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ABSTRACT

Motivated by an application in distributed gaming, we defamel
study thelatency-constrained total upload maximization problem
In this problem, a peer-to-peer overlay network is modeled a
complete graph and each nodehas an upload bandwidth capac-
ity ¢; and a set of receivet8(¢). Each sender-receiver péir;, v;),
wherev; € R(7), is arequesthat should be satisfied, i.e,, should
send a data packet to eache R(i). The goal is to find a set of at
mostn multicast-treed; of depth at mos®, such that each node
can be part of multiple trees, all capacity constraints ageé end
the number of satisfied requests is maximized. In this paper,
prove that the problem is NP-complete, and we present an algo
rithm with approximation ratiol — 2/+/Cmin, Wherecmin is the
minimum upload capacity. Finally, we also study the impdct o
network codingon the quality and approximability of the solution.

Categories and Subject Descriptors

F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and ProblemsReuting and layout

C.2.2 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms
Algorithms, Theory
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1. INTRODUCTION

Real-timedistributed gamings a large and fast-growing busi-
ness and massively multi-player games in which physicafpas
rated players participate and play over the Internet arerhag
increasingly popular. The key requirement in devising avoet
infrastructure for such games is to ensure that every playemy
time receives real-time updates from every other playdrishaur-
rently in itsfocus say, on its computer screen. While satisfying this
requirement is challenging even in small-scale distrithgaming
applications based on client/server architectures [&,aven more
so when considering peer-to-peer architectures.
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The motivation for studying peer-to-peer-based solutionslis-
tributed gaming applications is scalability. The approtaiten by
platforms such as PS3 or XBOX Live is to use the player witthhig
est bandwidth as a centralized server to which peers pentigne
send their data, and which then forwards this data to eveey-in
ested receiver. The problem with this approach is that theadp
bandwidth used at the server may grow in the ordeD¢i?). By
studying a peer-to-peer-based approach, the hope is teddiehis
scalability problem by leveraging the available uploaddveidth
of all participating peers, not just the centralized server.izdtilon
of thetotal upload bandwidtlis the crucial bottleneck in distributed
peer-to-peer games because in residential areas, brahdbeess
is typically asymmetric with high download rates, but oniyedl
upload rates. Thus, the higher the upload bandwidth utidinathe
more accurately the game play can be rendered.

In the absence of widespread use of IP-layer multicast [d4],
frequently proposed remedy against upload bandwidth aioihs
has been application-layer multicast. Unfortunatelysemg mul-
ticast schemes (used for streaming, for example) do not theet
verytight latency constraintfound in real-time distributed gaming
applications [7, 24, 25]. In particular, with a maximum talele
delay of 100ms between any two players, the number of hops on
the path between sender and receiver can be no larger than 2 or
3. Hence, the log-scale latencies typically found in strcedl P2P
overlays [27, 28] are not sufficient. In our study, we restoar
attention to multicast trees of depth 2, as these trees havad-
vantage of virtually overhead-free routing.

Besides tight latency constraints and the necessity fdr big-
bound bandwidth utilization, two more aspects charaatedar
problem setting. First, with a targeted size of up to 100¢¢uis
per game [1], distributed games are small in scale in corapari
to other distributed applications. For this reason, outesysar-
chitecture uses a central server whose purpose is to corapdte
disseminate information about the multicast structurelltpeers
in the game. This does not thwart scalability, because theahc
sending of data to receivers is performed by the peers antehen
the server’s upload requirement grows only@3:). Secondly, in
contrast to many other problem settings in networking aret-pe
to-peer computing, efficienworst-case behaviois a necessity in
distributed gaming applications. Partly, this is becauséirsg a
game in execution is unacceptable and partly because wasst-
scenarios are actually quite likely to occur in practice aAsxam-
ple, a person holding the flag in a battlefield may simultasbou
be in the focus of a large number of other players, and thudsnee
to send its updates to all of them.

In this paper, we study the problem of maximizing the cumu-
lative upload bandwidth in latency-constrained peerderpnet-
works. In particular, we formally define and study the latenc



constrainednaximum upload bandwidth problefUBP), which
seeks to maximize the total number of satisfieguests A request
is a pair of nodew; andv;, where the receiver; requires update
information from sendev;. The goal is to find a set of multicast
trees (one rooted at every node) of depth at radbat maximizes
the total number of satisfied requests. Every node can fpeatécin
multiple trees, but its total upload bandwidth in all treegstnnot
exceed its upload capacity.

Clearly, the total number of satisfied requests is at rigsthere
C denotes the sum of upload bandwidths of all nodes. In certain
settings where bandwidths and requirements are unevestiytdi
uted, however, only a small portion of all requests can bisfgad
even though the cumulative upload bandwidthitself would be
sufficient. Moreover, we prove that MUBP is NP-hard and as our
main contribution, we give a polynomial-time algorithm ttzgo-
proximates the problem to within a factor bf- 2//¢min, Where
Cmin IS the minimum upload capacity of any peer. We then show
how, theoreticallynetwork codingcan be used to improve both the
quality of the achievable solution as well as its approxiorat

Finally, notice that while our immediate motivation forghiork
stems from distributed gaming, the problem of maximizintito
outbound bandwidth is of interest beyond this specific apfilbn.
The success of BitTorrent, for instance, is based on thetffett
upload capacity is shared among numerous peers.

The remainder of the paper is organized as follows. After dis
cussing related work in Section 2, Section 3 formalizes tl&-m
imum outbound bandwidth problem and defines the terminology
used throughout the paper. Section 4 gives some intuitiontdhe
algorithmic challenges of the problem. The paper’s maimréec
cal contribution, the worst-case efficient approximatitgoathm,
is presented in Section 5. Section 6 studies the impact ofankt
coding, before the paper is concluded in Section 7.

2. RELATED WORK

In graphs, the problem of constructing an efficient multi¢eese
is often modeled as finding an appropriate Steiner tree Réine-
what closer to our needs are Steiner trees with bounded tleguth
have also been studied extensively in the literature, 1. 23].
Constructing an efficient multicast tree under various trairgs
with regard to latency has been readily studied, e.g. [612229].
None of these works, however, is directly applicable in aitisg
since instead of a single tree, we need to consteywrtially over-
lapping multicast trees, one rooted at each node.

3. PROBLEM STATEMENT

The peer-to-peer network consists of alBet {vs,...,v,}, of
n peers that are mutually connected. Each nade V has a lim-
ited upload bandwidth capacity. For each node;, the (possibly
empty) receiver se(4) contains the set of nodes that are interested
in receiving updates from;. A senderv; sends thesame datao
every receiver inR(), but the data sent by two different senders
is independent of each other. Each fai, v;) with v; € R(3) is
called arequestthat should be satisfied hy. A request is satisfied
if v; sends one unit of data tg either directly or via at most one
intermediate relay node: Therequirementr; = |R(¢)| of node
v; is the size of its receiver set. Notice that requirementand
capacitiesc; are measured in equal units, so-callgioad-units
measured in bit/s. Hence, when not using any relay nodesp-an u
load capacity of; is sufficient to satisfy exactly; requests.

Let ¢min := min,,ev ¢; denote the minimum upload capacity
of any node in the system. In distributed game like QuakeoH, f
instance, the minimum maintainable upload capacity of a&math
128kb/s upload links would be roughlmin ~ 5 [11]. The sum
of all requirements and unit upload capacities is denote® by-
DevriandC =3 . ci, respectively.

In order to account for the rigid latency-constraints, wasider
only multicast trees of depth In particular, we say that a request
(vi, vy) is satisfiedif either v; uploads its data directly to;, or if

In the systems and networking community, there has recently there exists a path via at most one relay nogleon whichv; sends

been a number of works addressing problems in the contexsof d
tributed gaming. Apparently the first peer-to-peer, séessrmulti-
player game is MiMaze, which uses IP multicast [18]. A cortple
peer-to-peer based architecture for massively multigel@games
was proposed in [17]. Also recently, the works of [9, 10] pro-
pose infrastructure components for supporting online inplétyer
games. In view of the limited deployment of IP layer multicas
numerous application layer multicast schemes have be@oged,
e.g. [5, 13, 20]. Being typically tailored for applicatiossch as
streaming, existing multicast schemes do not address ttiewpa
larly tight latency-constraints faced in distributed gaghapplica-
tions. Multicast support for distributed multi-player giag appli-
cations was studied in [22].

All of the above works provide heuristic solutions to thelpem
at hand and are concerned primarily with architectural jerols.
In contrast, there exists little applicatdigorithmicwork. The rich
literature on(multi-commaodity) network flowscludes studies with
latency bounds. In this setting, dnlength bounded — ¢-flow is
specified by a collection of — ¢-pathsP = (Pu,..., P;) and
corresponding flow valueg,, ..., fx, in which no pathP;, € P
is longer thanL. Baier [3] gives an extensive survey of what is
known for length-bounded flows, and more recent results haga
obtained for instance in [4]. Unfortunately, (multicomnitgdl net-
work flows do not adequately modeiulticast problemshecause
the flow conservation condition does not apply to multicasbp
lems: In multicast applications, intermediate relay nasley send
received data to several receivers, thus reducing therestjband-
width at the original sender.

tov;. Nodev; satisfiest < |R(7)]| of its requests if it can thus send
data toz of its receivers inR(7). Each node may participate in
multiple multicast trees. Unless its receiver 8%t) is empty, it is
the root node in one multicast tree. Additionally, it mayvgeas a
relay node in possibly several other trees, and in some, titanay
be a leaf receiving data. In total, however, the number i daits
uploaded by node; must not exceed;. Each sending operation
(either as a sender to a relay node or as a relay node to aegceiv
costs one unit of upload bandwidth. That is, a relay nogean
forward data from; to multiple receivers; € R(7) as long as its
capacity constraint is not violated.

Fori # j, letI] € {0, 1} denote whether node sends its data
to nodev;. If Ij = 1, one upload unit at; is used to transmit data
tov;. If v; € R(i), this means that the requdst;, v;) is satisfied
and additionally, each such nodg may serve as a relay node for
v;. Further, letU;; € N be the number of upload units that such
a nodev; uses in its role to relay data for node. That is, U;;
is the number of receivers iR(i) to whichv; relays data fomw;.
Notice thatU;; > 0 only if I = 1 and conversely]] = 0 implies
thatU;; = 0. We can formalize thé&atency-Constrained Upload
Bandwidth Maximization ProblefMUBP) as follows.

DEFINITION 3.1 (MUBP). Consider a set of nodds where
each nodey; € V has a set of receiverB(:) and upload capacity
¢;. Find at most|V| multicast trees (one rooted at each node) of

1Our results can be generalized to the scenario in which ttatap
packets of different nodes have different sizes.



depth at mosg, such thatzvjev I+ Zvjev Ujs < c; for every T r=4

nodev; € V, and such that the number of satisfied requésisv; ) LY(L3) T =2
withv; € R(¢) is maximized. A request;, v;) is satisfied ifv; is T =0 % z
contained inv;’s multicast tree. ° P12
> Rs T : Ry
Let Topr and Tarc denote the number of requests satisfied "

. . N . . Rs Rs I7°(1,4) Rs
in an optimal solution and by some algorithdl.G, respectively.
Algorithm ALG achieves ampproximation ratioof « if for every R, R 1/(2.6) R
instance of the problem, it holds tHBt ¢ > o - Topr. R Ry R R,
4. COMPLEXITY AND INTUITION = = * =

c:=5 =7 c3=4 C4=6

MUBP can be shown to be NP-complete by a simple reduction

to the3-partition problem )
Figure 1: The total upload achieved by these four nodes i47. The

THEOREM 4.1. The _de_CiSiQn version Of_the latency-constrained  shaded upload unitRs at vy is not referenced and hence wasted. The
upload bandwidth maximization problemA&P-complete. total upload could be increased e.g. by setting/>[1] = R3, U1[4] =

PrOOF. The problem is inN P since given a solution, its to- X2, and adjusting the indirection unit accordingly.
tal upload volume can be easily verified. We show NP-hardness

by reducing the well-knowg-partition problemto it [16]. In this achieve an approximation ratio better thgf2 + e. Furthermore,
problem we are given a set of 3m itemsA = {1,...,3m} with since every upload unit may be used in two different rolesy-in
associated sizes,...,asm € N, with B/4 < a; < B/2, for itively, an approximation ratio of /2 seems “natural”. In the fol-
eachi, andz?f1 a; = mB, and we must decide whethdrcan be lowing section, we show how to surpass this bound.

partitioned intomn disjoint setd/, . . . I,, such thalzz.elj a; = B,
for j = 1,...,m. Note that due to the bounds for the item sizes 5. WORST-CASE EFFICIENT ALGORITHM

a;, all setsl; must have cardinalitg. ) In this section, we present the main technical contributibn
Given an instance of th.&-partlltlon problem, construct an in- s paper: a worst-case efficient approximation algorifomthe

stance of the upload maximization problem with+- 4m nodes MUBP problem. The algorithm is presented in Algorithm 1 and
V1, .., Up+4m @S follows. Forl < j < B, lete; = 0 and consists of several subroutines. On a high level, the ahyarpro-
R(j) = 0;for B+ 1 < j < B+ 3m, lete; = aj—p and ceeds by greedily assigning differemies to upload units of dif-
R(j) = 0; and finally, for B + 3m + 1 < j < B+ 4m, let ferent peers. The algorithm may subsequently change theassl
¢j = 3@ndR(j) = {vs,...,vs}. Thatis, for eachitem;, there  gigneqto an upload unit, but at any time, each unitis in dyacie
is a nodevp 4+, with upload capacity.;. Additionally, there aren role. The final role assignment determines the multicasstre
NOdesusm-+1, ... vam, €aCh having upload capacityand require- Let thekth upload unit of a playeo; € V be written asU;[k].
mentB. Because each of these nodes can use at3mesty nodes, Uslk, ko] i= (Uslks], Uilks + 1], ..., Ui[kz]) denotes a contigu-

there is a solution with total upload bandwidthB if and only if ous range of upload units at. At any time during the course of the

the set of items has &-partition. . algorithm, each upload unit can be assigned to one of fofereit
The proof of Theorem 4.1 does not convey the full picture ef th roles
problem’s complexity, as it only captures the difficulty efecting e Initially, all upload units areinspecifiedU;[k] = Q. Once a
a proper subset of relay nodes. Another substantial afgniit unit is assigned a role other th&p, it can never become un-
challenge is that every upload unit may be used in two ways: to  Specified again.
upload to a receiver (either as a relay or directly) or, agtio¢ of e An upload unitU;[k] = R; atwv; is used for sending data to
the tree to send to a relay. The main challenge is thus to eé&oe an intended receivar, € R(j) (see Figure 1). I§ # j, this
much of its upload bandwidth each node should allocate fwirsg: means tha; is serving as a relay in;'s multicast tree, and if
as a relzliy or send directly, and how much it should dedicatis to i = j, thenv; is uploading directly to one of its receivers.
own multicast tree. . . e An indirection unitU;[k] = Z7[k1, k2] means that upload unit
As an exa”?p'e' consider a network witht 2 nodesus, ..., Un Ui[k] atw; is used for[s]endinzg[data t]g which then sends this
and two special nodes; andws. Nodesw, andw, have require- data toks — ki1 + 1 receiversy, € R(i) using its upload units
mentsry = 1y = n — /n (With receiver sefv ., .. ., vn }). ki,... ko, ie.,Uj[k] = Riforallky <k < k. Thefan-out

The capacities of these two special nodes,is= 1 and¢, := n,

; . S = ko — k1 + 1 of an indirection unit/; [k] = Z7 [k1, k2] is
respectively. The nodes;, ..., v 5 have capacitys, ..., c 5 = ’

the number of upload units it references.

v/n. Finally, all nodes:, ... ., ¢, have an empty receiver set. ) o ) ) )

In this example, it is possible to satisfy all requests, Terr = e Finally, it will be convenient to let the algorithm assigreth
R = 2(n — y/n). In this optimal solutiona, sends its data via emptyrole Us[k] = £ to certain upload units. If at the end
v1,...,v s even though it would be capable of serving its own _of the algorlthm, an upload unit is still in rol8, it is not used
requirements. This is in order to to free its upload resai@e in any multicast tree. ‘
much as possible fow,. On the other hand, every algorithm in For notational convenience, we write oy if the exact upload
which peers greedily dedicate their upload bandwidth ta then units referenced are not of interest, @har R to indicate that a
multicast tree (and allocate only the spare capacity tordtiees) specific upload unit is used in this role. During the cours¢hef
achieves an upload of at mast asw, can satisfy at most/n of algorithm, every peer hasaynamic capacity:;, which (roughly)
its requests using relay nodes. captures the number of currently free upload units;inSimilarly,

The example shows that no algorithm that allows nodes talgree the notation?; describes a nodeesidual requirementi.e., how
ily serve their own requests before relaying for other nockes many of its requests have not yet been allocated. Initiajly: c¢;



and#; = r;. While ¢; and7; will be decreased during the course
of the algorithm,c; andr; remain unchanged. For a node €
V, Qi denotes the set of upload units assigned to @l&); =
{Ui|k]|Ui[k] = Q}. SetsE;, R;, andI; are defined analogously
for the other roles.

Finally, it is important to observe the following. Our algbm
does not specify to which receivey € R(j) a specific unitR;
is used for uploading. For each relay node, the algorithmetyer
stateshow manyunits are designated for a certain multicast tree.
Notice that this is sufficient because it is irrelevant whielay node
v; of v; ultimately sends to which receiver R(¢). For an example,
let R(i) = {wx, ..., w10} and assume that the algorithm allocates
upload units as followsw; uses 2 upload units to send directly to its
receivers. Additionally, it has 2 relay nodes (both of whick not
in R(7)), each relaying);'s data to 4 receivers if(¢). Converting
this assignment into a valid multicast tree is trivial. Fastance,
v; directly uploads tav: andws, whereas its two relay nodes send
to ws, ..., ws andwr, ..., w10, respectively. Because the actual
assignment of relays to receivers in each multicast treleus ir-
relevant (as long as it is consistent), our algorithm mesghcifies
how many upload units each node allocates to each multieast t

5.1 Algorithm

The main algorithmic difficulty is to determine the amount of
upload bandwidth each node should allocate to each multiess
The algorithm addresses this challenge by first accommuglttie
nodes that have high requirement, but only little capaeityd(hence
can use only few relay nodes). Specifically, it proceeds iready
fashion and allocates the bandwidth requirements (i.emd$anul-
ticast trees) of nodes; € V' in non-increasing order of the ratio
r;/c;, which we call the “clumsiness ratio”. An exception is made
for nodes with small requirement, < X, for X = /¢min +2—1
as specified in the algorithm. These nodes are dealt withéne@nsl
phase (Lines 29-31).

Consider the iteration in which some nodgs multicast tree is
built (starting from Line 5). Assume that there are < n nodes
with positive dynamic capacity; > 0. The algorithm maintains
a list of nodesvr (1, ..., vL(m) iN NON-decreasing order éf. It
then selects at most + 1 consecutive nodes, (,), . . ., vr(v) that
serve as relay nodes in’'s multicast tree. In order to determine
the indexes: andb, the algorithm selects the smallest indeguch
that the combined dynamic capacity of the-1 consecutive nodes
VL(a)s - - > VL(b): b < @ + ¢, suffices for satisfying alt; requests
of v;. In casea is 1—i.e., thec; + 1 nodes with smallest non-
zero dynamic capacity can satisfy allafs requirement— is the
minimal index so thaby, ), - ..,vL ) has enough combined dy-
namic capacity to serve all af;'s requirement (Lines 9-14 of the
algorithm). In case no window of consecutive relays suffites
algorithm forms a multicast tree using the+ 1 relay nodes with
highest dynamic capacity.

Notice that this allocation initially leads to an infeasilsiolution
in which some nodes; usec; + 1 (instead of at most;) relay
nodes. This is infeasible because a node with capacitgn send
its data to at most; different relay nodes. In the algorithm, how-
ever, these nodes are temporarily assigned an indireativ@ uin
a so-called “overflow unitU; [c; 4+ 1]. The algorithm’s final phase
(Lines 33-40) turns this initial scheme into a feasible soluwith-
out losing too much upload bandwidth.

The main problem with the aforementioned greedy allocation
procedure is that at the time’s tree is considered, many of its up-
load units may already be used for previously built multi¢ceses
(i.e., set to rolesk;, for j # ¢). In order to give such a nodeg
the opportunity to build its own multicast tree, the algamit al-

Algorithm 1 Algorithm - Main Procedure

Input: Upload capacities;, requirements;
Output: A feasible upload schens
1: DefineX := vcmin +2 — 1;
2: Initially, U;[k] = Qforallv; € V|1 < k < ¢;
3: For each node, séf = ¢, and#; = r;;

4. Labelnodesn,...,v, suchthat> > 722 > . > 7=,

5: for eachv; with r; > X in this orderdo’ "

6. Letm be the number of nodes with > 0

7:  LetL[l],...,L[m] be asorted list of nodes in
non-decreasing ord€r< ¢y <,..., < érpm)

8 a:=1 b=1;

9:  while 0 érp) <r and b<e +1 and b<m do

10: b:=b+1;

11: od

12:  while 30_ énq) <7 and b <m do

13: a=a-+1, b:=b+1;

14: od

15: for t:=a to b—2 do

16: allocate(vi, vr(1), Er(e))s

17: endfor

18:  if 7 — ¢pp—1) > X then

19: allocate(vi,vr(b—1y, EL(s—1))

20: allocate(vi, vp (v, 71);

21: else

22: allocate(vi, vy -1y, 7 — X);

23: forallUpp,—1)[k] = QdoUrp—1)[k] :=&;

24: éL(bfl) = 0;

25: allocate(vi, v (v), X);

26: endif

27: end for

28: {* Try to satisfy requirements of nodes with < X*}

: for eachv; with r; < X do

30: Setat most; unitsUs;[g] = £ U Q to Us[g] := Rs;
31: end for

32: {* Make solution feasible—-remove overflow uni}s*
33: for each nodev; with Uj[c; + 1] # Q do

34: := nextAloc(v;);

35. ifk=c;+1then

36: choosdJ;[k] = Z7 k1, k2] with minimal
fan-outfroml < k <¢; +1

37: forallky < k < ko doUj[k] := €;

38: endif

40: end for

lows upload unitdJ;[k] = R, to be replaced (or overwritten) by
role U;[k] = Z;. While increasing the capacity af’s multicast
tree, this decreases the total upload of negeo whose multicast
tree this upload unit/;[k] = R; was originally assigned. In other
words, each such overwrite operation decreases the faof tlé
indirection unit allocated at; and thus reduces its effectiveness.
Our algorithm maintains the invariant that upload urits are as-
signed tov; only if the indirection unit’s fan-out is at least, i.e.,
only if v; allocates at leask upload units tav;’s tree. The goal
is to ensure multicast trees with high fan-out so that evetgad
unitIZ.L“) invested for indirection leads to a large number of upload
unitsR;.

In more detail, the allocation of upload units to roles tafilese
in the allocate(v;, vy, 1), S) subroutine. Upload units of nodes
v, a <t < b, are filled up by setting each of theavailable
units (see Line 4) t@&; (or alternatively€ if s < X). As we prove,



Algorithm 2 Subroutine allocate(v:, vL ), S)

5:=0; Acpw = cre) — o
. éL(t) = éL(t) =S, #i=r =S,
sfor y:=Acpuy +1...Acpy +Sdo
if ULeyly] # Zi @ thens :=s+1;
end for
if s> X then
UL(t)[y] := R, foreveryy € {ACL(t)“FL ey ACL(t)-i-S}
next := nextAloc(v;);
9:  U[next] := IZ-L(t) [Acpy + 1, Acpy + 3]s
10:  reassigr(v;,next);
11: end if
12: else
13: for y:=Acp) +1...Acp) + Sdo
14: if Unlyl = Qthen Uppyly] = &;
15:  end for
16: end if

NN E

Algorithm 3 Subroutine reassign (v;, next)

1: if there is a node, € V with Uy [g] = Z} [c, d]
andd = next then
Uh [g] = IIL1 [C7 d— 1]’
if d—c < X then
Unlg] := Ra;
Forall0 < ¢’ < ¢, setU;[g'] = Ry, toroleU;[g'] := &;
end if
: endif

Nogkwn

Algorithm 4 Subroutine nextAloc(v;)
if Q; # (0 then

2:  return highestk with U;[k] = O;
3: else if E; # () then

4:  return highestk with U;[k] = &;
5: else ifR; # () then
6.

7

8

v =

. return highestk with U; [k] = R.;
: elsereturn ¢; 4+ 1; {* Returnoverflow unit*}
:end if

this is done in such a way that existing indirection units gt
are never overwritten. The dynamic capacityvgf,, is set to0 in
Line 2 of the subroutine, and the residual requirenigf v; is re-
duced accordingly. Note that—as defined in Lines 18-26—dke |
two relaysvy,,—1) andvy, (), are treated in a subtly different way.
By doing so, the algorithm guarantees that the number o Gt
allocated tovy, () (Lines 20 or 25) is at leasX. For this reason,
in Lines 22-24, only; — X upload units ofu;, ;) are set taR;,
whereas the remaining at mast— 1 unspecified units are set &
Allocating upload unitsk; to a relayv; makes sense only when
referencing these units using an indirection Ufjitat v;. As de-
fined in Lines 6-11 of thallocate(v:, v (), S) subroutine, upload
units of v,y are assigned t@®; only if there are at leask of
them. As mentioned before, the algorithm allows to oveewiip-
load unitsR; by indirection unitsZ, ., in the subsequent iteration
in which the multicast tree of;,(;) is constructed. This reduces
vr)'S contribution tov;'s multicast tree by one unit. Thus, the
overwriting diminishes the indirection’s fan-out and reds its ef-
fectiveness. In order to avoid cycles of overwritings ofagal units
‘R by indirection unitsZ, which themselves point to indirection
units, etc..., the algorithm employs theassign(v;, next) sub-
routine. This subroutine keeps track of the fan-outs ofreation

units and it overwrites any unit/ whose fan-out decreases below
X (see Figure 2 for an example). In this cass requirements are
no longer sufficiently satisfied by relay and insteadZ? is set to
adirectuploadR; in Line 4. That isw; is no longer a relay im;’'s
multicast tree.

Another important question ishich upload units ofv; should
be used for its multicast tree (and thus be replaced bﬂbi@ in
Line 9). ThenextAloc(v;) subroutine first returns any upload unit
in rolesQ or £. If no such unit exists, it starts overwriting upload
units in roleR; in decreasing order of. Finally, as mentioned
above, in case all of;’s upload units are in rol&, the algorithm
resorts to the creation of a temporarily infeasible sotutiy allo-
cating the new indirection unit to an “overflow” uriit;[c; + 1].

5.2 Analysis

The first lemma of the analysis provides an upper bound of the
optimal solution. The remainder of the proof then unfolds ise-
ries of lemmas that collectively derive a lower bound on hosngn
referenced upload unitR are allocated to the different multicast
trees in total. For the upper bound, consider the nodes taive n
bered in non-increasing order of their capacity, ce.< ... < cn.

Let the maximalspreadof a set of node$¥ C V be defined as
¥(W) := 37, oy ¢i- The first lemma bounds the optimum by giv-
ing an bound on the achievable total upload.

LEMMA 5.1. The maximum number of requirements that can
be satisfied by an optimal upload scheme is at most

y(W)—-1

Z Cn—i + Z T

i=0 iEV\W

1
Topr < (1+ ) - min
Cmin wcv

PROOF LetW C V be an arbitrary subset of nodes and con-
sider all multicast trees of nodes W. The total number of re-
lay nodes that can be used in all these trees is at m@st).
Therefore, the total number of upload units that can bezetiliby
nodes inW cannot exceed the complete upload capacity of nodes
Un—~(W)+1; - - - » Un Plus their own capacity (first and second term).
In addition, the optimum cannot do better than satisfyingel
quirements of node¥ \ W completely (third term). Hence,

y(W)—-1

Torr < vIvnéI\I/ ; cn7i+zci+ Z ri p. (1)

iew IEV\W

Because each node has a capacity of at least, it holds that
ZZES”* Cn—i > Cmin - Y icw Ci- .Solving thi§ inequallity for
> ;cw ¢ and plugging in the resulting bound into (1) yields the
lemma. O

For the subsequent proofs, we call an upload unit intglg] =
Ri atanode;, i # j, referencedf there exists an indirection unit
Uilk] = I} [k1, k2] such thate; < ¢ < ko. Units that are directly
routed to a receiver, i.el/;[¢] = R, are also called referenced.
With this definition, the number a&ferenced upload units role
R at the end of the algorithm corresponds to the total number of
satisfied requestSa . The following lemma and its proof show
that the algorithm avoids non-referenced upload units.

LEmMMA 5.2. Atthe end of every call of thdlocate-subroutine,
all upload units in roleR are referenced

PrROOF Consider a node;. Requirements that are routed to
a receiver directly (in an upload uriif;[k] = R;) are referenced
by definition. Consider an upload uriit;[k] = R; at some node
v; # v;. The only place in the algorithm where this unit can be set



to R, is Line 7 of theallocate(v:, vy (+), S) subroutine. In Line 9,
a corresponding indirection umf(”[k’h ko] with k1 < k < kqis
set up ab;. It therefore remains to show th&f“) [k1, ko] Stays as
long asUy, () [k] = R..

We first show that in Line 7 of thellocate subroutine an in-
direction unitIiL(t)[k:hkz] can never be overwritten. The rea-
son is that thenextAloc(v;) subroutine assigns indirection units
to upload units with largest first, and because only upload units
Uncp, () +1,....ac1+s fOr the s previously determined in Lines 3
and 4 are overwritten, this cannot be an indirection unit.

This leaves theeassignment subroutine as the only place where
an indirection unitZZ.L“) [k1, k2] could potentially be overwritten or
adjusted. In Line 2, the upper boutd is decreased by one only
if the corresponding upload uriif, ;) [k2] = R: was overwritten
(because thaextAloc(v;) subroutine always returns the upload
unit U [k] = R with the largest index), and hence no longer

exists. If the indirection unif,f(t)[k:h k2] is overwritten in Line 4
of the reassignment subroutine, all upload units Wit ;) [k] =
‘R; are overwritten and set ®in Line 5. Finally, in the last part of
Algorithm 1, if an indirection unit is overwritten in Line 3@hen
all upload units at the relay are set§oHence, all upload units in
role R are referenced throughout the algorithm. O

The next lemma relates each node’s dynamic capégityg the
number of its upload units to which a specified role is assigne

LEmMMA 5.3. Throughout the algorithm and for every nodec
V, it holds that|E,L- Ul; U Rll > ci — G.

PROOF We prove by induction the stronger claim that for every
v; € V, every upload unit/;[1, ¢; — ¢;] is assigned to a specified
role: R, £, or Z. At the outset of the algorithm, the induction
hypothesis holds becaug; U I; U R;| = ¢; — & = 0. We now
consider the two places in the algorithm whérés reduced (and
hencec; — ¢; increased). In Line 24¢,,_1) := 0, but in the
previous lineall unspecified upload units, ,_1[k] = Q are set
to £. It follows that|@Q;| = 0 and hence, the induction holds.

InLine 2 of theallocate (vi, vy (1), S) subroutineéy, ;) is dimin-
ished byS. Let Acr,) = cr(t) — €L at the beginning of the sub-
routine. By induction hypothesis, all upload unifg ;)[1, Acp, ()]
are assigned to specified roles initially. Hence, we needaows
that upload unitd/.)[Acr) + 1, Acry + S] are specified at
the end of the subroutine. In Line 7, upload urdits[Acr ) +
1, Acyps) + s] are set to rolgR. It remains to consider upload units
UrwlAcpwy + s+ 1,Acpy + S]. In Line 4, the variables is
increased if an upload unif, ) [Acp) + 1, Acpey + S]isina
state other thaff. Since, indirection units are assigned in decreas-
ing order of index by theiext Aloc(wv;) subroutine, it follows that
if s < S, all upload unitsUp¢)[Acp@y + s + 1, Acpey + 5]
are in roleZ. Finally, in Line 14, all unspecified upload units
UrwylAcpwy + 1, Acp) + S) are set . O

The next two lemmas relate the total number of specified apbloa
units to the optimal solution. Recall that nodss. .., v, are la-
beled in the order of their clumsiness ratio. L&tC V be the first
g nodeswvy, . ..,vq With r; > X whose multicast trees are con-
structed by the algorithm. Further, defing 1 < z < n, to be the
first node for whichh — a < ¢, that is,v, is the first node whose
requirement is allocated without the overflow-unit.

LEMMA 5.4, After the firstz — 1 iterations of the mairfor-loop
of Algorithm 1, it holds that

y(W)—1
Z (ci —é&) > Wrgﬂ‘gtl Z Cn—i + Z ri ¢ . (2)
v; €V, 1 =0 1€V, _1\W
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Figure 2: The figure depicts a reassignment. When constructing its
multicast tree, v; assigns upload units in roleR; to nodewvy, ) (i) and

sets one of its units toIl.L(t) (ii). If the number of upload units R,
at v; drops below X , the reassign(v;, next) subroutine replaces the
indirection unit at vy, (iii) and sets upload unitsRR;, at v; to & (iv).

PROOF The requirement of every nodg, 1 < ¢ < z—1
is allocated to exactly,, + 1 different relay nodes in its multi-
cast tree (potentially including itself). In the firgt< ¢, — 1 of
these relay nodes, thelocate(vy, v (), S) subroutine is called
with parameterS = ¢, (Line 16) and hence, in Line 2 of the
subroutine, the dynamic capacity is reducedtg, := 0. Simi-
larly, ér,(,—1) := 0inLines 19 or 24. Finally, the dynamic capacity
¢y Of the relay node referenced in the overflow-unit is reduced
by atleasinin{ X, ¢, }, because if the remaining requirement
after allocation to the first, relay nodes is less thaki, theelse
branch of Line 21 is executed, i.e., the numbeRetinits assigned
to vy, is rounded up toX. Notice thatv, therefore sets the dy-
namic capacity of at least, consecutive nodeis the list L to 0.
The finaleq + 1St node may be left with positive dynamic capacity.

As 7, decreases by the same amount as the dynamic capacity
¢r() in Line 2, total reduction op ., ¢ during the main-loop
iteration of nodev, is at leastr, — 7, wheref;, is v ’s residual
requirement at the end of the loop-iteration. Hence,thal -
crease of residual requiremer}s, _,, 7 is less or equal to the
total decrease of dynamic capaclty, ., é:.

Assume that after constructing the multicast treevpf;, the
x hodes with the highest (original) capacitiesare all fully used
up, i.e.,é; =0foralln— x+1 < j <n. le,v,_yisthe
highest-capacity hode whose dynamic capacity is striatlitive
afterv._1's loop iteration. Since in all iterationg < z the dy-
namic capacity otonsecutivenodesuvy, ), - - -, Vi (atc;+1) IS re-
duced, the following holds: Every nodg that uses a relay nodg
for y < n— x has satisfied itentire requirementd.e.,?, = 0. Let
Q1 C V._1 be the set of these nodes with a nagein their mul-
ticast tree. Each node i); has satisfied all its request and hence,
the total reduction o} -, ., & (and hence, the increase of the left-
hand side of (2)) caused by nodesjn is at IeastZUqEQ1 Tq.

Next, consider nodeQ: = V._1 \ Q1 that use only relay nodes
Un—x+1,---,Un. Because every such nodg € Q- sets the dy-
namic capacity of at leasf, consecutive relays t0, it holds that
the numbery of nodes with highest capacity that have been set
to ¢; = 0 during the firstz — 1 main-loop iterations is at least
x > v(Q2). Hence, the total reduction (E%EV ¢; caused by
nodes inQ: is at leasty. 792~ ¢, _;. CombiningQ; andQ-,
it holds that the total reduction of dynamic capacity andsttthe
left-hand side of (2) is at IeaE,quvQ (cq —&q) > qute rq+

> 797" ¢, ;, which proves the claim. O



For the following, we need one more definition. Defifigy, to
be the maximum number of satisfied requests in an optimaiisnlu
if nodes withr; < X are not considered. It holds thaf, o <
To pr, With equality if there are no nodes with < X.

LEMMA 5.5. In Line 28 of the algorithm, it holds that

Z |[E; UL UR;| > (Cmi“> -Topr.
v eV Cmin + 1

PROOF Lemma 5.4 in combination with Lemma 5.3 proves the
lower bound ord_, . [EiUR; U for the firstz — 1 itera-
tions of the algorithm’s maifor-loop. We now show that for every
subsequent iteration > z,

y(W)—1
do(ei—a) = min Z Coit Y T ®3)
ViV, i=0 IEVA\W

continues to hold. The proof is then concluded by plugginthan
bound on the optimal solution in Lemma 5.1.

Recall thatw, is the first node for whiclh — a < c.. There are
two possible reasons for this. First, it could be tﬁaitﬁl Crp) =
r, forb < ¢, i.e., the entire requirement of can be satisfied us-
ing theb < ¢, relay nodes with smallest positive dynamic capacity.
Second, it could be thdC = | ¢1(,) < 7=, but there are only. or
less relay nodes with non-zero dynamic capacity left.

We start with the second case and consider the iterationd# no
vq, ¢ > z. In this case, the algorithm guarantees that eithers
fully satisfied (in which case;, — ¢, as well as the right-hand side
of (3) increases by exactly,) or the dynamic capacity of every
nodev € V is 0 after the iteration. In this case, both sides of (3)
sum up to exacthp ., co.

Now, assume that in the iteration of nodg the first case ap-
plies, i.e.,v.’s requirement-, can be fully satisfied using the <
c: relaysvyy,...,vLp). At the beginning of the iteration, the
residual requirement, is r.. For each of thé < c. relays,7, is
reduced by at most; (;), wherec, ;) denotes the relay’s dynamic
capacity before the allocation of. Asr, reached), nodevy )
must have had a dynamic capacity of at least

4)

for each nodey, with ¢ > z before this iteration of the loop. The
firstinequality is due to the ordering of nodes in the lisiccording
to their dynamic capacity. The second inequality holds bsea
multicast trees are constructed in order of the nodes’ “slness
ratio” r; /c; inLines 4 and 5. Thatis, if > z,thenr./c. > rq/cq.
Consider the situation at the beginning of the next iteratichen
v,4+1 IS considered. After satisfying the requirementsvof the
dynamic capacities of(1),...,vr—1) are set td) and the dy-
namic capacityy, ;) decreases. Consequently, nadgy, in v.'s
iteration becomes the new nodeg ) in v.,1’s iteration. Also,
all nodeswy,(;) for j > b had a higher dynamic capacity,;
thané¢;, ;). Hence, due to Inequality (4), it holds that for each of
these nodes;y > r./c. > r4/cq for ¢ > z. In the new iter-
ation (after the reordering df), it therefore holds that each node

ey > rafcz > 1q/cq,

VL(2); VL(3), - - - has a dynamic capacity of at least/c,, which
implies thatzgq:;l ¢r(j) = rq. This proves that as long as there

are enough non-empty relay nodes, the entire requirement isf
satisfied and allocated to at megtrelays. As the total decrease of
dynamic capacity is,, both sides of (3) increase equally. Finally,
in Lines 29-31, only the lemma’s left-hand side may increasgl

As pointed out earlier, the initial solution obtained by tigo-
rithm may be infeasible as some nodes may be assigned aroawerfl
unit to store one additional indirection unit. The follogitemma

states that the transformation into a feasible solutiors chm sig-
nificantly reduce the overall upload bandwidth.

LEMMA 5.6. LetI;, R;, andI;, R, denote the corresponding
sets before and after Lines 33-40 of the algorithm, respelsti It
holds that for each; € V,

1
— | - |Ri U L4,
Cmin"’l) | |

PROOF InLines 33-40, Algorithm 1 considers all nodgswith
specified overflow-unit, i.e., nodes that are sending thafa dia
¢; + 1 different relays. For each such node, if there exists any
upload unit in roleg or Q, the indirection unit/; [c; + 1] is moved
to this unit. In this casd R; UT;| = |R;UI;|. If no such units exist,
an upload unit in roléR is overwritten withU; [¢; + 1]. Because in
this case there are at leasti, specified units ir; and|E;| = 0,
|R; U I;] is reduced by at most a factor of (cmin + 1).

Finally, if v; contains only unitsZ, the algorithm replaces the
indirection unit withsmallest fan-oufLines 36, 39). This replace-
ment leaves;’s multicast tree with at most; relays, and the num-
ber of satisfied requests of is reduced by at most a fraction of
1/(CL + 1) S 1/(Cmin + 1) I:‘

|R; U T > (1—

The following lemma describes the ratio between indirextinits
and upload units. Essentially, the theorem follows digefttim the
construction of the algorithm.

LEMMA 5.7. Throughout the algorithm, it holds that

1
IL| < = R;|.
ZE:V Ll = % ZE:V | 1]

PrROOF We show that every indirection urfitcan be mapped to
adistinctset of at leasK referenced upload units in rol, i.e., the
fan-out of every indirection unit is at lea&t. The only place in the
algorithm where a new indirection urﬁf“) [k1, k2] is established
is in Line 9 of theallocate (v, vr(+), S) subroutine. Before this,
however, all upload units, ¢y [Acpy+1], - .., Uy [AcLy+5]]
are set tak; (Line 7). As Line 6 impliess > X, the initial fan-out
of ZFM[ky, ks is at leastX.

We now show that the fan-out of every existing indirectiofit un
remains at leask. The only places where upload uni& could
potentially be overwritten are Lines 7 and 9 of thléocate sub-
routine, and in Line 5 of theeassign subroutine. In Line 7, over-
writing is impossible as for eaah € V the dynamic capacity; is
reduced whenever upload unifs[k] are set to rol&R or £. Hence,
there is ndU;[k] = Rfor k > cpy — éry = Acrq).

Next, consider Line 9 of thellocate subroutine. Here, an up-
load unitR; at v; to which Z/ k1, k2] was pointing may be re-
placed by a new indirection uril;. In this caseyeassign (v;, next)
is invoked, which updates the fan-out to the new valjig:; , k2 —

1] in Line 2. If the reduced fan-out, — k1 is still at leastX, the
claim continues to hold and nothing happens. If the reduaeebfit
drops belowX, reassignment occurs (Lines 3-6): The indirection
unitZ7 [k1, k2 — 1] is replaced by a direct upload urit; (see Fig-
ure 2). That is, an existing indirection unit is removed asnsas
its fan-out drops belowk . O

Algorithm 1 may assign the rol& to certain upload units, while
still decreasing these nodes’ dynamic capacity. Unlessethaits
are subsequently overwritten with rol&or Z, they are wasted.
The following two lemmas state that the algorithm does nsigas
too many empty slots to any node.

LEMMA 5.8. At Line 28 of the algorithm, it holds for every
nodev; € V that|E;| > 0= |Qs| = 0.



PROOF An upload unitU;[k] can be set t& in Line 14 of the
allocate(v;,v;, S) subroutine, in Line 5 of theeassign (v;, next)
subroutine, or in Line 23 of the main algorithm. We show timat i
any case, an upload unit is setdmnly if |Q;| = 0.

First consider Line 5 ofeassign(v;, next). By definition of
nextAloc(v; ), a newly allocated; is always written in any avail-
able upload unit in role® or & first. Theif -statement in Line 3 of
the reassign (v;, next) subroutine implies that Line 5 is only exe-
cuted if the fan-out of an indirection unit dropped beldiv That
is, a newly allocated role must have replaced &h[k] = R}, unit
for somevy,, from which it follows that all upload units at are in
role eitherZ or R. From this, we derive thdt);| = 0.

Now, consider Lines 13-15 of thellocate(v;, vs, S) subrou-
tine. We distinguish three cases, depending on whetherehe s
lected relay node; is one of the earlier relay nodes, = vy (),

t € {a,...,b—2}, the second to last relay node,= vy _1), Or
the last oney; = vy, respectively.

In the first case, it holds thef = ¢; and hence, after the sub-
routine, all upload units of; are specified and; := 0. In other
words,|I; U R; U E;| = ¢; and consequently@;| = 0. As for the
second to last relay node = vy ,—1), we distinguish two cases.
If this node is allocated in Line 19, then the entire node isdil
up and hence, with the same argument as abéyg,= 0. If this
node is allocated in Line 22, all its upload units are alsdcatrole
other thanQ in subsequent Line 23. Hendé);| = 0 in this case,
too. Finally, consider the last relay nodg ). By the definition
of Lines 20 and 25, at least upload units are allocated. Hence,
if all these upload units can indeed be set to Blg thens > X
and therefore, Lines 13-15 eflocate(v;, v;, S) are not executed,
i.e.,|E;| = 0. If fewer thanX upload units aby, ;) can be set to
R;, then, because theext Aloc(v;) subroutine overwrite® roles
in decreasing order, it must also hold th@;| = 0. The reason
is that at least one intended upload unit for Re role is already
occupied with arf role. In either case, the lemma holds. O

LEMMA 5.9. AtLine 28 of the algorithm, it holds for every €
Vthat|Ei| < X.

PrROOF The proof is by induction. At the outset of the algo-
rithm, it holds thatU;[1,¢;] = Q. As pointed out, there are three
places before Line 28 whefgmay be assigned to upload units.

Consider Line 14 of thellocate (v, v ), S) subroutine. As-
sume that after assigning rofein Lines 13-15, there wer® >
X upload units with role at v;. As theelsebranch of theif -
statement has been executed, we know that X. Becauses
expresses how many of tieupload units are not currently used as
indirection units (Line 4), the number of newly assigretbles in
Line 14 is upper bounded by < X. This, implies that there must
have beerY” — s > 0 upload units in rol& alreadybeforethe sub-
routine call. Because @f;| > 0, it follows from Lemma 5.8 that
|Qi| = 0 and hence|R;| + |I;| + | Ei| > ¢;. In Line 14, neither
units in roleZ nor R are set tc€, i.e., | E;| does not increase and
the induction hypothesis continues to hold.

Next, consider Line 5 of theeassign (v;, next) subroutine. As
already shown in the proof of Lemma 5.8, when Line 5 is exatute
an upload unit newly set to rol€ must have replaced d;[k] =
R, unit for somewy, and hence, all upload units af are in role
eitherZ or R. Furthermore, the maximum number of upload units
set to roleR;, in Line 5 is less thanX by definition, because the
if -statement in Line 3 evaluates to true only if there are leas X
remaining reference®;, units atv; (see Figure 2). That is, if the
claim holds before a reassignment, it continues to holdhafteds.

|

THEOREM 5.10. Algorithm 1 computes a feasible solution to
the MUBP problem and achieves an approximation ratjavhere

a21_4\/cmin+ _4+2\/Cm1n+2—321_ 2 )
Cmin + 1 Cmin Y/ Cmin

PrRoOOF We denote by}, E}, and R} the corresponding sets
after Line 28, byl’, £, andR; after Line 32, and by;, E;, andR;
at the end of the algorithm. We start the proof by placing aelow
bound onA := 37, |R; U I]] in terms of To pr. By applying
the relationship between the total number of upload unitslgsR
andZ, this bound can be transformed into a bound on the number
of satisfied requests. Finally, we compute the optimal vidueX .

Partition the set of nodeg into two setsV. andV> containing
the nodes with requirements < X andr; > X, respectively.
Lemma 5.5 implies that after constructing the multicase wéall
nodes inV> (Line 28), the total number of allocated specified up-
load units isy-, o, [E7 U R/ UL'| > (;2245) - THpr.

In Lines 29-31, each node € V. may replace up te; upload
units in roles€ or Q to R; on its own machine, thereby satisfying
its own requests. If there are fewer thanunits in roles€ U Q
available, however, the remainderafs requirement is not satis-
fied. Let7; < r; denote the number of requests of a node V<
that arenot satisfied. Using this notation, we can exprdsas

A= STIEIURIUI =SB Y - Y

v, €V v, €V v, €V v; €V
This can be rewritten a8 = A> + A<, where
As = 3 (E/UR/UI| - |EV)
v; €V>
A = Z (IEY UR! UI]| — |E!| +ri — 7).
v, EV<

In the sequel, we bound and|E;’|. First, consider a node € V.
We know from Lemma 5.9 thd#;’| < X. Moreover, Lemma 5.8
shows thatE}'| is larger thard only if |Q{ | = 0 and consequently,
only if |Ry U I U E}'| = ¢;. Hence, for every; € V, |E;’| can
be expressed 4&;'| < (Xc—;l) -|R{ U T U E{|, and therefore

X;l) -

While this bound is sufficiently good for all nodes € V>, we
now derive a stronger bound fdr. .

Let AL = |E/ UR/ UI/| —|E!'| + 7 — 7. We boundA-
by considering eacA’ individually; distinguishing the following
three cases:

1) |E{| > 0: It holds for each node; € V< thatif |E]| > 0,
thens; = 0. This is true because {E;| > 0 andw; > 0, v;
would have set these empty upload unitsg, thereby reducing
74 in Lines 29-31. HenceA: = |EY U R/ UI/| — |E!| + 4,
and when plugging in the bound foE;’|, AL > (1 — Xc—:l)|E§’ U
R;l @] L.”| + 7i.

2) |[E;| = 0 and |[E{| > 0: BecausgE;'| > 0 implies|Q;| =
0, it holds that®; + | E;'| = r; for every nodey; € V< with |E;j| =
0. Plugging in this equation yields’. = |E} U R} UI/| —r; +
7 +r; — 7 = ¢;. Because; is at mostX — 1 by definition of V.,
and due tdE;’ U R U I/'| = ¢;, it holds that

X-1

i

- > IR/ UI UE]|.

v, €V>

As > (1—

&:QZ@_ )qwumum+m.

3) |E{| = 0and |[E!| = 0: Inthis caseAL = |EYUR)UI! |+
r; — ;. Because; is by definition at mosfX — 1, it follows that
AL > (1 - —chl) (IEY UR/ UI)| + ).



Each nodev; € V< is covered by exactly one of the cases and
we therefore obtain

X-1

C;

Ac > (1—

> (IR o U B!+ )

v; EVe

In total, this yields

X -1
A > (1— )(Z|E”UR"UI”|+ Zn)

Cmin v EV v EVe
X-1 Cmin *

> (1- ( T )

- < Cmin ) Cmin + 1 orr + Z "

v; EVe

X -1 Cmin

> 1-— T .

- < Cmin ) <Cmin + 1) orPT

The second inequality is due to Lemma 5.5 and the last inggual
follows from the observation that the optimal solution cainbe
better than satisfyingll requirements of nodes ii. in addition
to T4 pr, and thereford s pr + > r; > Topr. Plugging
in the result of Lemma 5.6 yields
Cmin—1
)(Cmin+1

s el

v, EV
It follows by Lemma 5.7 thad_ ., || < % ZU cv |Ril @

consequentlyzu ey [Ril >3- ZU cv |Ri U T for g = XL
1 — %= Using this bound, we obtain

1
> IR > (1w - .
2 iz (1 X+1) (1 )TOPT

Since by Lemma 5.2, all upload units in roke are referenced, it
follows thatTarc > aTopr for a = (lxig ) (1A ) (g2iagy).
The valueX that maximizes this approximation ratio is determined
by g—g‘( 2 0, which yieldsX = +/cmin + 2 — 1, the value used in
the algorithm. The proof is concluded by plugging this vahte
the expression fou. ([l

v, EV<

X-1

Cmin

|R:; U L;| > (1— >TOPT~

Cmin

X-1

Cmin

Cmin — 1
Cmin + 1

Notice that the exact bound on the approximation ratis sig-
nificantly higher thanl — 2/,/cmin for small values ofwin. For
cmin = b, for instance,l — 2//cmin &~ 0.1, whereas the exact
bound is approximatel§.36.

6. THE IMPACT OF NETWORK CODING

The original problem statement of the MUBP problem assumes
that all information destined for a specific receiver is genthis
receiver on a specific single path. Alternatively, there fteaently
been a growing (theoretical and practical) interest in netveod-
ing techniques that allow mixing of information at interneate
nodes [2]. In our problem setting, it is conceivable that adse
splitsits data, sends each piece to a different relay node in its mul
ticast tree, and has the receiver combine these pieces duerec
the original data packet. This section briefly points oubtkécal
properties and practical limitations of this simpletwork coding

The MUBP problem stated in Section 3 can be formulated as the

following integer linear program (ILP). The variabig is 1 if v;
directly sends a unit of data tg,. Similarly, the binary variable
fi;r indicates whether node sends data to node, via relayv;.
Finally, s;. is 1 if v; sends exactly one unit of data to its receiver
vk € R(4).

max Z Z Sik
v; EV v €R(7)
dix + Z fijk > Sik, Yv; € Vv, € R(1)
v; EV
Z dir + Z Z fiiw < ¢, Vo eV
v €V v; €V v €V
fz‘jk —d < 0, V'Ui,l)j,l)k eV
dik, fije,sik € {0,1}, Yvi,vj, v €V

The first constraint describes that a successful uploadresgthe
entire data unit to be sent from to v, € R(7). The second condi-
tion states that the total bandwidth usedupyn all multicast trees
must not exceed;. The third constraint captures the fact that
can serve as arelay for only if v; sends data to;.

If all integrality constraints are relaxed®< d;x, fijr, Sit < 1,
we obtain dractional MUBP, whose optimum can be computed in
polynomial time by solving the resulting linear program.véwer,
this fractional problem does not correspondvtdBP with network
coding because whereas the fractional problem allows data to be
uploaded fractionally, in the MUBP problem, an upload candie
sidered successful only if it is received in its entirety;, = 1.
Hence, in the MUBP with network coding, only the integratin-
straints ofd;, and f;;. are relaxed. Unlike the fractional problem,
MUBP with network coding may be NP-hard.

Splitting and reuniting “flows” in an arbitrarily fine-gragéd man-
ner allows for solutions in which the total available upl@agpacity
C is highly utilized. Recall that the total number of requestg.

THEOREM 6.1. Lety := C/R be the ratio describing the to-
tal available spare capacity in the network. There is an atpon
ALG such that, ify > C;‘:)'" thenTarg = R. Otherwise,
Tare > (1 —1/cmin)C — 1.

PROOF The bound can be achieved if each node serves as a
relay node for every other node. SpecificalyL G consider the
nodesv € V in order of non-decreasing requirement< ... <
r». When nodey; is considered, seng /C' of data fromw; to each
nodev; € V. (Note that a node also serves as its own relay.) For
each receivep,, € R(i), every such relay; allocates an upload
bandwidth ofc; /C. Because node; needs to send updatesitp
many receiversy; allocates a total upload bandwidth @fr;)/C
for servingv;.

First, consider the casg > % The total bandwidthb;
allocated by a node; is at most

=S ey

v; EV v; EV

min

CiTj

=1+ < ¢,
X

that is, the resulting upload scheme is feasible. Also,egjlests
are successfully uploaded becadsg. ., ZU cv (¢ri)/C = R.

In casey < c“% the resulting schedule may be infeasible
as nodes become overloaded. At each nogdeone upload unit

is used for sending;’s data to its relay nodes, and the remaining
¢; — 1 > emin — 1 Units are used for sending other nodes’ data to
their receivers. Hence, the total number of requests stisdiat
least(1l — 1/¢min)C — 1. The —1 comes from the fact that one
request may only be partially satisfied (the request thdtdsated

when nodes become overloaded). O

As the optimal solutio o pr is clearly bounded from above by
R andC, the algorithm discussed in the proof improves the approx-
imation ratio of Algorithm 1 for the network coding problem.

COROLLARY 6.2. The algorithm described in the proof of The-
orem 6.1 achieves an approximation ratio bf- O(1/cmin) for
MUBP with network coding
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