
Maximizing Total Upload in Latency-Sensitive P2P
Applications

John R. Douceur
Microsoft Research

Redmond WA 98052
johndo@microsoft.com

Jacob R. Lorch
Microsoft Research

Redmond WA 98052
lorch@microsoft.com

Thomas Moscibroda
Microsoft Research

Redmond WA 98052
moscitho@microsoft.com

ABSTRACT
Motivated by an application in distributed gaming, we defineand
study thelatency-constrained total upload maximization problem.
In this problem, a peer-to-peer overlay network is modeled as a
complete graph and each nodevi has an upload bandwidth capac-
ity ci and a set of receiversR(i). Each sender-receiver pair(vi, vj),
wherevj ∈ R(i), is arequestthat should be satisfied, i.e.,vi should
send a data packet to eachvj ∈ R(i). The goal is to find a set of at
mostn multicast-treesTi of depth at most2, such that each node
can be part of multiple trees, all capacity constraints are met, and
the number of satisfied requests is maximized. In this paper,we
prove that the problem is NP-complete, and we present an algo-
rithm with approximation ratio1 − 2/

√
cmin, wherecmin is the

minimum upload capacity. Finally, we also study the impact of
network codingon the quality and approximability of the solution.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems—Routing and layout
C.2.2 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications

General Terms
Algorithms, Theory

Keywords
Peer-to-peer gaming, multicast, upload maximization

1. INTRODUCTION
Real-timedistributed gamingis a large and fast-growing busi-

ness and massively multi-player games in which physically sepa-
rated players participate and play over the Internet are becoming
increasingly popular. The key requirement in devising a network
infrastructure for such games is to ensure that every player, at any
time receives real-time updates from every other player that is cur-
rently in itsfocus, say, on its computer screen. While satisfying this
requirement is challenging even in small-scale distributed gaming
applications based on client/server architectures [8], itis even more
so when considering peer-to-peer architectures.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’07,June 9–11, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-667-7/07/0006 ...$5.00.

The motivation for studying peer-to-peer-based solutionsfor dis-
tributed gaming applications is scalability. The approachtaken by
platforms such as PS3 or XBOX Live is to use the player with high-
est bandwidth as a centralized server to which peers permanently
send their data, and which then forwards this data to every inter-
ested receiver. The problem with this approach is that the upload
bandwidth used at the server may grow in the order ofO(n2). By
studying a peer-to-peer-based approach, the hope is to alleviate this
scalability problem by leveraging the available upload bandwidth
of all participating peers, not just the centralized server. Utilization
of thetotal upload bandwidthis the crucial bottleneck in distributed
peer-to-peer games because in residential areas, broadband access
is typically asymmetric with high download rates, but only small
upload rates. Thus, the higher the upload bandwidth utilization, the
more accurately the game play can be rendered.

In the absence of widespread use of IP-layer multicast [14],a
frequently proposed remedy against upload bandwidth limitations
has been application-layer multicast. Unfortunately, existing mul-
ticast schemes (used for streaming, for example) do not meetthe
very tight latency constraintsfound in real-time distributed gaming
applications [7, 24, 25]. In particular, with a maximum tolerable
delay of 100ms between any two players, the number of hops on
the path between sender and receiver can be no larger than 2 or
3. Hence, the log-scale latencies typically found in structured P2P
overlays [27, 28] are not sufficient. In our study, we restrict our
attention to multicast trees of depth 2, as these trees have the ad-
vantage of virtually overhead-free routing.

Besides tight latency constraints and the necessity for high out-
bound bandwidth utilization, two more aspects characterize our
problem setting. First, with a targeted size of up to 1000 players
per game [1], distributed games are small in scale in comparison
to other distributed applications. For this reason, our system ar-
chitecture uses a central server whose purpose is to computeand
disseminate information about the multicast structure to all peers
in the game. This does not thwart scalability, because the actual
sending of data to receivers is performed by the peers and hence,
the server’s upload requirement grows only asO(n). Secondly, in
contrast to many other problem settings in networking and peer-
to-peer computing, efficientworst-case behavioris a necessity in
distributed gaming applications. Partly, this is because stalling a
game in execution is unacceptable and partly because worst-case
scenarios are actually quite likely to occur in practice. Asan exam-
ple, a person holding the flag in a battlefield may simultaneously
be in the focus of a large number of other players, and thus needs
to send its updates to all of them.

In this paper, we study the problem of maximizing the cumu-
lative upload bandwidth in latency-constrained peer-to-peer net-
works. In particular, we formally define and study the latency-

constrainedmaximum upload bandwidth problem(MUBP), which
seeks to maximize the total number of satisfiedrequests. A request
is a pair of nodesvi andvj , where the receivervj requires update
information from sendervi. The goal is to find a set of multicast
trees (one rooted at every node) of depth at most2 that maximizes
the total number of satisfied requests. Every node can participate in
multiple trees, but its total upload bandwidth in all trees must not
exceed its upload capacity.

Clearly, the total number of satisfied requests is at mostC, where
C denotes the sum of upload bandwidths of all nodes. In certain
settings where bandwidths and requirements are unevenly distrib-
uted, however, only a small portion of all requests can be satisfied
even though the cumulative upload bandwidthC itself would be
sufficient. Moreover, we prove that MUBP is NP-hard and as our
main contribution, we give a polynomial-time algorithm that ap-
proximates the problem to within a factor of1 − 2/

√
cmin, where

cmin is the minimum upload capacity of any peer. We then show
how, theoretically,network codingcan be used to improve both the
quality of the achievable solution as well as its approximation.

Finally, notice that while our immediate motivation for this work
stems from distributed gaming, the problem of maximizing total
outbound bandwidth is of interest beyond this specific application.
The success of BitTorrent, for instance, is based on the factthat
upload capacity is shared among numerous peers.

The remainder of the paper is organized as follows. After dis-
cussing related work in Section 2, Section 3 formalizes the max-
imum outbound bandwidth problem and defines the terminology
used throughout the paper. Section 4 gives some intuition about the
algorithmic challenges of the problem. The paper’s main techni-
cal contribution, the worst-case efficient approximation algorithm,
is presented in Section 5. Section 6 studies the impact of network
coding, before the paper is concluded in Section 7.

2. RELATED WORK
In the systems and networking community, there has recently

been a number of works addressing problems in the context of dis-
tributed gaming. Apparently the first peer-to-peer, serverless multi-
player game is MiMaze, which uses IP multicast [18]. A complete
peer-to-peer based architecture for massively multi-player games
was proposed in [17]. Also recently, the works of [9, 10] pro-
pose infrastructure components for supporting online multi-player
games. In view of the limited deployment of IP layer multicast,
numerous application layer multicast schemes have been proposed,
e.g. [5, 13, 20]. Being typically tailored for applicationssuch as
streaming, existing multicast schemes do not address the particu-
larly tight latency-constraints faced in distributed gaming applica-
tions. Multicast support for distributed multi-player gaming appli-
cations was studied in [22].

All of the above works provide heuristic solutions to the problem
at hand and are concerned primarily with architectural problems.
In contrast, there exists little applicablealgorithmicwork. The rich
literature on(multi-commodity) network flowsincludes studies with
latency bounds. In this setting, anL-length boundeds − t-flow is
specified by a collection ofs − t-pathsP = (P1, . . . , Pk) and
corresponding flow valuesf1, . . . , fk, in which no pathPi ∈ P
is longer thanL. Baier [3] gives an extensive survey of what is
known for length-bounded flows, and more recent results havebeen
obtained for instance in [4]. Unfortunately, (multicommodity) net-
work flows do not adequately modelmulticast problems, because
the flow conservation condition does not apply to multicast prob-
lems: In multicast applications, intermediate relay nodesmay send
received data to several receivers, thus reducing the required band-
width at the original sender.

In graphs, the problem of constructing an efficient multicast tree
is often modeled as finding an appropriate Steiner tree [26].Some-
what closer to our needs are Steiner trees with bounded depththat
have also been studied extensively in the literature, e.g. [21, 23].
Constructing an efficient multicast tree under various constraints
with regard to latency has been readily studied, e.g. [6, 12,19, 29].
None of these works, however, is directly applicable in our setting
since instead of a single tree, we need to constructn partially over-
lapping multicast trees, one rooted at each node.

3. PROBLEM STATEMENT
The peer-to-peer network consists of a setV = {v1, . . . , vn}, of

n peers that are mutually connected. Each nodevi ∈ V has a lim-
ited upload bandwidth capacityci. For each nodevi, the (possibly
empty) receiver setR(i) contains the set of nodes that are interested
in receiving updates fromvi. A sendervi sends thesame datato
every receiver inR(i), but the data sent by two different senders
is independent of each other. Each pair(vi, vj) with vj ∈ R(i) is
called arequestthat should be satisfied byvi. A request is satisfied
if vi sends one unit of data tovj either directly or via at most one
intermediate relay node.1 The requirementri = |R(i)| of node
vi is the size of its receiver set. Notice that requirementsri and
capacitiesci are measured in equal units, so-calledupload-units
measured in bit/s. Hence, when not using any relay nodes, an up-
load capacity ofci is sufficient to satisfy exactlyci requests.

Let cmin := minvi∈V ci denote the minimum upload capacity
of any node in the system. In distributed game like Quake II, for
instance, the minimum maintainable upload capacity of a node with
128kb/s upload links would be roughlycmin ≈ 5 [11]. The sum
of all requirements and unit upload capacities is denoted byR :=P

vi∈V ri andC :=
P

vi∈V ci, respectively.
In order to account for the rigid latency-constraints, we consider

only multicast trees of depth2. In particular, we say that a request
(vi, vj) is satisfiedif either vi uploads its data directly tovj , or if
there exists a path via at most one relay nodevk, on whichvi sends
to vj . Nodevi satisfiesx ≤ |R(i)| of its requests if it can thus send
data tox of its receivers inR(i). Each node may participate in
multiple multicast trees. Unless its receiver setR(i) is empty, it is
the root node in one multicast tree. Additionally, it may serve as a
relay node in possibly several other trees, and in some trees, it may
be a leaf receiving data. In total, however, the number of data units
uploaded by nodevi must not exceedci. Each sending operation
(either as a sender to a relay node or as a relay node to a receiver)
costs one unit of upload bandwidth. That is, a relay nodevk can
forward data fromvi to multiple receiversvj ∈ R(i) as long as its
capacity constraint is not violated.

For i 6= j, let Ij
i ∈ {0, 1} denote whether nodevi sends its data

to nodevj . If Ij
i = 1, one upload unit atvi is used to transmit data

to vj . If vj ∈ R(i), this means that the request(vi, vj) is satisfied
and additionally, each such nodevj may serve as a relay node for
vi. Further, letUij ∈ N be the number of upload units that such
a nodevj uses in its role to relay data for nodevi. That is,Uij

is the number of receivers inR(i) to which vj relays data forvi.
Notice thatUij > 0 only if Ij

i = 1 and conversely,Ij
i = 0 implies

thatUij = 0. We can formalize theLatency-Constrained Upload
Bandwidth Maximization Problem(MUBP) as follows.

DEFINITION 3.1 (MUBP). Consider a set of nodesV where
each nodevi ∈ V has a set of receiversR(i) and upload capacity
ci. Find at most|V | multicast trees (one rooted at each node) of

1Our results can be generalized to the scenario in which the update
packets of different nodes have different sizes.

depth at most2, such that
P

vj∈V Ij
i +
P

vj∈V Uji ≤ ci for every

nodevi ∈ V , and such that the number of satisfied requests(vi, vj)
with vj ∈ R(i) is maximized. A request(vi, vj) is satisfied ifvj is
contained invi’s multicast tree.

Let TOPT and TALG denote the number of requests satisfied
in an optimal solution and by some algorithmALG, respectively.
Algorithm ALG achieves anapproximation ratioof α if for every
instance of the problem, it holds thatTALG ≥ α · TOPT .

4. COMPLEXITY AND INTUITION
MUBP can be shown to be NP-complete by a simple reduction

to the3-partition problem.

THEOREM 4.1. The decision version of the latency-constrained
upload bandwidth maximization problem isNP -complete.

PROOF. The problem is inNP since given a solution, its to-
tal upload volume can be easily verified. We show NP-hardness
by reducing the well-known3-partition problemto it [16]. In this
problem we are given a setA of 3m itemsA = {1, . . . , 3m} with
associated sizesa1, . . . , a3m ∈ N, with B/4 < ai < B/2, for
eachi, and

P3m

i=1 ai = mB, and we must decide whetherA can be
partitioned intom disjoint setsI1, . . . Im such that

P
i∈Ij

ai = B,
for j = 1, . . . , m. Note that due to the bounds for the item sizes
ai, all setsIj must have cardinality3.

Given an instance of the3-partition problem, construct an in-
stance of the upload maximization problem withB + 4m nodes
v1, . . . , vB+4m as follows. For1 ≤ j ≤ B, let cj = 0 and
R(j) = ∅; for B + 1 ≤ j ≤ B + 3m, let cj = aj−B and
R(j) = ∅; and finally, forB + 3m + 1 ≤ j ≤ B + 4m, let
cj = 3 andR(j) = {v1, . . . , vB}. That is, for each itemai, there
is a nodevB+i with upload capacityai. Additionally, there arem
nodesv3m+1, . . . v4m, each having upload capacity3 and require-
mentB. Because each of these nodes can use at most3 relay nodes,
there is a solution with total upload bandwidthmB if and only if
the setA of items has a3-partition.

The proof of Theorem 4.1 does not convey the full picture of the
problem’s complexity, as it only captures the difficulty of selecting
a proper subset of relay nodes. Another substantial algorithmic
challenge is that every upload unit may be used in two ways: to
upload to a receiver (either as a relay or directly) or, as theroot of
the tree to send to a relay. The main challenge is thus to decide how
much of its upload bandwidth each node should allocate for serving
as a relay or send directly, and how much it should dedicate toits
own multicast tree.

As an example, consider a network withn + 2 nodesv1, . . . , vn

and two special nodesw1 andw2. Nodeswa andwb have require-
mentsra = rb = n − √

n (with receiver set{v√n+1, . . . , vn}).
The capacities of these two special nodes isca := 1 andcb := n,
respectively. The nodesv1, . . . , v√n have capacityc1, . . . , c√n :=√

n. Finally, all nodesc1, . . . , cn have an empty receiver set.
In this example, it is possible to satisfy all requests, i.e., TOPT =

R = 2(n − √
n). In this optimal solution,wb sends its data via

v1, . . . , v√n even though it would be capable of serving its own
requirements. This is in order to to free its upload resources as
much as possible forwa. On the other hand, every algorithm in
which peers greedily dedicate their upload bandwidth to their own
multicast tree (and allocate only the spare capacity to other trees)
achieves an upload of at mostn, aswa can satisfy at most

√
n of

its requests using relay nodes.
The example shows that no algorithm that allows nodes to greed-

ily serve their own requests before relaying for other nodescan

R2

R2

R2

R3

ε

I2
1(1,3)

R2

R3

R3

R3

R3

R3

I3
2(2,6)

R3

R3

I3
4(1,4)

R3

R3

R3

R4

R4

R3

r1=0

r2=4

r4=2

r3=12

c2=7 c3=4 c4=6c1=5

Figure 1: The total upload achieved by these four nodes is17. The
shaded upload unitR3 at v1 is not referenced and hence wasted. The
total upload could be increased e.g. by settingU2[1] = R3, U1[4] =

R2, and adjusting the indirection unit accordingly.

achieve an approximation ratio better than1/2 + ǫ. Furthermore,
since every upload unit may be used in two different roles, intu-
itively, an approximation ratio of1/2 seems “natural”. In the fol-
lowing section, we show how to surpass this bound.

5. WORST-CASE EFFICIENT ALGORITHM
In this section, we present the main technical contributionof

this paper: a worst-case efficient approximation algorithmfor the
MUBP problem. The algorithm is presented in Algorithm 1 and
consists of several subroutines. On a high level, the algorithm pro-
ceeds by greedily assigning differentroles to upload units of dif-
ferent peers. The algorithm may subsequently change the role as-
signed to an upload unit, but at any time, each unit is in exactly one
role. The final role assignment determines the multicast trees.

Let thekth upload unit of a playervi ∈ V be written asUi[k].
Ui[k1, k2] := (Ui[k1], Ui[k1 + 1], . . . , Ui[k2]) denotes a contigu-
ous range of upload units atvi. At any time during the course of the
algorithm, each upload unit can be assigned to one of four different
roles.

• Initially, all upload units areunspecified, Ui[k] = Q. Once a
unit is assigned a role other thanQ, it can never become un-
specified again.

• An upload unitUi[k] = Rj at vi is used for sending data to
an intended receivervℓ ∈ R(j) (see Figure 1). Ifi 6= j, this
means thatvi is serving as a relay invj ’s multicast tree, and if
i = j, thenvi is uploading directly to one of its receivers.

• An indirection unitUi[k] = Ij
i [k1, k2] means that upload unit

Ui[k] atvi is used for sending data tovj , which then sends this
data tok2 − k1 + 1 receiversvℓ ∈ R(i) using its upload units
k1, . . . , k2, i.e.,Uj [k] = Ri for all k1 ≤ k ≤ k2. Thefan-out
S = k2 − k1 + 1 of an indirection unitUi[k] = Ij

i [k1, k2] is
the number of upload units it references.

• Finally, it will be convenient to let the algorithm assign the
emptyrole Ui[k] = E to certain upload units. If at the end
of the algorithm, an upload unit is still in roleE , it is not used
in any multicast tree.

For notational convenience, we write onlyIj
i if the exact upload

units referenced are not of interest, andI or R to indicate that a
specific upload unit is used in this role. During the course ofthe
algorithm, every peer has adynamic capacitŷci, which (roughly)
captures the number of currently free upload units invi. Similarly,
the notationr̂i describes a node’sresidual requirement, i.e., how
many of its requests have not yet been allocated. Initially,ĉi = ci

and r̂i = ri. While ĉi and r̂i will be decreased during the course
of the algorithm,ci and ri remain unchanged. For a nodevi ∈
V , Qi denotes the set of upload units assigned to roleQ, Qi =
{Ui[k]|Ui[k] = Q}. SetsEi, Ri, andIi are defined analogously
for the other roles.

Finally, it is important to observe the following. Our algorithm
does not specify to which receivervℓ ∈ R(j) a specific unitRj

is used for uploading. For each relay node, the algorithm merely
stateshow manyunits are designated for a certain multicast tree.
Notice that this is sufficient because it is irrelevant whichrelay node
vj of vi ultimately sends to which receiver inR(i). For an example,
let R(i) = {w1, . . . , w10} and assume that the algorithm allocates
upload units as follows:vi uses 2 upload units to send directly to its
receivers. Additionally, it has 2 relay nodes (both of whichare not
in R(i)), each relayingvi’s data to 4 receivers inR(i). Converting
this assignment into a valid multicast tree is trivial. For instance,
vi directly uploads tow1 andw2, whereas its two relay nodes send
to w3, . . . , w6 andw7, . . . , w10, respectively. Because the actual
assignment of relays to receivers in each multicast tree is thus ir-
relevant (as long as it is consistent), our algorithm merelyspecifies
how many upload units each node allocates to each multicast tree.

5.1 Algorithm
The main algorithmic difficulty is to determine the amount of

upload bandwidth each node should allocate to each multicast tree.
The algorithm addresses this challenge by first accommodating the
nodes that have high requirement, but only little capacity (and hence
can use only few relay nodes). Specifically, it proceeds in a greedy
fashion and allocates the bandwidth requirements (i.e., forms mul-
ticast trees) of nodesvi ∈ V in non-increasing order of the ratio
ri/ci, which we call the “clumsiness ratio”. An exception is made
for nodes with small requirement,ri ≤ X, for X =

√
cmin + 2−1

as specified in the algorithm. These nodes are dealt with in a second
phase (Lines 29-31).

Consider the iteration in which some nodevi’s multicast tree is
built (starting from Line 5). Assume that there arem ≤ n nodes
with positivedynamic capacitŷci > 0. The algorithm maintains
a list of nodesvL(1), . . . , vL(m) in non-decreasing order of̂ci. It
then selects at mostci +1 consecutive nodes, vL(a), . . . , vL(b) that
serve as relay nodes invi’s multicast tree. In order to determine
the indexesa andb, the algorithm selects the smallest indexa such
that the combined dynamic capacity of theci+1 consecutive nodes,
vL(a), . . . , vL(b), b ≤ a + ci, suffices for satisfying allri requests
of vi. In casea is 1—i.e., theci + 1 nodes with smallest non-
zero dynamic capacity can satisfy all ofvi’s requirement—b is the
minimal index so thatvL(a), . . . , vL(b) has enough combined dy-
namic capacity to serve all ofvi’s requirement (Lines 9-14 of the
algorithm). In case no window of consecutive relays suffices, the
algorithm forms a multicast tree using theci + 1 relay nodes with
highest dynamic capacity.

Notice that this allocation initially leads to an infeasible solution
in which some nodesvi useci + 1 (instead of at mostci) relay
nodes. This is infeasible because a node with capacityci can send
its data to at mostci different relay nodes. In the algorithm, how-
ever, these nodes are temporarily assigned an indirection unit Ii in
a so-called “overflow unit”Ui[ci + 1]. The algorithm’s final phase
(Lines 33-40) turns this initial scheme into a feasible solution with-
out losing too much upload bandwidth.

The main problem with the aforementioned greedy allocation
procedure is that at the timevi’s tree is considered, many of its up-
load units may already be used for previously built multicast trees
(i.e., set to rolesRj , for j 6= i). In order to give such a nodevi

the opportunity to build its own multicast tree, the algorithm al-

Algorithm 1 Algorithm - Main Procedure
Input: Upload capacitiesci, requirementsri

Output: A feasible upload schemeS ′

1: DefineX :=
√

cmin + 2 − 1;
2: Initially, Ui[k] = Q for all vi ∈ V, 1 ≤ k ≤ ci;
3: For each node, setĉi = ci andr̂i = ri;
4: Label nodesv1, . . . , vn such thatr1

c1
≥ r2

c2
≥ . . . ≥ rn

cn
;

5: for eachvi with ri ≥ X in this order do
6: Letm be the number of nodes witĥci > 0
7: LetL[1], . . . , L[m] be a sorted list of nodes in

non-decreasing order0 < ĉL[1] ≤, . . . ,≤ ĉL[m];
8: a := 1; b = 1;
9: while

Pb

p=1 ĉL(p) < ri and b < ci + 1 and b < m do
10: b := b + 1;
11: od
12: while

Pb

p=a ĉL(p) < ri and b < m do
13: a := a + 1; b := b + 1;
14: od
15: for t := a to b − 2 do
16: allocate(vi, vL(t), ĉL(t));
17: end for
18: if r̂i − ĉL(b−1) ≥ X then
19: allocate(vi, vL(b−1), ĉL(b−1));
20: allocate(vi, vL(b), r̂i);
21: else
22: allocate(vi, vL(b−1), r̂i − X);
23: for allUL(b−1)[k] = Q doUL(b−1)[k] := E ;
24: ĉL(b−1) := 0;
25: allocate(vi, vL(b), X);
26: end if
27: end for
28: {* Try to satisfy requirements of nodes withri < X*}
29: for eachvi with ri < X do
30: Set at mostri unitsUi[g] = E ∪ Q to Ui[g] := Ri;
31: end for
32: {* Make solution feasible–remove overflow units*}
33: for each nodevi with Ui[ci + 1] 6= Q do
34: k := nextAloc(vi);
35: if k = ci + 1 then
36: chooseUi[k] = Ij

i [k1, k2] with minimal
fan-out from1 ≤ k ≤ ci + 1

37: for allk1 ≤ k ≤ k2 doUj [k] := E ;
38: end if
39: Ui[k] := Ui[ci + 1];
40: end for

lows upload unitsUi[k] = Rj to be replaced (or overwritten) by
role Ui[k] = Ii. While increasing the capacity ofvi’s multicast
tree, this decreases the total upload of nodevj , to whose multicast
tree this upload unitUi[k] = Rj was originally assigned. In other
words, each such overwrite operation decreases the fan-outof the
indirection unit allocated atvj and thus reduces its effectiveness.
Our algorithm maintains the invariant that upload unitsRj are as-
signed tovi only if the indirection unit’s fan-out is at leastX, i.e.,
only if vi allocates at leastX upload units tovj ’s tree. The goal
is to ensure multicast trees with high fan-out so that every upload
unitIL(t)

i invested for indirection leads to a large number of upload
unitsRi.

In more detail, the allocation of upload units to roles takesplace
in the allocate(vi, vL(t), S) subroutine. Upload units of nodes
vL(t), a ≤ t ≤ b, are filled up by setting each of thes available
units (see Line 4) toRi (or alternativelyE if s < X). As we prove,

Algorithm 2 Subroutine -allocate(vi, vL(t), S)

1: s := 0; ∆cL(t) := cL(t) − ĉL(t);
2: ĉL(t) := ĉL(t) − S; r̂i := r̂i − S;
3: for y := ∆cL(t) + 1 . . . ∆cL(t) + S do
4: if UL(t)[y] 6= I∗

L(t) then s := s + 1;
5: end for
6: if s ≥ X then
7: UL(t)[y] := Ri, for everyy ∈ {∆cL(t)+1, . . . , ∆cL(t)+s}
8: next := nextAloc(vi);
9: Ui[next] := IL(t)

i [∆cL(t) + 1, ∆cL(t) + s];
10: reassign(vi,next);
11: end if
12: else
13: for y := ∆cL(t) + 1 . . . ∆cL(t) + S do
14: if UL(t)[y] = Q then UL(t)[y] := E ;
15: end for
16: end if

Algorithm 3 Subroutine -reassign(vi, next)

1: if there is a nodevh ∈ V with Uh[g] = Ii
h[c, d]

andd = next then
2: Uh[g] := Ii

h[c, d − 1];
3: if d − c < X then
4: Uh[g] := Rh;
5: For all0 ≤ g′ ≤ ci, setUi[g

′] = Rh to roleUi[g
′] := E ;

6: end if
7: end if

Algorithm 4 Subroutine -nextAloc(vi)

1: if Qi 6= ∅ then
2: return highestk with Ui[k] = Q;
3: else ifEi 6= ∅ then
4: return highestk with Ui[k] = E ;
5: else ifRi 6= ∅ then
6: return highestk with Ui[k] = R∗;
7: else return ci + 1; {* Returnoverflow unit*}
8: end if

this is done in such a way that existing indirection units atvL(t)

are never overwritten. The dynamic capacity ofvL(t) is set to0 in
Line 2 of the subroutine, and the residual requirementr̂i of vi is re-
duced accordingly. Note that—as defined in Lines 18-26—the last
two relays,vL(b−1) andvL(b), are treated in a subtly different way.
By doing so, the algorithm guarantees that the number of unitsRi

allocated tovL(b) (Lines 20 or 25) is at leastX. For this reason,
in Lines 22-24, onlŷri − X upload units ofvL(b−1) are set toRi,
whereas the remaining at mostX −1 unspecified units are set toE .

Allocating upload unitsRi to a relayvj makes sense only when
referencing these units using an indirection unitIj

i at vi. As de-
fined in Lines 6-11 of theallocate(vi, vL(t), S) subroutine, upload
units of vL(t) are assigned toRi only if there are at leastX of
them. As mentioned before, the algorithm allows to overwrite up-
load unitsRi by indirection unitsIL(t) in the subsequent iteration
in which the multicast tree ofvL(t) is constructed. This reduces
vL(t) ’s contribution tovi’s multicast tree by one unit. Thus, the
overwriting diminishes the indirection’s fan-out and reduces its ef-
fectiveness. In order to avoid cycles of overwritings of upload units
R by indirection unitsI, which themselves point to indirection
units, etc. . . , the algorithm employs thereassign(vi, next) sub-
routine. This subroutine keeps track of the fan-outs of indirection

units and it overwrites any unitIj
i whose fan-out decreases below

X (see Figure 2 for an example). In this casevi’s requirements are
no longer sufficiently satisfied by relayvj and instead,Ij

i is set to
adirect uploadRi in Line 4. That is,vj is no longer a relay invi’s
multicast tree.

Another important question iswhich upload units ofvi should
be used for its multicast tree (and thus be replaced by roleIL(t)

i in
Line 9). ThenextAloc(vi) subroutine first returns any upload unit
in rolesQ or E . If no such unit exists, it starts overwriting upload
units in roleRi in decreasing order ofk. Finally, as mentioned
above, in case all ofvi’s upload units are in roleI, the algorithm
resorts to the creation of a temporarily infeasible solution by allo-
cating the new indirection unit to an “overflow” unitUi[ci + 1].

5.2 Analysis
The first lemma of the analysis provides an upper bound of the

optimal solution. The remainder of the proof then unfolds ina se-
ries of lemmas that collectively derive a lower bound on how many
referenced upload unitsR are allocated to the different multicast
trees in total. For the upper bound, consider the nodes to be num-
bered in non-increasing order of their capacity, i.e.,c1 ≤ . . . ≤ cn.
Let the maximalspreadof a set of nodesW ⊆ V be defined as
γ(W) :=

P
i∈W ci. The first lemma bounds the optimum by giv-

ing an bound on the achievable total upload.

LEMMA 5.1. The maximum number of requirements that can
be satisfied by an optimal upload scheme is at most

TOPT ≤
�

1 +
1

cmin

�
· min

W⊆V

8<:γ(W)−1X
i=0

cn−i +
X

i∈V \W

ri

9=; .

PROOF. Let W ⊆ V be an arbitrary subset of nodes and con-
sider all multicast trees of nodes inW . The total number of re-
lay nodes that can be used in all these trees is at mostγ(W).
Therefore, the total number of upload units that can be utilized by
nodes inW cannot exceed the complete upload capacity of nodes
vn−γ(W)+1, . . . , vn plus their own capacity (first and second term).
In addition, the optimum cannot do better than satisfying all re-
quirements of nodesV \ W completely (third term). Hence,

TOPT ≤ min
W⊆V

8<:γ(W)−1X
i=0

cn−i +
X
i∈W

ci +
X

i∈V \W

ri

9=; . (1)

Because each node has a capacity of at leastcmin, it holds thatPγ(W)−1
i=0 cn−i ≥ cmin · Pi∈W ci. Solving this inequality forP
i∈W ci and plugging in the resulting bound into (1) yields the

lemma.

For the subsequent proofs, we call an upload unit in roleUj [ℓ] =
Ri at a noderj , i 6= j, referencedif there exists an indirection unit
Ui[k] = Ij

i [k1, k2] such thatk1 ≤ ℓ ≤ k2. Units that are directly
routed to a receiver, i.e.,Ui[ℓ] = Ri, are also called referenced.
With this definition, the number ofreferenced upload unitsin role
Ri at the end of the algorithm corresponds to the total number of
satisfied requestsTALG. The following lemma and its proof show
that the algorithm avoids non-referenced upload units.

LEMMA 5.2. At the end of every call of theallocate-subroutine,
all upload units in roleR are referenced.

PROOF. Consider a nodevi. Requirements that are routed to
a receiver directly (in an upload unitUi[k] = Ri) are referenced
by definition. Consider an upload unitUj [k] = Ri at some node
vj 6= vi. The only place in the algorithm where this unit can be set

to Ri is Line 7 of theallocate(vi, vL(t), S) subroutine. In Line 9,

a corresponding indirection unitIL(t)
i [k1, k2] with k1 ≤ k ≤ k2 is

set up atvi. It therefore remains to show thatIL(t)
i [k1, k2] stays as

long asUL(t)[k] = Ri.
We first show that in Line 7 of theallocate subroutine an in-

direction unitIL(t)
i [k1, k2] can never be overwritten. The rea-

son is that thenextAloc(vi) subroutine assigns indirection units
to upload units with largestk first, and because only upload units
U∆cL(t)+1,...,∆cL(t)+s for thes previously determined in Lines 3
and 4 are overwritten, this cannot be an indirection unit.

This leaves thereassignment subroutine as the only place where
an indirection unitIL(t)

i [k1, k2] could potentially be overwritten or
adjusted. In Line 2, the upper boundk2 is decreased by one only
if the corresponding upload unitUL(t)[k2] = Ri was overwritten
(because thenextAloc(vi) subroutine always returns the upload
unit UL(t)[k] = R with the largest index), and hence no longer

exists. If the indirection unitIL(t)
i [k1, k2] is overwritten in Line 4

of the reassignment subroutine, all upload units withUL(t)[k] =
Ri are overwritten and set toE in Line 5. Finally, in the last part of
Algorithm 1, if an indirection unit is overwritten in Line 36, then
all upload units at the relay are set toE . Hence, all upload units in
roleR are referenced throughout the algorithm.

The next lemma relates each node’s dynamic capacityĉi to the
number of its upload units to which a specified role is assigned.

LEMMA 5.3. Throughout the algorithm and for every nodevi ∈
V , it holds that|Ei ∪ Ii ∪ Ri| ≥ ci − ĉi.

PROOF. We prove by induction the stronger claim that for every
vi ∈ V , every upload unitUi[1, ci − ĉi] is assigned to a specified
role: R, E , or I. At the outset of the algorithm, the induction
hypothesis holds because|Ei ∪ Ii ∪ Ri| = ci − ĉi = 0. We now
consider the two places in the algorithm whereĉi is reduced (and
henceci − ĉi increased). In Line 24,̂cL(b−1) := 0, but in the
previous line,all unspecified upload unitsUL(b−1)[k] = Q are set
to E . It follows that|Qi| = 0 and hence, the induction holds.

In Line 2 of theallocate(vi, vL(t), S) subroutine,̂cL(t) is dimin-
ished byS. Let∆cL(t) = cL(t)− ĉL(t) at the beginning of the sub-
routine. By induction hypothesis, all upload unitsUL(t)[1, ∆cL(t)]
are assigned to specified roles initially. Hence, we need to show
that upload unitsUL(t)[∆cL(t) + 1, ∆cL(t) + S] are specified at
the end of the subroutine. In Line 7, upload unitsUL(t)[∆cL(t) +
1, ∆cL(t) + s] are set to roleR. It remains to consider upload units
UL(t)[∆cL(t) + s + 1, ∆cL(t) + S]. In Line 4, the variables is
increased if an upload unitUL(t)[∆cL(t) + 1, ∆cL(t) + S] is in a
state other thanI. Since, indirection units are assigned in decreas-
ing order of index by thenextAloc(vi) subroutine, it follows that
if s < S, all upload unitsUL(t)[∆cL(t) + s + 1, ∆cL(t) + S]
are in roleI. Finally, in Line 14, all unspecified upload units
UL(t)[∆cL(t) + 1, ∆cL(t) + S] are set toE .

The next two lemmas relate the total number of specified upload
units to the optimal solution. Recall that nodesv1, . . . , vn are la-
beled in the order of their clumsiness ratio. LetVq ⊆ V be the first
q nodesv1, . . . , vq with ri > X whose multicast trees are con-
structed by the algorithm. Further, definevz , 1 ≤ z ≤ n, to be the
first node for whichb − a < cz , that is,vz is the first node whose
requirement is allocated without the overflow-unit.

LEMMA 5.4. After the firstz−1 iterations of the mainfor-loop
of Algorithm 1, it holds thatX

vi∈Vz−1

(ci − ĉi) ≥ min
W⊆Vz−1

8<:γ(W)−1X
i=0

cn−i +
X

i∈Vz−1\W

ri

9=; . (2)

Q
Q
Q
Q
Q

Rh

Rh

Rh

Rh

Ii
y(e,f)

I i
x(c,d)

I3
4(3,6)

vi vhvL(t)

I i
L(t)(3,9)

Ri

Ri

Ri

ε
ε
ε

i

ii

iv

Rh

iii

Figure 2: The figure depicts a reassignment. When constructing its
multicast tree, vi assigns upload units in roleRi to nodevL(t) (i) and

sets one of its units toIL(t)
i (ii). If the number of upload units Rh

at vi drops below X , the reassign(vi,next) subroutine replaces the
indirection unit at vh (iii) and sets upload unitsRh at vi to E (iv).

PROOF. The requirement of every nodevq , 1 ≤ q ≤ z − 1
is allocated to exactlycq + 1 different relay nodes in its multi-
cast tree (potentially including itself). In the firstj ≤ cq − 1 of
these relay nodes, theallocate(vq , vL(t), S) subroutine is called
with parameterS = ĉL(t) (Line 16) and hence, in Line 2 of the
subroutine, the dynamic capacity is reduced toĉL(t) := 0. Simi-
larly, ĉL(b−1) := 0 in Lines 19 or 24. Finally, the dynamic capacity
ĉL(b) of the relay node referenced in the overflow-unit is reduced
by at leastmin{X, ĉL(b)}, because if the remaining requirementr̂q

after allocation to the firstcq relay nodes is less thanX, theelse-
branch of Line 21 is executed, i.e., the number ofR-units assigned
to vL(b) is rounded up toX. Notice thatvq therefore sets the dy-
namic capacity of at leastcq consecutive nodesin the list L to 0.
The finalcq +1st node may be left with positive dynamic capacity.

As r̂q decreases by the same amount as the dynamic capacity
ĉL(t) in Line 2, total reduction of

P
vi∈V ĉi during the main-loop

iteration of nodevq is at leastrq − r̂′q, wherer̂′q is vq ’s residual
requirement at the end of the loop-iteration. Hence,the total de-
crease of residual requirements

P
vi∈V r̂i is less or equal to the

total decrease of dynamic capacity
P

vi∈V ĉi.
Assume that after constructing the multicast tree ofvz−1, the

χ nodes with the highest (original) capacitiesci are all fully used
up, i.e., ĉj = 0 for all n − χ + 1 ≤ j ≤ n. I.e., vn−χ is the
highest-capacity node whose dynamic capacity is strictly positive
after vz−1’s loop iteration. Since in all iterationsq < z the dy-
namic capacity ofconsecutivenodesvL(a), . . . , vL(a+ci+1) is re-
duced, the following holds: Every nodevq that uses a relay nodevy

for y ≤ n−χ has satisfied itsentire requirements, i.e.,r̂′q = 0. Let
Q1 ⊆ Vz−1 be the set of these nodes with a nodevy in their mul-
ticast tree. Each node inQ1 has satisfied all its request and hence,
the total reduction of

P
vi∈V ĉi (and hence, the increase of the left-

hand side of (2)) caused by nodes inQ1 is at least
P

vq∈Q1
rq.

Next, consider nodesQ2 = Vz−1 \Q1 that use only relay nodes
vn−χ+1, . . . , vn. Because every such nodevq ∈ Q2 sets the dy-
namic capacity of at leastcq consecutive relays to0, it holds that
the numberχ of nodes with highest capacitycj that have been set
to ĉj = 0 during the firstz − 1 main-loop iterations is at least
χ ≥ γ(Q2). Hence, the total reduction of

P
vi∈V ĉi caused by

nodes inQ2 is at least
Pγ(Q2)−1

j=0 cn−j . CombiningQ1 andQ2,
it holds that the total reduction of dynamic capacity and thus, the
left-hand side of (2) is at least

P
vq∈VQ

(cq − ĉq) ≥
P

vq∈Q1
rq +Pγ(Q2)−1

j=0 cn−j , which proves the claim.

For the following, we need one more definition. DefineT ∗
OPT to

be the maximum number of satisfied requests in an optimal solution
if nodes withri < X are not considered. It holds thatT ∗

OPT ≤
TOPT , with equality if there are no nodes withri < X.

LEMMA 5.5. In Line 28 of the algorithm, it holds thatX
vi∈V

|Ei ∪ Ii ∪ Ri| ≥
�

cmin

cmin + 1

�
· T ∗

OPT .

PROOF. Lemma 5.4 in combination with Lemma 5.3 proves the
lower bound on

P
vi∈Vz−1

|Ei ∪ Ri ∪ Ii| for the firstz − 1 itera-
tions of the algorithm’s mainfor-loop. We now show that for every
subsequent iterationq ≥ z,X

vi∈Vq

(ci − ĉi) ≥ min
W⊆Vq

8<:γ(W)−1X
i=0

cn−i +
X

i∈Vq\W

ri

9=; (3)

continues to hold. The proof is then concluded by plugging inthe
bound on the optimal solution in Lemma 5.1.

Recall thatvz is the first node for whichb − a < cz . There are
two possible reasons for this. First, it could be that

Pb

p=1 ĉL(p) ≥
rz for b ≤ cz , i.e., the entire requirement ofvz can be satisfied us-
ing theb ≤ cz relay nodes with smallest positive dynamic capacity.
Second, it could be that

Pcz

p=1 ĉL(p) < rz , but there are onlycz or
less relay nodes with non-zero dynamic capacity left.

We start with the second case and consider the iteration of node
vq , q ≥ z. In this case, the algorithm guarantees that either,rq is
fully satisfied (in which case,cq − ĉq as well as the right-hand side
of (3) increases by exactlyrq) or the dynamic capacity of every
nodev ∈ V is 0 after the iteration. In this case, both sides of (3)
sum up to exactly

P
v∈V cv.

Now, assume that in the iteration of nodevz , the first case ap-
plies, i.e.,vz ’s requirementrz can be fully satisfied using theb ≤
cz relaysvL(1), . . . , vL(b). At the beginning of the iteration, the
residual requirement̂rz is rz . For each of theb ≤ cz relays,r̂z is
reduced by at most̂cL(j), whereĉL(j) denotes the relay’s dynamic
capacity before the allocation ofvz . As rz reaches0, nodevL(b)

must have had a dynamic capacity of at least

ĉL(b) ≥ rz/cz ≥ rq/cq , (4)

for each nodevq with q > z before this iteration of the loop. The
first inequality is due to the ordering of nodes in the listL according
to their dynamic capacity. The second inequality holds because
multicast trees are constructed in order of the nodes’ “clumsiness
ratio” ri/ci in Lines 4 and 5. That is, ifq > z, thenrz/cz ≥ rq/cq .

Consider the situation at the beginning of the next iteration, when
vz+1 is considered. After satisfying the requirements ofvz , the
dynamic capacities ofvL(1), . . . , vL(b−1) are set to0 and the dy-
namic capacitŷcL(b) decreases. Consequently, nodevL(b) in vz ’s
iteration becomes the new nodevL(1) in vz+1’s iteration. Also,
all nodesvL(j) for j > b had a higher dynamic capacitŷcL(j)

than ĉL(b). Hence, due to Inequality (4), it holds that for each of
these nodeŝcL(j) ≥ rz/cz ≥ rq/cq for q ≥ z. In the new iter-
ation (after the reordering ofL), it therefore holds that each node
vL(2), vL(3), . . . has a dynamic capacity of at leastrq/cq , which

implies that
Pcq+1

j=2 ĉL(j) ≥ rq. This proves that as long as there
are enough non-empty relay nodes, the entire requirement ofvq is
satisfied and allocated to at mostcq relays. As the total decrease of
dynamic capacity isrq, both sides of (3) increase equally. Finally,
in Lines 29-31, only the lemma’s left-hand side may increase.

As pointed out earlier, the initial solution obtained by thealgo-
rithm may be infeasible as some nodes may be assigned an overflow-
unit to store one additional indirection unit. The following lemma

states that the transformation into a feasible solution does not sig-
nificantly reduce the overall upload bandwidth.

LEMMA 5.6. Let Ii, Ri, andI ′
i, R′

i denote the corresponding
sets before and after Lines 33-40 of the algorithm, respectively. It
holds that for eachvi ∈ V ,

|R′
i ∪ I ′

i| ≥
�

1 − 1

cmin + 1

�
· |Ri ∪ Ii|.

PROOF. In Lines 33-40, Algorithm 1 considers all nodesvi with
specified overflow-unit, i.e., nodes that are sending their data via
ci + 1 different relays. For each such node, if there exists any
upload unit in roleE orQ, the indirection unitUi[ci + 1] is moved
to this unit. In this case,|R′

i∪I ′
i| = |Ri∪Ii|. If no such units exist,

an upload unit in roleR is overwritten withUi[ci + 1]. Because in
this case there are at leastcmin specified units invi and|Ei| = 0,
|Ri ∪ Ii| is reduced by at most a factor of1/(cmin + 1).

Finally, if vi contains only unitsI, the algorithm replaces the
indirection unit withsmallest fan-out(Lines 36, 39). This replace-
ment leavesvi’s multicast tree with at mostci relays, and the num-
ber of satisfied requests ofvi is reduced by at most a fraction of
1/(ci + 1) ≤ 1/(cmin + 1).

The following lemma describes the ratio between indirection units
and upload units. Essentially, the theorem follows directly from the
construction of the algorithm.

LEMMA 5.7. Throughout the algorithm, it holds thatX
vi∈V

|Ii| ≤ 1

X

X
vi∈V

|Ri|.

PROOF. We show that every indirection unitI can be mapped to
adistinctset of at leastX referenced upload units in roleR, i.e., the
fan-out of every indirection unit is at leastX. The only place in the
algorithm where a new indirection unitIL(t)

i [k1, k2] is established
is in Line 9 of theallocate(vi, vL(t), S) subroutine. Before this,
however, all upload unitsUL(t)[∆cL(t)+1], . . . , UL(t)[∆cL(t)+s]]
are set toRi (Line 7). As Line 6 impliess ≥ X, the initial fan-out
of IL(t)

i [k1, k2] is at leastX.
We now show that the fan-out of every existing indirection unit

remains at leastX. The only places where upload unitsRi could
potentially be overwritten are Lines 7 and 9 of theallocate sub-
routine, and in Line 5 of thereassign subroutine. In Line 7, over-
writing is impossible as for eachvi ∈ V the dynamic capacitŷci is
reduced whenever upload unitsUi[k] are set to roleR or E . Hence,
there is noUi[k] = R for k > cL(t) − ĉL(t) = ∆cL(t).

Next, consider Line 9 of theallocate subroutine. Here, an up-
load unitRi at vj to which Ij

i [k1, k2] was pointing may be re-
placed by a new indirection unitIj . In this case,reassign(vi, next)
is invoked, which updates the fan-out to the new valueIj

i [k1, k2 −
1] in Line 2. If the reduced fan-outk2 − k1 is still at leastX, the
claim continues to hold and nothing happens. If the reduced fan-out
drops belowX, reassignment occurs (Lines 3-6): The indirection
unit Ij

i [k1, k2 − 1] is replaced by a direct upload unitRi (see Fig-
ure 2). That is, an existing indirection unit is removed as soon as
its fan-out drops belowX.

Algorithm 1 may assign the roleE to certain upload units, while
still decreasing these nodes’ dynamic capacity. Unless these units
are subsequently overwritten with rolesR or I, they are wasted.
The following two lemmas state that the algorithm does not assign
too many empty slots to any node.

LEMMA 5.8. At Line 28 of the algorithm, it holds for every
nodevi ∈ V that |Ei| > 0 ⇒ |Qi| = 0.

PROOF. An upload unitUi[k] can be set toE in Line 14 of the
allocate(vj , vi, S) subroutine, in Line 5 of thereassign(vi, next)
subroutine, or in Line 23 of the main algorithm. We show that in
any case, an upload unit is set toE only if |Qi| = 0.

First consider Line 5 ofreassign(vi, next). By definition of
nextAloc(vi), a newly allocatedIi is always written in any avail-
able upload unit in rolesQ or E first. Theif -statement in Line 3 of
the reassign(vi, next) subroutine implies that Line 5 is only exe-
cuted if the fan-out of an indirection unit dropped belowX. That
is, a newly allocatedI role must have replaced anUi[k] = Rh unit
for somevh, from which it follows that all upload units atvi are in
role eitherI or R. From this, we derive that|Qi| = 0.

Now, consider Lines 13-15 of theallocate(vj , vi, S) subrou-
tine. We distinguish three cases, depending on whether the se-
lected relay nodevi is one of the earlier relay nodes,vi = vL(t),
t ∈ {a, . . . , b− 2}, the second to last relay node,vi = vL(b−1), or
the last one,vi = vL(b), respectively.

In the first case, it holds thatS = ĉi and hence, after the sub-
routine, all upload units ofvi are specified and̂ci := 0. In other
words,|Ii ∪Ri ∪Ei| = ci and consequently,|Qi| = 0. As for the
second to last relay nodevi = vL(b−1), we distinguish two cases.
If this node is allocated in Line 19, then the entire node is filled
up and hence, with the same argument as above,|Qi| = 0. If this
node is allocated in Line 22, all its upload units are also setto a role
other thanQ in subsequent Line 23. Hence,|Qi| = 0 in this case,
too. Finally, consider the last relay nodevL(b). By the definition
of Lines 20 and 25, at leastX upload units are allocated. Hence,
if all these upload units can indeed be set to roleRj , thens ≥ X
and therefore, Lines 13-15 ofallocate(vj , vi, S) are not executed,
i.e., |Ei| = 0. If fewer thanX upload units atvL(b) can be set to
Rj , then, because thenextAloc(vi) subroutine overwritesQ roles
in decreasing order, it must also hold that|Qi| = 0. The reason
is that at least one intended upload unit for theRj role is already
occupied with anI role. In either case, the lemma holds.

LEMMA 5.9. At Line 28 of the algorithm, it holds for everyvi ∈
V that |Ei| < X.

PROOF. The proof is by induction. At the outset of the algo-
rithm, it holds thatUi[1, ci] = Q. As pointed out, there are three
places before Line 28 whereE may be assigned to upload units.

Consider Line 14 of theallocate(vi, vL(t), S) subroutine. As-
sume that after assigning roleE in Lines 13-15, there wereY ≥
X upload units with roleE at vi. As theelse-branch of theif -
statement has been executed, we know thats < X. Becauses
expresses how many of theS upload units are not currently used as
indirection units (Line 4), the number of newly assignedE roles in
Line 14 is upper bounded bys < X. This, implies that there must
have beenY − s > 0 upload units in roleE alreadybeforethe sub-
routine call. Because of|Ei| > 0, it follows from Lemma 5.8 that
|Qi| = 0 and hence,|Ri| + |Ii| + |Ei| ≥ ci. In Line 14, neither
units in roleI nor R are set toE , i.e., |Ei| does not increase and
the induction hypothesis continues to hold.

Next, consider Line 5 of thereassign(vi, next) subroutine. As
already shown in the proof of Lemma 5.8, when Line 5 is executed,
an upload unit newly set to roleI must have replaced anUi[k] =
Rh unit for somevh, and hence, all upload units atvi are in role
eitherI or R. Furthermore, the maximum number of upload units
set to roleRh in Line 5 is less thanX by definition, because the
if -statement in Line 3 evaluates to true only if there are less thanX
remaining referencedRh units atvi (see Figure 2). That is, if the
claim holds before a reassignment, it continues to hold afterwards.

THEOREM 5.10. Algorithm 1 computes a feasible solution to
the MUBP problem and achieves an approximation ratioα, where

α ≥ 1 − 4
√

cmin + 2 − 4

cmin + 1
+

2
√

cmin + 2 − 3

cmin
≥ 1 − 2√

cmin
.

PROOF. We denote byI ′′
i , E′′

i , andR′′
i the corresponding sets

after Line 28, byI ′
i, E

′
i, andR′

i after Line 32, and byIi, Ei, andRi

at the end of the algorithm. We start the proof by placing a lower
bound onΛ :=

P
vi∈V |R′

i ∪ I ′
i| in terms ofTOPT . By applying

the relationship between the total number of upload units inrolesR
andI, this bound can be transformed into a bound on the number
of satisfied requests. Finally, we compute the optimal valuefor X.

Partition the set of nodesV into two setsV< andV≥ containing
the nodes with requirementsri < X andri ≥ X, respectively.
Lemma 5.5 implies that after constructing the multicast tree of all
nodes inV≥ (Line 28), the total number of allocated specified up-
load units is

P
vi∈V |E′′

i ∪ R′′
i ∪ I ′′

i | ≥ (cmin
cmin+1

) · T ∗
OPT .

In Lines 29-31, each nodevi ∈ V< may replace up tori upload
units in rolesE or Q to Ri on its own machine, thereby satisfying
its own requests. If there are fewer thanri units in rolesE ∪ Q
available, however, the remainder ofvi’s requirement is not satis-
fied. Letři ≤ ri denote the number of requests of a nodevi ∈ V<

that arenot satisfied. Using this notation, we can expressΛ as

Λ =
X

vi∈V

|E′′
i ∪ R′′

i ∪ I ′′
i | −

X
vi∈V

|E′′
i | +

X
vi∈V<

ri −
X

vi∈V<

ři.

This can be rewritten asΛ = Λ≥ + Λ<, where

Λ≥ =
X

vi∈V≥

(|E′′
i ∪ R′′

i ∪ I ′′
i | − |E′′

i |)

Λ< =
X

vi∈V<

(|E′′
i ∪ R′′

i ∪ I ′′
i | − |E′′

i | + ri − ři).

In the sequel, we bounďri and|E′′
i |. First, consider a nodevi ∈ V .

We know from Lemma 5.9 that|E′′
i | < X. Moreover, Lemma 5.8

shows that|E′′
i | is larger than0 only if |Q′′

i | = 0 and consequently,
only if |R′′

i ∪ I ′′
i ∪ E′′

i | = ci. Hence, for everyvi ∈ V , |E′′
i | can

be expressed as|E′′
i | ≤ (X−1

ci
) · |R′′

i ∪ I ′′
i ∪ E′′

i |, and therefore

Λ≥ ≥
�

1 − X − 1

ci

�
·
X

vi∈V≥

|R′′
i ∪ I ′′

i ∪ E′′
i |. (5)

While this bound is sufficiently good for all nodesvi ∈ V≥, we
now derive a stronger bound forΛ<.

Let Λi
< = |E′′

i ∪ R′′
i ∪ I ′′

i | − |E′′
i | + ri − ři. We boundΛ<

by considering eachΛi
< individually; distinguishing the following

three cases:
1) |E′

i| > 0: It holds for each nodevi ∈ V< that if |E′
i| > 0,

then ři = 0. This is true because if|E′
i| > 0 and ři > 0, vi

would have set these empty upload units toRi, thereby reducing
ři in Lines 29-31. Hence,Λi

< = |E′′
i ∪ R′′

i ∪ I ′′
i | − |E′′

i | + ri,
and when plugging in the bound for|E′′

i |, Λi
< ≥ (1− X−1

ci
)|E′′

i ∪
R′′

i ∪ I ′′
i | + ri.

2) |E′
i| = 0 and |E′′

i | > 0: Because|E′′
i | > 0 implies |Q′′

i | =
0, it holds thaťri + |E′′

i | = ri for every nodevi ∈ V< with |E′
i| =

0. Plugging in this equation yieldsΛi
< = |E′′

i ∪ R′′
i ∪ I ′′

i | − ri +
ři + ri − ři = ci. Becauseri is at mostX −1 by definition ofV<,
and due to|E′′

i ∪ R′′
i ∪ I ′′

i | = ci, it holds that

Λi
< = ci ≥

�
1 − X − 1

ci

�
(|E′′

i ∪ R′′
i ∪ I ′′

i | + ri).

3) |E′
i| = 0 and |E′′

i | = 0: In this case,Λi
< = |E′′

i ∪R′′
i ∪I ′′

i |+
ri − ři. Becausěri is by definition at mostX − 1, it follows that

Λi
< ≥

�
1 − X−1

ci

�
(|E′′

i ∪ R′′
i ∪ I ′′

i | + ri).

Each nodevi ∈ V< is covered by exactly one of the cases and
we therefore obtain

Λ< ≥
�

1 − X − 1

ci

�
·
X

vi∈V<

�
|R′′

i ∪ I ′′
i ∪ E′′

i | + ri

�
In total, this yields

Λ ≥
�

1 − X − 1

cmin

�� X
vi∈V

|E′′
i ∪ R′′

i ∪ I ′′
i | +

X
vi∈V<

ri

�
≥
�

1 − X − 1

cmin

�� cmin

cmin + 1
· T ∗

OPT +
X

vi∈V<

ri

�
≥
�

1 − X − 1

cmin

��
cmin

cmin + 1

�
TOPT .

The second inequality is due to Lemma 5.5 and the last inequality
follows from the observation that the optimal solution cannot be
better than satisfyingall requirements of nodes inV< in addition
to T ∗

OPT , and thereforeT ∗
OPT +

P
vi∈V<

ri ≥ TOPT . Plugging
in the result of Lemma 5.6 yieldsX
vi∈V

|Ri ∪ Ii| ≥
�
1− 1

cmin

�
Λ ≥

�
1−X−1

cmin

��
cmin−1

cmin+1

�
TOPT .

It follows by Lemma 5.7 that
P

vi∈V |Ii| ≤ 1
X

P
vi∈V |Ri| and

consequently,
P

vi∈V |Ri| ≥ β ·Pvi∈V |Ri ∪ Ii| for β = X
X+1

=

1 − 1
X+1

. Using this bound, we obtainX
vi∈V

|Ri| ≥
�

1 − 1

X + 1

��
1 − X − 1

cmin

��
cmin − 1

cmin + 1

�
TOPT .

Since by Lemma 5.2, all upload units in roleR are referenced, it
follows thatTALG≥αTOPT for α := (1− 1

X+1
)(1−X−1

cmin
)(cmin−1

cmin+1
).

The valueX that maximizes this approximation ratio is determined

by δα
δX

∆
= 0, which yieldsX =

√
cmin + 2 − 1, the value used in

the algorithm. The proof is concluded by plugging this valueinto
the expression forα.

Notice that the exact bound on the approximation ratioα is sig-
nificantly higher than1 − 2/

√
cmin for small values ofcmin. For

cmin = 5, for instance,1 − 2/
√

cmin ≈ 0.1, whereas the exact
bound is approximately0.36.

6. THE IMPACT OF NETWORK CODING
The original problem statement of the MUBP problem assumes

that all information destined for a specific receiver is sentto this
receiver on a specific single path. Alternatively, there hasrecently
been a growing (theoretical and practical) interest in network cod-
ing techniques that allow mixing of information at intermediate
nodes [2]. In our problem setting, it is conceivable that a sender
splits its data, sends each piece to a different relay node in its mul-
ticast tree, and has the receiver combine these pieces to recover
the original data packet. This section briefly points out theoretical
properties and practical limitations of this simplenetwork coding.

The MUBP problem stated in Section 3 can be formulated as the
following integer linear program (ILP). The variabledik is 1 if vi

directly sends a unit of data tovk. Similarly, the binary variable
fijk indicates whether nodevi sends data to nodevk via relayvj .
Finally, sik is 1 if vi sends exactly one unit of data to its receiver
vk ∈ R(i).

max
X

vi∈V

X
vk∈R(i)

sik

dik +
X

vj∈V

fijk ≥ sik, ∀vi ∈ V, vk ∈ R(i)X
vk∈V

dik +
X

vj∈V

X
vk∈V

fjik ≤ ci, ∀vi ∈ V

fijk − dij ≤ 0, ∀vi, vj , vk ∈ V

dik, fijk, sik ∈ {0, 1}, ∀vi, vj , vk ∈ V

The first constraint describes that a successful upload requires the
entire data unit to be sent fromvi to vk ∈ R(i). The second condi-
tion states that the total bandwidth used byvi in all multicast trees
must not exceedci. The third constraint captures the fact thatvj

can serve as a relay forvi only if vi sends data tovj .
If all integrality constraints are relaxed to0 ≤ dik, fijk, sik ≤ 1,

we obtain afractional MUBP, whose optimum can be computed in
polynomial time by solving the resulting linear program. However,
this fractional problem does not correspond toMUBP with network
coding, because whereas the fractional problem allows data to be
uploaded fractionally, in the MUBP problem, an upload can becon-
sidered successful only if it is received in its entirety:sik = 1.
Hence, in the MUBP with network coding, only the integralitycon-
straints ofdik andfijk are relaxed. Unlike the fractional problem,
MUBP with network coding may be NP-hard.

Splitting and reuniting “flows” in an arbitrarily fine-grained man-
ner allows for solutions in which the total available uploadcapacity
C is highly utilized. Recall that the total number of requestsis R.

THEOREM 6.1. Let χ := C/R be the ratio describing the to-
tal available spare capacity in the network. There is an algorithm
ALG such that, ifχ ≥ cmin

cmin−1
, thenTALG = R. Otherwise,

TALG ≥ (1 − 1/cmin)C − 1.

PROOF. The bound can be achieved if each node serves as a
relay node for every other node. Specifically,ALG consider the
nodesv ∈ V in order of non-decreasing requirementr1 ≤ . . . ≤
rn. When nodevi is considered, sendcj/C of data fromvi to each
nodevj ∈ V . (Note that a node also serves as its own relay.) For
each receivervk ∈ R(i), every such relayvj allocates an upload
bandwidth ofcj/C. Because nodevi needs to send updates tori

many receivers,vj allocates a total upload bandwidth of(cjri)/C
for servingvi.

First, consider the caseχ ≥ cmin
cmin−1

. The total bandwidthbi

allocated by a nodevi is at most

bi =
X

vj∈V

cj

C
+
X

vj∈V

cirj

C
= 1 +

ci

χ
≤ ci,

that is, the resulting upload scheme is feasible. Also, all requests
are successfully uploaded because

P
vi∈V

P
vj∈V (cjri)/C = R.

In caseχ < cmin
cmin−1

, the resulting schedule may be infeasible
as nodes become overloaded. At each nodevi, one upload unit
is used for sendingvi’s data to its relay nodes, and the remaining
ci − 1 ≥ cmin−1 units are used for sending other nodes’ data to
their receivers. Hence, the total number of requests satisfied is at
least(1 − 1/cmin)C − 1. The−1 comes from the fact that one
request may only be partially satisfied (the request that is allocated
when nodes become overloaded).

As the optimal solutionTOPT is clearly bounded from above by
R andC, the algorithm discussed in the proof improves the approx-
imation ratio of Algorithm 1 for the network coding problem.

COROLLARY 6.2. The algorithm described in the proof of The-
orem 6.1 achieves an approximation ratio of1 − O(1/cmin) for
MUBP with network coding.

Theorem 6.1 implies that forC ≥ cmin/(cmin −1) ·R, all require-
ments are successfully uploaded. Theoretically, network coding
could thus be used to find a virtually optimal bandwidth allocation
using onlytwo hopsbetween sender and receiver. This implies that
there are multicast trees in which the latency constraints are satis-
fied at essentially no additional cost. In contrast, the achievable
upload bandwidth is significantly smaller without network cod-
ing, and it may not be possible to upload all requirement for any
C < n/cmin · R.

THEOREM 6.3. There are instances in which—without network
coding—any upload scheme can satisfy only(cmin+1)·C

n
requests.

PROOF. Consider an instance with one nodev having require-
mentrv = R and allri = 0 for all other nodes. Every node has
upload capacitycmin. The best achievable uploadU of any scheme
in this instance isU = c2

min + cmin = (C
n

)(cmin + 1).

Unfortunately, the astonishing power of network coding is to
some extent theoretical gimmick. In practical scenarios, applica-
tion layer data packets (as small as they may be) are wrapped in
UDP or TCP with headers of at least 40 bytes. This per-packet
overhead limits the practicability of network coding schemes as
splitting data into small flows results in a significant net-increase
of network traffic.

7. CONCLUSION
The latency-sensitive upload bandwidth maximization problem

is of critical importance in distributed peer-to-peer-based multi-
player games. The higher the utilization of the cumulative upload
capacity of all peers, the more accurately the players can view and
play the game. In this paper, we have formalized the problem as a
combinatorial maximization problem and presented a computation-
ally efficient algorithm whose total upload is within a smallfraction
of the optimum even in worst-case scenarios.

Focusing on the core algorithmic ideas, out solution abstracts
away various practically important aspects of the problem,includ-
ing NAT-ed nodes [15], which may thwart our assumption of hav-
ing a complete graph overlay. And, although it may come at the
cost of more complicated routing, it would be interesting toquan-
tify the achievable gain when relaxing the restriction to depth 2
multicast trees. On the theory side, our paper leaves open the exact
approximability of the problem. It would be interesting to either
devise a PTAS for the problem, or rule out its existence.

8. ACKNOWLEDGEMENTS
We would like to thank the anonymous SPAA reviewers for their

valuable comments.

9. REFERENCES
[1] http://planetside.station.sony.com.
[2] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung. Network

Information Flow.IEEE Transactions on Information Theory, 2000.
[3] G. Baier. Flows with Path Restrictions. PhD Thesis, TU Berlin, 2003.
[4] G. Baier, T. Erlebach, A. Hall, E. Köhler, H. Schilling,and

M. Skutella. Length-Bounded Cuts and Flows. InProc. 33rd
International Colloquium on Automata, Languages and
Programming (ICALP), pages 679–690, 2006.

[5] S. Banerjee, B. Bhattacharjee, and C. Kommareddy. Scalable
Application Layer Multicast. InProc. ACM SIGCOMM, 2002.

[6] S. Banerjee, C. Kommareddy, K. Kar, B. Bhattacharjee, and
S. Khuller. Construction of an Efficient Overlay Multicast
Infrastructure for Real-time Applications. InProc. 23th IEEE
Infocom, 2003.

[7] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu, and
M. Claypool. The Effects of Loss and Latency on User Performance
in Unreal Tournament 2003. InProc. 3rd Workshop on Network and
System Support for Games (NETGAMES), pages 144–151, 2004.

[8] Y. W. Bernier. Latency Compensating Methods in Client/Server
In-Game Protocol Design and Optimization. InGame Developers
Conference, 2001.

[9] A. R. Bharambe, M. Agrawal, and S. Seshan. Mercury: Supporting
Scalable Multi-Attribute Range Queries. InProc. ACM SIGCOMM,
2004.

[10] A. R. Bharambe, V. N. Padmanabhan, and S. Seshan. Supporting
Spectators in Online Multiplayer Games. InProc. of HotNets, 2004.

[11] M. S. Borella. Source Models of Network Game Traffic.Computer
Communications, 23(4), 2000.

[12] E. Brosh and Y. Shavitt. Approximation and Heuristic Algorithms for
Minimum Delay Application-Layer Multicast Trees. InProc. 24th
IEEE Infocom, 2004.

[13] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. A Case for End
System Multicast.IEEE Journal on Selected Areas in
Communications, 20(8), 2002.

[14] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen.
Deployment Issues for the IP Multicast Service and Architecture.
IEEE Networks, 14(1), 2000.

[15] B. Ford, P. Srisuresh, and D. Kegel. Peer-to-Peer Communication
Across Network Address Translators. InProc. 2005 USENIX Annual
Technical Conference, 2005.

[16] M. R. Garey and D. S. Johnson.Computers and Intractability, A
Guide to the Theory of NP-Completeness. W. H. Freeman and
Company, 1979.

[17] C. GauthierDickey, D. Zappala, V. Lo, and J. Marr. Low Latency and
Cheat-Proof Event Ordering for Peer-to-Peer Games. InProc. 14th
NOSSDAV, 2004.

[18] L. Gautier and C. Diot. Design and Evaluation of MiMaze,a
Multi-Player Game on the Internet. InProc. IEEE International
Conference on Multimedia Computing and Systems, 1998.

[19] D. A. Helder and S. Jamin. End-Host Multicast Communication
Using Switch-Trees Protocols. InProc. 2nd ACM/IEEE Symposium
on Cluster Computing and the Grid, 2002.

[20] J. Janotti, D. K. Gifford, D. K. Johnson, K. L. Kaashoek,and J. R.
O’Toole. Overcast: Reliable Multicasting with an Overlay Network.
In Proc. 4th Symposium on Operating Systems Design and
Implementation (OSDI), 2000.

[21] M. Karpinski, I. I. Mandoiu, A. Olshevsky, and A. Zelikovsky.
Improved Approximation Algorithms for the Quality of Service
Multicast Tree Problem.Algorithmica, 42(2), 2005.

[22] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peet-to-Peer Support for
Massively Multiplayer Games. InProc. 24th IEEE Infocom, 2004.

[23] G. Kortsarz and D. Peleg. Approximating the Weight of Shallow
Steiner Trees.Discrete Applied Mathematics, 93(2-3), 1999.

[24] J. Pang, F. Uyeda, and J. R. Lorch. Scaling Peer-to-PeerGames in
Low-Bandwidth Environments. InProc. 6th Intl. Workshop on
Peer-to-Peer Systems (IPTPS), 2007.

[25] P. Quax, P. Monsieurs, W. Lamotte, D. D. Vleeschauwer, and
N. Degrande. Objective and Subjective Evaluation of the Influence of
Small Amounts of Delay and Jitter on a Recent First Person Shooter
Game. InProc. 3rd Workshop on Network and System Support for
Games (NETGAMES), pages 152–156, 2004.

[26] G. Robins and A. Zelikovski. Improved Steiner Tree Approximation
in Graphs. InProc. 11th ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2000.

[27] A. Rowstron and P. Druschel. Pastry: Scalable, Decentralized Object
Location and Routing for Large-Scale Peer-to-Peer Systems. In Proc.
18th IFIP/ACM Int. Conference on Distributed Systems Platforms.

[28] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer Lookup Service for
Internet Applications. InProc. ACM SIGCOMM, 2001.

[29] J. Vogel, J. Widmer, D. Farin, M. Mauve, and W. Effelsberg.
Priority-Based Distribution Trees for Application-LevelMulticast. In
Proc. 2nd Workshop on Network and System Support for Games
(NETGAMES), 2003.

