fields and harmonic
functions. The similarity graph we described earlier is used
to represent both labeled and unlabeled data. The learning
problem is then formulated using the Gaussian random field
on this graph, with the mean of this field characterized using
harmonic functions [30].

The method assumes n data points, l of which are labeled,
and the rest u are unlabeled. Consider the graph G = (V,E)
built as described above. We represent the graph using a
symmetric n×n matrix W . The objective of this method is
to compute a real valued function f : V → R. The values of
f are fixed for labeled data and equal the class label. The
value of f for unlabeled data will be computed and used
to assign labels to unlabeled data. Zhu et al. shows that
the function f that minimizes the eneregy function E(f) is
harmonic [30]. It is intuitive that the function f is expected
to have similar labels to points that are close in the graph.
Hence, they used the quadratic energy function:

E(f) =
1

2

∑
i,j

wij(f(i)− f(j))2 (11)

The harmonic solution is computed explicitly as follows:

• Let D = diag(di) be the diagonal matrix with entries
di =

∑
j wij , where W = [wij] is the weight matrix.

• Because f is harmonic, it can be expressed as f = Pf ,
where P = D−1W .

• Split W , and similarily D and P into 4 blocks:

W =

[
Wll Wlu

Wul Wuu

]

• Let f =

[
fl
fu

]
, where fu denotes the values of f for

the unlabeled data.

• The harmonic solution is given as:

fu = (Duu −Wuu)−1Wulfl = (I − Puu)−1 Pulfl

6.3 Experimental Setup
We perform experiments using the data described in Sec-

tion 5. We compare the performance of three semi-supervised

methods. The first is the proposed approach that uses expec-
tation maximization to extend a generative mode to handle
labeled and unlabeled data. The second uses Transductive
Support Vector Machines (TSVMs), and the third is a graph
based model that uses Gaussian random fields and harmonic
functions. We carried out the experiments in the transduc-
tive settings, following [7]. In this setting, the test set co-
incides with the set of unlabeled points (50% of the data).
This has two main advantages. First, it is economical in
terms of the required data. Second, it allows us to com-
pare different methods including those that are naturally
transductive. We compare every semi-supervised method
to a corresponding supervised method to assess the benefit
of adding the unlabeled data. We also compare the semi-
supervised methods to one another. To make sure that the
reported results are independent of labeled points selection,
we select 10 different sets of labeled data for every number
of labeled data points at random and report the average of
the 10 runs.

6.4 Results
In this section, we assess the benefit of using unlabeled

data for every model. We compare every semi-supervised
method (the proposed method and the baselines) to a cor-
responding supervised method. We compare the supervised
and the semi-supervised versions of the proposed approach.
We compare the Trasductive SVM baseline to an inductive
SVM classifier, and the harmonic functions baseline to a
k-neaerest neighbor method using the same graph. The ob-
jective of this experiment is to estimate the benefit of using
unlabeled data regardless of the semi-supervised model used.
We start with SVM and TSVM. Figure 2 compares the per-
formance of both methods while varying the amount of la-
beled data. We notice a consistent improvement over using
labeled data only when unlabeled data is introduced. The
improvement is bigger when the number of labeled points
is small and gets smaller quickly as more labeled data is
introduced.

We notice similar behavior when we compare semi-supervised
learning using harmonic functions to the K-nearest neighbor
method in Figure 3. Interestingly, we notice that adding the
unlabeled data hurts the performance when the number of
labeled points is very small. Otherwise, adding labeled data
improves performance. Like TSVM, the benefit of adding
unlabeled data decreases as more labeled data is introduced.
The benefit of using harmonic functions with labeled and un-
labeled data over using KNN is considerably bigger than the
benefits of using TSVM over SVM.

Figure 4 compares the performance of the semi-supervised
generative model that uses EM and the supervised genera-
tive mode. We notice similar behavior to the two previous
cases where using EM and unlabeled data improves perfor-
mance. Unlike the graph based model, the improvement is
consistent regardless of the amount of labeled data. The im-
provement is also considerably larger than the TSVM case.

We also compare the performance of the three semi-supervised
learning algorithm in Figure 5. The figure compares the
performance of the generative model with EM, the Trans-
ductive Support Vector Machines (TSVMs) model, and the
graph based model that uses Gaussian random fields and
harmonic functions using a Cosine similarity graph. We no-
tice that the graph based model performs poorly when the
amount of labeled data is limited. The two other methods

281

Success Majority MM GM CRF
Definition Acc F1 Acc F1 Acc F1 Acc F1
Answer Correct 65 40 68 61 67 60 68 60
Answer Sub. 87 47 83 64 88 65 86 64
Good URL 83 45 78 60 83 65 80 57
Good URL Last 60 38 67 66 67 67 68 66

Table 5: The Majority Baseline (MB) vs. the
Markov Model (MM) approach vs. the Generative
Model (GM) approach vs. the CRF approach using
data from [1].

Figure 1: Performance of all supervised methods
using 10 fold cross validation.

perform better with the the generative model with EM out-
performing all other models with a large margin. As more
labeled data is introduced the improvement margin starts to
decrease.

The experiments show that adding unlabeled data consid-
erably increases the prediction power of the models. This
gain is achieved regardless of which semi-supervised model is
used. When we compare the three semi-supervised mode, we
notice that both the EM model and the TSVM model per-
form better than the other baseline and their performance
is pretty close to one another. The EM model has an ad-
vantage over the TSVM and the graph based models which
are transductive in nature. Transductive models need to be
retrained for every new test set. The generative EM model
does not suffer from this limitation.

Adding more unlabeled data points is shown to improve
performance in Figure 6. In this experiment, we fixed the
number of labeled points at 250, varied the number of un-
labeled points and observed the performance. The figure
indicates that adding more unlabeled data improves perfor-
mance for all methods.

In summary, we have shown that using a semi-supervised
framework improves performance regardless of the algorithm.
We have also shown that the EM model and the TSVM
model perform better than the graph based model, and that
the EM model has an advantage over the other models be-
cause it does not have to operate in a transductive setting.

7. DISCUSSION
We studied the problem of Web search success prediction.

Our study is different from previous work in that the meth-
ods we proposed can learn from both labeled and unlabeled
data. The area of using behavioral signals to model success
in Web search is rather new. All previous work has posed
the problem as a supervised learning problem where labeled
data is used to train a model that can be used later for pre-

Figure 2: Performance of SVM vs. TSVM for dif-
ferent numbers of labeled data points.

Figure 3: Performance of Harmonic Functions vs.
KNN for different numbers of labeled data points.

dictions. We have discussed the problems associated with
collecting labeled data for search success prediction and how
the process is time consuming, expensive, and sometimes
not very reliable. In the meantime, unlabeled data could
be easily and quickly collected. We showed how learning
from labeled and unlabeled data can improve the perfor-
mance of search success prediction models. We proposed
different methods for incorporating unlabeled data in the
learning process. We showed that adding unlabeled data
significantly improves performance. We also compared the
performance of different methodologies for learning from la-
beled and unlabeled data and highlighted the strength and
weakness of every method. In addition, we also proposed
a novel supervised learning model for search success predic-
tion. We showed that this model outperforms or achieves
a comparable perfromance compared to the state of the art
methods for predicting search success.

We performed several experiments comparing the perfor-
mance of several supervised and semi-supervised models for
predicting success in search. Now, we try to summarize
our finding for both the supervised and the semi-supervised
cases. For the supervised case, the proposed model, and
the Markov model [12] perform much better than a clas-
sifier that used a set of static features. The static features
classifier aggregates features describing the user behavior. It
performs poorly compared to the other models because the
other models have a more accurate picture of user behavior
by modeling action sequences. The proposed model is more

282

Figure 4: Performance of Generative Model vs.
Generative Model with Expectation Maximization
for different numbers of labeled data points.

Figure 5: Performance of all semi-supervised models
for different numbers of labeled data points.

principled and performs better than the Markov model [12].
The Markov model is intuitive and powerful, but it uses
the likelihood of the action sequence representing a search
goal, rather than the posterior probability as is the case with
the proposed method. The posterior probability takes the
prior into consideration which was shown to be important
especially because of the inherent imbalance in the data dis-
tribution.

In the semi-supervised case, the generative model with
EM performs best when the the labeled data is scarce. This
is consistent with [22] that states that generative models
have superior performance when only a few training exam-
ples are available. When the number of labeled data is in-
creased, the performance of all algorithms is similar. One
advantage for the generative model with EM over TSVM is
that TSVMs are very slow to train and cannot handle large
amounts of data. The graph based model is also pretty slow
because it involves computing a pairwise similarities for all
data points. Another advantage for the generative model is
that it is inductive by nature. However, other models may
be used in an inductive setting as well but possibly with
some performance loss.

Our results show that incorporating unlabeled data in the
user satisfaction prediction task improves classification. Pre-
vious work on user satisfaction prediction and other related
tasks have faced the problem of the limited avaiability of la-
beled data for supervised learning. Our results suggest that

Figure 6: Performance of All Semi-supervised meth-
ods for different numbers of unlabeled data points.

semi-supervised methods in general, not only the proposed
one, should be seriously considered in the future to predict
satisfaction and other similar tasks.

Our findings suggest several lines of future directions for
this work. The fact that adding unlabeled data can improve
the performance will allow us to build more specific success
prediction models that target specific verticals or specific
types of queries. Moreover, this may allow us to build per-
sonalized success models tailored to the behavior of different
users. We also plan to compare the predictive power of dif-
ferent transitions along the search trail. A preliminary study
showed that looking at the entire trail is more informative
that any parts of it, but we believe that we can develop
better models by further studying this problem. One other
direction of future research is to try to incorporate other
query and SERP features like the ones presented in [1] in
the semi-supervised models.

8. CONCLUSIONS
We presented novel methodologies for predicting success

in Web search by analyzing user behavior. Collecting large
amounts of labeled data for search success prediction is time
consuming and sometimes not reliable. We showed that us-
ing semi-supervised methods, where both labeled and unla-
beled data are used, improves the prediction acuracy. We
presented several methods for incorporating unlabeled data
and we discussed the advantages nad disadvantages of each.
The results suggest that semi-supervised methods in general
should be considered in the future for this task and other
similar tasks.

9. REFERENCES
[1] M. Ageev, Q. Guo, D. Lagun, and E. Agichtein. Find

it if you can: a game for modeling different types of
web search success using interaction data. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in
Information, SIGIR ’11, pages 345–354, New York,
NY, USA, 2011. ACM.

[2] E. Agichtein, E. Brill, and S. T. Dumais. Improving
web search ranking by incorporating user behavior
information. In SIGIR 2006: Proceedings of the 29th
annual international ACM SIGIR conference on
Research and development in information retrieval,
pages 19–26, New York, NY, USA, 2006. ACM.

283

[3] A. Agrawala. Learning with a probabilistic teacher.
Information Theory, IEEE Transactions on, 16(4):373
– 379, jul 1970.

[4] A. Aula, R. M. Khan, and Z. Guan. How does search
behavior change as search becomes more difficult? In
Proceedings of the 28th international conference on
Human factors in computing systems, CHI ’10, pages
35–44, New York, NY, USA, 2010. ACM.

[5] S. M. Beitzel, E. C. Jensen, A. Chowdhury,
D. Grossman, and O. Frieder. Hourly analysis of a
very large topically categorized web query log. In
Proceedings of the 27th annual international ACM
SIGIR conference on Research and development in
information retrieval, SIGIR ’04, pages 321–328, New
York, NY, USA, 2004. ACM.

[6] O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan.
Expected reciprocal rank for graded relevance. In
Proceeding of the 18th ACM conference on
Information and knowledge management, CIKM ’09,
pages 621–630, New York, NY, USA, 2009. ACM.

[7] O. Chapelle, B. Schölkopf, and A. Zien, editors.
Semi-Supervised Learning. MIT Press, Cambridge,
MA, 2006.

[8] H. A. Feild, J. Allan, and R. Jones. Predicting
searcher frustration. In Proceeding of the 33rd
international ACM SIGIR conference on Research and
development in information retrieval, SIGIR ’10, pages
34–41, New York, NY, USA, 2010. ACM.

[9] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and
T. White. Evaluating implicit measures to improve
web search. ACM Transactions on Information
Systems, 23, 2005.

[10] S. Fralick. Learning to recognize patterns without a
teacher. Information Theory, IEEE Transactions on,
13(1):57 – 64, jan 1967.

[11] A. Gammerman, V. Vovk, and V. Vapnik. Learning by
transduction. In In Uncertainty in Artificial
Intelligence, pages 148–155. Morgan Kaufmann, 1998.

[12] A. Hassan, R. Jones, and K. L. Klinkner. Beyond dcg:
user behavior as a predictor of a successful search. In
WSDM ’10: Proceedings of the third ACM
international conference on Web search and data
mining, pages 221–230, New York, NY, USA, 2010.
ACM.

[13] A. Hassan, Y. Song, and L.-w. He. A task level metric
for measuring web search satisfaction and its
application on improving relevance estimation. In
Proceedings of ACM 20th Conference on Information
and Knowledge Management (CIKM 2011), 2011.

[14] D. Hawking, N. Craswell, P. Thistlewaite, and
D. Harman. Results and challenges in web search
evaluation. In Proc of WWW ’99, pages 1321–1330,
1999.

[15] S. B. Huffman and M. Hochster. How well does result
relevance predict session satisfaction? In Proceedings
of the 30th annual international ACM SIGIR
conference on Research and development in
information retrieval, pages 567–574, 2007.

[16] B. J. Jansen, A. Spink, and T. Saracevic. Real life,
real users, and real needs: a study and analysis of user
queries on the web. Inf. Process. Manage., 36:207–227,
January 2000.

[17] K. Järvelin and J. Kekäläinen. Ir evaluation methods
for retrieving highly relevant documents. In
Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in
information retrieval, SIGIR ’00, pages 41–48, New
York, NY, USA, 2000. ACM.

[18] K. Järvelin and J. Kekäläinen. Cumulated gain-based
evaluation of ir techniques. ACM Trans. Inf. Syst.,
20(4):422–446, 2002.

[19] T. Joachims. Making large-scale support vector
machine learning practical, pages 169–184. MIT Press,
Cambridge, MA, USA, 1999.

[20] R. Jones and K. Klinkner. Beyond the session
timeout: Automatic hierarchical segmentation of
search topics in query logs. In Proceedings of ACM
17th Conference on Information and Knowledge
Management (CIKM 2008), 2008.

[21] S. Jung, J. L. Herlocker, and J. Webster. Click data as
implicit relevance feedback in web search. Information
Processing and Management (IPM), 43(3):791–807,
2007.

[22] T. M. Mitchell. Machine Learning. McGraw-Hill, Inc.,
New York, NY, USA, 1 edition, 1997.

[23] K. Nigam, A. Mccallum, and T. M. Mitchell.
Semi-Supervised Text Classification Using EM,
chapter 3. MIT Press, 2006.

[24] B. Piwowarski, G. Dupret, and R. Jones. Mining user
web search activity with layered bayesian networks or
how to capture a click in its context. In Proceedings of
the Second ACM International Conference on Web
Search and Data Mining, 2009.

[25] F. Radlinski, M. Kurup, and T. Joachims. How does
clickthrough data reflect retrieval quality? In
Proceeding of the 17th ACM conference on
Information and knowledge management, CIKM ’08,
pages 43–52, New York, NY, USA, 2008. ACM.

[26] F. Radlinski, M. Kurup, and T. Joachims. How does
clickthrough data reflect retrieval quality? In J. G.
Shanahan, S. Amer-Yahia, I. Manolescu, Y. Zhang,
D. A. Evans, A. Kolcz, K.-S. Choi, and A. Chowdhury,
editors, CIKM, pages 43–52. ACM, 2008.

[27] R. W. White and S. M. Drucker. Investigating
behavioral variability in web search. In Proceedings of
the 16th international conference on World Wide Web,
2007.

[28] R. W. White and J. Huang. Assessing the scenic
route: measuring the value of search trails in web logs.
In Proceeding of the 33rd international ACM SIGIR
conference on Research and development in
information retrieval, SIGIR ’10, pages 587–594, 2010.

[29] X. Zhu. Semi-supervised learning literature survey.
University of Wisconsin-Madison - Computer Science
TR 1530.

[30] X. Zhu, Z. Ghahramani, and J. D. Lafferty.
Semi-supervised learning using gaussian fie‘lds and
harmonic functions. In International Conference on
Machine Learning, 2003.

[31] X. Zhu and A. B. Goldberg. Introduction to
semi-supervised learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning,
3(1):1–130, 2009.

284

