
Secure Collaborative Sensing for Crowdsourcing
Spectrum Data in White Space Networks

Omid Fatemieh, University of Illinois Urbana-Champaign
Ranveer Chandra, Microsoft Research, Redmond, WA

Carl A. Gunter, University of Illinois Urbana-Champaign

Abstract—Collaborative Sensing is an important enabling tech-
nique for realizing opportunistic spectrum access in white space
(cognitive radio) networks. We consider the security ramifications
of crowdsourcing of spectrum sensing in presence of malicious
users that report false measurements. We propose viewing the
area of interest as a grid of square cells and using it to identify
and disregard false measurements. The proposed mechanism is
based on identifying outlier measurements inside each cell, as
well as corroboration among neighboring cells in a hierarchical
structure to identify cells with significant number of malicious
nodes. We provide a framework for taking into considera-
tion inherent uncertainties, such as loss due to distance and
shadowing, to reduce the likelihood of inaccurate classification
of legitimate measurements as outliers. We use simulations to
evaluate the effectiveness of the proposed approach against
attackers with varying degrees of sophistication. The results show
that depending on the attacker-type and location parameters, in
the worst case we can nullify the effect of up to 41% of attacker
nodes in a particular region. This figure is as high as 100% for
a large subset of scenarios.1

I. INTRODUCTION

The use of wireless spectrum has been mainly regulated
in the form of fixed and long-term license assignments. This
form of assignment has proven to create significant inefficien-
cies in spectrum usage [1], [5]. The emerging paradigm for
addressing this issue in the research and regulatory community
is Dynamic Spectrum Allocation (DSA). DSA allows for
opportunistic access to the licensed bands by unlicensed users
on a non-interference basis. As an important regulatory step,
FCC has recently adopted rules to allow unlicensed radio
operation in the unused portions of the UHF spectrum, com-
monly referred to as white spaces. A key enabling technology
for realizing DSA is Cognitive Radio (CR). A CR is a
radio that can change its transmitter parameters based on
interaction with the environment in which it operates [19],
[33]. A CR is typically equipped with the ability to perform
spectrum sensing, that is to sense the spectrum to identify
frequencies that are unused by the licensed (also known as
primary or incumbent) users. This allows the CR (also known
as secondary) to operate in the unused frequencies, while
avoiding frequencies that are in use by the primaries.

A number of proposed architectures for realizing large-
scale DSA require that information about the locations and
frequencies of primary signal presence be gathered by a central
base station [3], [7]. This entails collecting and combining

1In the 4th IEEE Symposia on New Frontiers in Dynamic Spectrum Access
Networks (DySPAN ’10), Singapore, April 2010.

sensing reports from geographically separated CRs2. The re-
cent FCC ruling on unlicensed radio operation in the broadcast
TV spectrum requires that spectrum availability information be
stored in geo-location databases [2]. In addition, it is shown
that collaboration among the CRs yields significant benefits
in terms of reducing uncertainties and relaxing individual
sensing requirements [16], [39]. In collaborative sensing each
CR performs spectrum sensing and the results, which we
refer to as spectrum data, are combined in order to obtain
a more accurate picture of the primary’s presence [17]. This
information can be used to govern the usage of spectrum by
the secondary network(s).

The centralized approach to collaborative sensing lends it-
self well to the concept of crowdsourcing. The term is formally
defined as ‘the act of taking a job traditionally performed by a
designated agent and outsourcing it to an undefined, generally
large group of people in the form of an open call [20].’ This
concept has been adopted in many contexts, ranging from open
software testing competitions [6] to investigating the expenses
of members of parliament in the UK [4]. In our context, this
can be realized as the act of gathering and combining sensing
results from a large group of nodes that may be unreliable,
untrustworthy, or even malicious.

Crowdsourcing of collaborative sensing in a large scale
network raises a number of security threats. An attacker
with access to a few compromised CRs can perform an
exploitation attack in which they provide sensing reports that
falsely declare the presence of a primary signal in a particular
frequency. This may cause the secondary network to falsely
believe the frequency is occupied and abandon it. The attacker
can then exclusively use that frequency band. Alternatively,
in a vandalism attack it can hide the presence of primary
transmitters in a frequency to create unwanted interference,
and thus perform a denial of service attack. We study the
above malicious false reporting attacks in a large cognitive
radio network. This is a challenging problem for the following
reasons. First, due to the ‘spatial variability’ and uncertainties
in the primary signal from factors such as shadowing, there is
a lack of ‘common ground truth’ in the measured quantity
among geographically separated CRs. This makes it easier
for the attackers to hide under the natural variations of the
measured quantity. Second, due to the open and easily recon-

2Spectrum data is also envisioned to be collected from a separate sensor
network deployed for this purpose alongside the main CR network [13], [37].
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figurable nature of CRs, they are more prone to compromise
and, once compromised, capable of more diverse misbehavior.
For example, they may employ provably optimal strategies
to evade basic detection techniques. This makes this problem
much more difficult than finding faulty or misconfigured radios
whose misbehavior is more evident.

Prior work on this problem focuses on strategies that work
in small regions where a common ground truth is viable, and
attackers constitute a small fraction of the secondaries or use
unsophisticated strategies [12], [23], [31], [32]. In this paper
we propose viewing the area of interest for detecting primary
presence (or absence) as a grid of square cells and use it
to identify and disregard false reports. Each cell is a unit of
collaborative sensing and each individual sensing report is a
real-valued measurement of primary signal power. The pro-
posed mechanism starts by identifying outlier measurements
inside each cell and ‘punishing’ them. The punishment is in the
form of exclusion or a low weight assignment in the proposed
weighted aggregation process. Subsequently, the mechanism
entails corroboration and merging of neighboring cells in a
hierarchical structure to identify cells with outlier aggregates.
This can be used as a sign of significant malicious node
presence in a cell. Our solution uses a simple model based
on exponential decay and log-normal distribution to account
for the uncertainties in signal propagation. In particular, we
provide a novel framework for quantifying the expected legit-
imate variations in measurements. This reduces the likelihood
of inaccurate classification of valid measurements as outliers.

We use simulations to evaluate the effectiveness of the
proposed approach against attackers with varying degrees of
knowledge and intelligence. The attacker model ranges from
naive attackers that know nothing about their neighboring
nodes and the defense mechanism to smart omniscient attack-
ers with complete knowledge about the number and measure-
ments of their neighboring nodes, as well as the detection
strategy and parameters. The results show that depending on
the attacker-type and the distance from primary to the region
of interest, in the worst case we can nullify the effect of up
to 41% of attackers nodes. This figure is as high as 100%
for areas that are not near the border of primary’s protection
region.

The rest of the paper is organized as follows. Section II
describes our setting and problem statement. Sections III
and IV present the proposed approach and a framework for
setting the introduced threshold parameters. Section V presents
the first part of our simulation study. Section VI provides an
extended version of our protocol and the second part of our
simulation study. Sections VII and VIII describe related work
and conclude the paper.

II. SETTING AND PROBLEM DEFINITION

In this section we first provide background information
on collaborative sensing in the context of cognitive radio
networks. Next, we describe our setting, assumptions, and
problem statement.

A. Collaborative Sensing

A common approach to detecting a primary transmitter is
energy detection [16]. In energy detection, the output signal of
a bandpass filter with bandwidth W is squared and integrated
over the observation interval T . The output, P , would be the
measure of primary signal’s presence, which can be compared
with a detection threshold λ to decide whether a licensed user
is present or not. If some features of the primary signal such
as carrier frequency, bit rate, or modulation type are known,
the more sophisticated feature detectors may be employed to
detect primary signals. This comes at the cost of increased
complexity, but enables the CR to more accurately identify
and discriminate between sources of the received energy [17],
[25]. In collaborative sensing, spectrum sensing results from
CRs are incorporated for primary detection. This provides
several benefits. First, it allows for relaxation of sensitivity
requirements at individual CRs [39]. Second, it allows for
mitigation of multi-path fading and shadowing effects, which
improves the detection probability in highly shadowed envi-
ronments [16].

In centralized collaborative sensing, which has been in-
cluded in the IEEE 802.22 standard draft [3], the CRs report
results to a base station on a periodic or on-demand basis.
The base station or a centralized database is in charge of
collecting the readings from the CRs and determining the areas
of primary presence [7]. There exist two groups of strategies
for combining individual reports. Soft-combining techniques
combine raw signal power measurements from CRs, whereas
in hard-combining techniques a 0/1 decision (and optionally
false alert and missed detection ratios) from each CR is con-
sidered. In this paper, we use an instance of soft-combining for
energy detectors based on maximum likelihood estimation [38].
This technique is presented in Section III.

An alternative model is distributed collaborative sensing in
which individual sensing measurements are exchanged with
the neighbors, and primary presence is determined by the
network without relying on a base station. For example in [41]
the authors envision an ad-hoc CR network in which each CR
performs spectrum sensing and reports a 0/1 binary detection
outcome to all the nodes in its range. Each CR considers a
frequency band to be available for communication if neither
itself nor any of the nodes in its range detect a primary signal
in that band. A pair of nodes within each others’ range that aim
to communicate choose from the intersection of frequencies
available to each of them.

B. The Setting

We consider a network of CRs (also referred to as secondary
user, secondary node, or node) distributed over a large area;
much larger than the coverage area of a primary transmitter.
For simplicity, we consider the entire spectrum to be a col-
lection of disjoint, equally sized, adjacent frequency channels.
Without loss of generality, we only focus on detecting primary
presence in one channel. We consider the nodes to use energy
detectors due to their simplicity, efficiency, and widespread
use [25].
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The outcome of sensing by node Ni is pi, which represents
an estimate of the received primary power at node Ni. In dB,
this is written as pi = pt − (10 log10 r

α
i + Si +Mi) where pt

is the transmit power of the primary signal, ri is the distance
from Ni to the primary transmitter, 10 log10 r

α
i represents the

signal attenuation with exponent α (typically 2 < α < 4),
and Si and Mi are losses due to shadowing and multipath
fading. We adopt the log-normal shadowing model [35] and
therefore consider Si and Mi to follow a Gaussian distribution
(Si +Mi ∼ N(µs, σ

2)) on the dB scale. Therefore we have
pi ∼ N(µ(r), σ2), where µ(r) = pt − (10 log10 r

α
i + µs). For

simplicity of analysis, unless otherwise noted, we consider
µs to be 0 and σ to be independent of the distance to the
transmitter [38].

The network infers the presence of primary users in a
centralized fashion by crowdsourcing spectrum data. Collabo-
rative sensing is often used with a specified set of nodes that
are considered to be trustworthy. In crowdsourcing, however,
this specified set of nodes is ‘everyone.’ Therefore, they may
be unreliable, malicious, or compromised insider attackers. We
assume the primary remains active at durations much longer
than the period between consecutive spectrum sensings and
that there exists a secure end-to-end connection, such as a TLS
tunnel, between each participating CR and the base station.
We also assume that the base station is not threatened by
Sybil attacks [34], in which malicious CRs would create a
large number of fake entities to obtain a disproportionately
large influence. This is perhaps because of the difficulty of
faking multiple link layer addresses or transmitters. Or one
can take the dual view that we aim to demonstrate a method
that forces adversaries to discover and deploy a practical Sybil
attack. We also assume that the location of CRs is difficult
or undesirable to fake. The problem of secure localization
and that of primary emulation, in which a secondary actually
transmits primary signals, are orthogonal to our problem and
have been considered in the literature [13], [28], [29].

C. Problem Definition

We address the problem of secure collaborative sensing for
crowdsourcing spectrum data in presence of malicious nodes in
the ‘crowd.’ Faulty nodes that may unknowingly report false
or inaccurate readings (due to software or hardware errors)
are a subset of our problem space and we do not treat them
separately.

A malicious node is one that is under control of an attacker.
The attacker may have a number of compromised nodes under
control and can make them act in cooperation for executing
attacks on collaborative sensing. The attacker may aim for
one of the following objectives: (1) Exploitation: the attacker
makes the network falsely believe that an empty channel is
currently occupied by primary incumbents in some part of
the network. Under energy detection, this can be achieved by
falsely reporting a primary signal measurement greater than λ.
(2) Vandalism: the attacker makes the network falsely believe
that a channel that is occupied by primary is available for
communication. It effect, the attacker tries to hide the presence

of incumbents. Under energy detection, this can be achieved
by falsely reporting a primary signal measurement less than
λ.

Our goal is to develop a mechanism by which despite the
existence of malicious nodes, the base station can identify ar-
eas of incumbent presence/absence with high accuracy. Prime
examples of incumbent communication are TV transmission
and wireless microphones.

III. HIERARCHICAL APPROACH

In this section we first introduce the soft-combining tech-
nique for collaborative sensing based on maximum likelihood
estimation. Our approach is based on this method of collab-
oration among nodes. Next we provide a ‘basic approach’
which incorporates the basic ideas in the proposed scheme. We
extend the basic approach to a ‘weighted approach’ which is
the main protocol we use to evaluate our solution in Section V.

A. Maximum Likelihood Detector

Consider a square grid consisting of n × n square cells.
Each cell is the basic unit of collaborative sensing and we
call it a level 0 cell, or simply cell. The dimensions of a
level 0 cell C are denoted by r0 × r0. Consider a level 0
cell containing m nodes. Periodically, each node Ni in this
cell provides its signal power measurement pi to the central
base station. Given a vector of received power observations
(p1, p2, . . . , pm) for this cell, a maximum likelihood (ML)
detector would determine the primary presence by averaging
the power measurements of individual nodes and comparing
it to detection threshold λ [17], [38]:

Primary is
{

Present, if Pavg = 1
m

∑m
i=1 pi ≥ λ

Absent, otherwise. (1)

λ is determined based on the power of the transmitter
and the radius around it, r, that needs to be protected. This
is done such that the probability of missed detection stays
below a threshold (e.g. .95), while the probability of false
alerts are minimized. λ can be determined for a cell with
m nodes as follows. If each measurement at distance r
is distributed according to a normal distribution with mean
pr = pt − (10 log10 r

α) and standard deviation σ, we have
Pavg ∼ N(pr,

σ2

m ). We can determine λ such that:

Pr(Pavg ≥ λ) = .95⇒ λ =
σ√
m
Q−1(.95) + pr (2)

where Q is the standard Gaussian distribution tail function and
Q−1 is its inverse.

B. Basic Approach

It is easy to show that a few malicious nodes that report ex-
tremely high or low measurements can significantly skew the
average in Equation 1, and thus alter the detection outcome.
To that end, we propose a hierarchical structure for reducing
or eliminating the effect of maliciously misreporting nodes.
At the lowest level of the hierarchy (level 0) there exist level
0 cells. At higher levels of the hierarchy, each level l cell
constitutes the area covered by b level l − 1 cells that are
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adjacent. b is called the branching factor of the hierarchy and
we assume

√
b is an integer greater than one. Figure 1 provides

an illustration for b = 4.
In simple words, our scheme first aims to detect outlier mea-

surements inside a cell by peer comparisons. If the attackers
compromise a large fraction of nodes in a cell, they effectively
take over the call and may no longer be detectable as outliers
in the cell. Therefore, we use the hierarchy to compare each
cell’s average with its neighbors to detect if it is unexpectedly
high or low. This corroboration allows our protocol to identify
‘outlier cells’ with significant attacker presence.

Consider a level 0 cell Cj that contains m secondary
nodes. We define a dispute threshold for level 0, d0, as the
maximum acceptable difference between the measurements
of two nodes inside that cell. In Section IV we provide a
disciplined mechanism for deriving the dispute thresholds.
As it will be shown, the dispute thresholds may vary for
different cells. At level 0, pairwise comparisons between
measurements of individual nodes are performed inside each
cell. In each pairwise comparison between nodes Ni and Nj ,
if the difference is greater than d0, Ni and Nj’s dispute counts,
ci and cj , are increased by one. After all pairwise comparisons,
if ci

m is greater than or equal the outlier threshold for level 0,
τ0 (0 < τ0 < 1, e.g. τ0 = .75), the node is flagged as an
outlier and is excluded in the primary presence calculation in
Equation 1. In other words, for a node not to be an outlier,
at least a fraction (1 − τ0) of the nodes in its cell should be
within its d0 distance. This method for outlier detection is an
instance of the well-known distance-based outlier detection
techniques in the literature. Formally, an object o in a data set
D is a distance-based outlier with parameters pct and dmin
if at least a fraction pct of the objects in D lie at a distance
grater than dmin from o [18].

C3:L0 C4:L0

C1:L0 C2:L0C5: L1

C6: L2

C7 ≈ Entire Grid : L3

Secondary Nodes 

in a level 0 cell Ck

Primary 

Transmitter

r0

Fig. 1. Cells of different levels in a hierarchy with branching factor b = 4.
Ci : Lj denotes cell Ci at level j.

The higher levels of the hierarchy are formed as follows. A
collection of b adjacent level 0 cells form a r1 × r1 level 1
cell, where r1 =

√
br0. At this step, after discarding outliers,

the average signal presence at each of the consisting level
0 cells is calculated. The b resulting averages are compared

in a pairwise fashion, and at each comparison, the dispute
count is increased for a level 0 cell that has a difference
greater than the dispute threshold for level 1, d1, with a
neighboring cell. Again, after all comparisons, if a cell’s
dispute count divided by the number of cells (b) is greater
than the outlier threshold ratio τ1 (0 < τ1 < 1, e.g. τ1 = .75),
the cell is flagged as an outlier and its result is considered
unacceptable. The same procedure (averaging and neighbor
comparison) is applied for up to lmax levels, and at each level
if a cell j is flagged as outlier, all the cells it contains are
flagged as ‘indeterminate’ for which primary presence cannot
be accurately determined. For example in Figure 1, if C5 is
an outlier, the primary presence at C1, C2, C3, and C4 is
indeterminate. For indeterminate cells, we consider primary
presence to be difficult to tell, in which case an alternative
source of information or method should be used for decision-
making. For example, if there exist out-of-band mechanisms
for establishing high trust in a subset of nodes, we can rely
only on the measurements of the (few but trusted) nodes in that
region. We do not explore this particular method in this paper,
and leave it as an item of future work. Therefore, in our first set
of simulations (see Section V) we simply report these cells as
indeterminate. However, in Section VI, once we provide other
means (based on median) to identify indeterminate cells, we
propose and evaluate a simple method based on the average
of 8 surrounding cells for primary detection in indeterminate
cells.

The following Propositions state the limits that the basic
approach imposes on exploitation attacks. Similar results can
be derived for vandalism attacks.

Proposition 1: Consider a level 0 cell with dispute thresh-
old d0 and outlier threshold τ0 under an exploitation attack.
Let α < (1− τ0) be the fraction of compromised nodes. If the
average power of the un-compromised nodes and the average
power including compromised nodes are denoted by m and
m′, under the basic approach we have: m′ ≤ m+ 2d0α.

Proposition 2: Consider level i cells Cl, . . . , Cl+b with
averages ml, . . . ,ml+b that constitute the level i + 1 cell
Ct with dispute threshold di+1. Let the outlier threshold
τj = (b−1)/b for all level j > 0 cells. Consider a level i cell
Cn ∈ {Cl, . . . Cl+b} under an exploitation attack. In order for
Cn with the attacker influenced average m′

n to stay undetected
as an outlier under the basic approach, the following property
should hold: m′

n ≤ maxk∈{l,...,l+b}−{n}(mk) + di+1.

As an example for exploitation, consider a level 0 cell
Ck (dispute threshold = d0k) with a fraction α of attackers.
Assume the conditions of Propositions 1 and 2 hold, and
lmax = 2. Ck is in level 1 cell Cl (dispute threshold = d1l ).
For ease of exposition, we represent all level 0 cells (excluding
Ck) that are in Cl by Ck+1, . . . , Ck+b−1. Also assume that Cl

is in level 2 cell Cm (dispute threshold = d2m). For ease of
exposition, we represent all level 1 cells (excluding Cl) that
are in Cm by Cl+1, . . . , Cl+b−1. Propositions 1 and 2 provide
the following constraints on the attacker influenced average
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for Ck, denoted by m′
k:

(1) m′
k ≤ mk + 2d0kα,

(2) m′
k ≤ max

k+1≤i≤k+b−1
(mi) + d1l ,

(3) m′
k ≤ b max

l+1≤i≤l+b−1
(mi) + bd2m −

k+b−1∑
i=k+1

mi.

C. Weighted Approach

The basic approach may result in flagging a number of
nodes, level 0 cells, and higher level cells as outliers. The
outlier nodes are excluded in the averaging for their respective
cells. Likewise, the outlier cells are excluded in the averaging
at higher levels, and the primary presence status in them is
considered indeterminate. We propose using the results of the
basic approach to assign and update weights to individual
nodes over time (at the end of each round). In a level 0
cell Ci, each node Nj is assigned a weight wj such that∑

Nj∈Ci
wj = 1. In a cell with m nodes, each node’s weight

is initialized to 1
m . We do not assign weight to cells. At level

0, the weighted sum of node’s measurements is compared to
the detection threshold:

Primary is
{

Present, if
∑m

i=1 wipi ≥ λ
Absent, otherwise. (3)

Algorithm 1 Determine Level 0 Cell Status
Input: Level 0 cell C
lowCount ← 0; highCount ← 0
for each Ci ∈

(
Ancestors(C)∪{C}

)
s.t. Level(Ci) ≤ lmax

if LowOutlier(Ci) then
lowCount ++

else if HighOutlier(Ci) then
highCount ++

end if
if highCount + lowCount > 1 then

UpdateWeights(C,‘conflicted’)
else if highCount == 1 then

UpdateWeights(C,‘high’)
else if lowCount == 1 then

UpdateWeights(C,‘low’)
else // Neither C nor any of its ancestors is an outlier

UpdateWeights(C,‘neutral’)
end if

Outlier detection is performed similar to the basic scheme.
The only difference is that cells (not nodes) that are flagged
as outliers can be assigned a ‘low’ or ‘high’ label; if the
average value at an outlier cell is considered too low compared
to its peers, it is flagged as a low-outlier, otherwise it is
a high-outlier. After all the outlier detection and averaging
is performed (starting from level 0, up to level lmax), Algo-
rithms 1 and 2 are used to update the weights of nodes for
the next round. In these algorithms, functions LowOutlier(C)
(HighOutlier(C)) are considered to return ‘true’ if C is a low-
outlier (high-outlier) cell.

Algorithm 2 UpdateWeights (C, status)
Input: Level 0 cell C, and status ∈ {‘conflicted’, ‘high’,
‘low’, ‘neutral’}
switch (status)

case ‘conflicted’: return
case ‘high’:

sort the nodes in C based on power measurement
cut the weights of the last 25% by half and equally
distribute it to others in C

case ‘low’:
sort the nodes in C based on power measurement
cut the weights of the first 25% by half and equally
distribute it to others in C

case ‘neutral’:
cut the weights of the outlier nodes in C by half
and equally distribute it to others in C

end switch

IV. DISPUTE THRESHOLD CALCULATION

The dispute thresholds introduced in Section III aim to
define maximum ‘reasonable’ differences between the ob-
served signal powers among nodes (or averaged measure-
ments among cells), beyond which the differences are highly
questionable. Deriving the thresholds entails identifying and
analyzing the sources of such power differences. The observed
signal strength p (in dBm) at a secondary node is determined
by the power of the transmitted signal pt minus losses in power
due to (1) attenuation at a distance r from the transmitter
l(r), (2) shadowing S, and (3) multi-path fading M , that is
p = pt−(l(r)+S+M) [38]. Therefore, in order to characterize
the differences, we need to study the effects of these three
factors. We study the problem of determining thresholds at
two different levels: (1) Intra-cell dispute thresholds (d0)
that are used to compare individual power measurements
between nodes in a level 0 cell (2) Inter-cell dispute thresholds
(di, 1 ≤ i ≤ lmax) that are used to compare averaged
measurements from each of the level i − 1 cells contained
in a level i cell.

A. Intra-cell Dispute Thresholds

Consider honest nodes Ni and Nj in a level 0 cell at
distances ri and rj from the primary transmitter. Without loss
of generality assume rj > ri. Therefore, rj = ri + ∆ri,j
(0 < ∆ri,j ≤

√
2r0). Our goal is to find a value d0 such

that with high probability (e.g. 0.9) we have: pi − pj ≤ d0.
Assuming independent, identically distributed (i.i.d.) Gaussian
shadowing and fading at both nodes we have pi ∼ N(pt −
10 log10(r

α
i )−µs, σ

2) and pj ∼ N(pt−10 log10(rαj )−µs, σ
2).

Therefore we obtain the distribution of the difference as:

pi − pj = N(10α log10
ri +∆ri,j

ri
, 2σ2)

For a fixed ri, choosing ∆ri,j =
√
2r0 maximizes the mean

of the distribution. However, since we do not know the exact
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location of the transmitter, we do not know ri. In an ideal
world where α is accurately known, and there is no loss due
to shadowing and fading, one can use pi = pt−10 log10(rαi ) to
obtain ri. We propose the following approach to estimate ri in
a more realistic environment where α is not accurately known
and the effect of shadowing and fading is not negligible.

In order to reduce the uncertainty due to α, we take a
conservative approach by taking the value of α that creates the
largest attenuation from ri to ri +

√
2r0. This is achieved by

assuming a large α (e.g. α = 4). In addition, the signal power,
pi, may have faced shadowing and fading. Therefore, pi may
not be the most valid choice for determining ri. Since the size
of a level 0 cell is relatively small compared to the distance to
the transmitter, the average power reported by the nodes inside
a cell may seem as an obvious candidate to estimate pi. This
average, however, is highly vulnerable to excessively high (or
low) reports by malicious or deeply faded nodes. Therefore we
opt for using the robust statistic of median [40] of the reported
powers inside the cell for determining a conservative estimate
of ri. For a level 0 cell C, if prep is the representative power
of this cell, and rrep is the representative distance from this
cell to the transmitter, we have:

prep = median(pj), for all nodes Nj in level 0 cell C

prep = pt − 10 log10(r
α
i )⇒ ri ∼ rrep = 10

pt−prep
10α

Therefore, if we aim to determine d0 such that Pr
(
pi−pj <

d0
)
> .9, we have:

pi − pj ∼ N(10α log10
rrep +

√
2r0

rrep
, 2σ2)

Pr
(
pi − pj ≥ d0

)
≤ .1⇒

Q
(d0 − 10α log10

rrep+
√
2r0

rrep√
2σ

)
= .1

d0 =
√
2σQ−1(.1) + 10α log10

rrep +
√
2r0

rrep

where Q is the standard Gaussian tail probability function.
Note that using this scheme, the dispute thresholds for different
cells will likely be different. For future use, we denote
10α log10

rrep+
√
2r0

rrep
for a level 0 cell Ck by ∆µrep

k . We
introduce the notation of d0k to represent the dispute threshold
for a level 0 cell Ck. We generalize this notation to represent
the dispute threshold and average power for a level i cell Ck

by dik and pik.

B. Inter-cell Dispute Thresholds

For simplicity, we first provide details on how d1k, the
dispute threshold for a level 1 cell Ck, is calculated. Then
we generalize the obtained result to higher levels. Consider
a hierarchy with branching factor b. After outlier nodes
are detected, and (weighted) averages for level 0 cells are
calculated, we advance to level 1. At level 1, we perform
pairwise comparisons between averages provided by each of
the b level 0 cells contained in Ck, identify and leave-out
outliers, and average the values of the rest to be passed to

level 2. Consider two neighboring level 0 cells Ci and Cj (in
Ck), with corresponding computed average powers p0i , and p0j .
Assume there are m nodes in each cell. We have:

p0i ∼ N(µi,
σ2

m
), p0j ∼ N(µj ,

σ2

m
)

p0i − p0j ∼ N(µi − µj ,
2σ2

m
)

Ideally, if we were absolutely sure about the integrity of
the majority of the nodes in each of the cells Ci and Cj ,
we could have replaced µi and µj by the averages of the
corresponding cells. However, either of the cells may be
populated by a large number of malicious nodes in a way not
detectable at level 0. Hence, either of the averages could be
highly skewed. As a result, using the difference between the
sample averages is not a safe way to determine the probability
distribution of the difference. Otherwise, very high dispute
thresholds may be created that allow attackers to hide their
presence. Besides, for simplicity, we are interested in using
only one dispute threshold for each level 1 cell (as opposed
to one dispute threshold for each level 0 pair). We employ a
similar strategy to the intra-cell case and estimate µi−µj by:
∆µrep

k =
√
b×median(∆µrep

i ), for all level 0 cells Ci ∈ Ck.
We can generalize this method to any level greater than 0.
Therefore, we have p0i − p0j ∼ N(∆µrep

k , 2σ2

m ). If we aim to
determine d1k such that Pr

(
p0i − p0j < d1k

)
> .9, we obtain:

Pr
(
p0i − p0j ≥ d1k

)
≤ .1⇒

Q
(d1k −∆µrep

k√
2σ√
m

)
= .1

d1k =

√
2σ√
m

Q−1(.1) + ∆µrep
k

It can be easily shown that the same argument could be used
for higher layers of hierarchy. Therefore, if we represent the
dispute threshold for a level i cell Ck by dik, we have:

dik =

√
2σ√

bi−1m
Q−1(.1) + ∆µrep

k

where ∆µrep
k =

√
b×median(∆µrep

j ), for all level i− 1 cells
Cj ∈ Ck.

Note that the dispute thresholds do not depend on the
detection threshold, λ. It is easy to verify that as we go up
in the hierarchy, the mean of the distribution for determining
the dispute threshold is increased, while its standard deviation
is decreased. This stems from the fact that the mean of the
distribution mainly represents variation due to signal power
attenuation over distance, whereas the standard deviation
represents variations due to shadowing, which (as expected)
is reduced as a result of aggregating increasing number of
individual measurements.

V. SIMULATION STUDY (PART 1)

In this section we first provide the simulation setup used for
evaluating the proposed scheme. The attacker model, results,
and a brief analysis of the results are followed.



7

A. Simulation Setup

The simulation environment is a 4096m × 4096m area in
which secondary users are deployed uniformly at random with
the density of 0.0008 per square meter. The branching factor,
b, is 4. The size of each level 0 cell is 128m×128m, creating
a total of 1024 level 0 cells. Therefore, the expected number
of nodes per cell is about 13. A primary transmitter with
transmission power of 50mW (17 dBm) is located at the
center of the area to represent a wireless microphone [10].
We consider a circular area with radius 1000m around the
primary as the area that needs to be protected. This represents
the area in which the primary signal must be detected with
high probability. In particular, we require that primary signal
be detectable by collaborating nodes in a level 0 cell with
probability greater than .95 (max false negative rate of 5%).
Using the formulation in Equation 2, this translates to the
detection threshold of λ = −74.4dBm. We set the attenuation
exponent, α, to 3 [38], and the standard deviation for the
fading and shadowing process, σ, to 3 (in dB scale) [17].
The dispute threshold for each cell is determined based on the
framework proposed in Section IV. The outlier threshold for
level 0 cells, τ0, is 0.6, and for all i > 0, τi =

b−1
b = .75.

B. Attack Scenarios

We first study exploitation attacks. We pick two cells outside
the protection radius of the primary transmitter. First cell is
selected randomly in such a way that is located at a distance
marginally greater than the protection radius. This choice helps
us gauge the worst-case performance of our protocol. We call
this cell the borderline-outside cell. Next we randomly select
another cell with the constraint that it is located at about
two times the protection radius of the transmitter. We call
this cell the well-outside cell. In each scenario, the attacker
has compromised a certain fraction of the nodes inside the
cell. Compromised nodes work in cooperation to report values
higher than their true measurements to change the detection
outcome. For a given cell and attack type, we vary the fraction
of compromised nodes and study the results. The compromised
nodes’ behavior is according to one of the following models.

• Naive Attackers do not have any information about the
number or measurements of others in their cell. They only
know λ, and simply report measurements that are a fixed
amount greater than λ.

• Average Attackers do not know the exact number or
measurements of others. They know true measurements
of themselves, the ‘expected’ number of nodes per
cell, and λ. Assuming similar measurements by non-
compromised nodes, they report measurements such that
the estimated cell average is a few decibels (e.g. 4 dB)
over λ. This to guarantee that if they underestimate the
total number of nodes, they still succeed.

• Smart Omniscient Attackers know the number and
measurements of all nodes in their cell, and λ. Using this
information, they report measurements such that the final
average for the cell is slightly over λ and not greater than

(pavg + d0). Here, pavg is the average power of the cell
assuming honest reports, and d0 is the dispute threshold
for the cell. This helps attackers reduce the chances of
being detected as outliers at level 0.

For vandalism attacks, similar to exploitation scenarios, we
pick two cells inside the protection radius of the primary
transmitter. One cell is randomly selected from cells at a
distance marginally smaller than the protection radius of the
primary transmitter. We call this cell the borderline-inside cell.
We randomly select another cell located at about half the
protection radius away from the transmitter. We call this cell a
well-inside cell. Attacker strategies are defined similar to the
exploitation case, except here they aim to lower the average
power measurement below λ for their cell.

C. Results

Figures 2, 3, and 4 (pictures on left) depict the measured
average and final detection outcome for exploitation attacks.
Results are collected after running the simulations for enough
number of runs so that the weights (and thus the final
outcomes) are stabilized. Note that in all graphs the y-axis
represents the weighted and outlier-excluded average of the
power of the nodes in the cell. For indeterminate cells (low,
high, or conflicted based on Algorithm 1; represented by a
‘×’), we do not provide any disambiguation solution in this
section. Later, in Section VI, we introduce and evaluate one
such solution. The results from an unmodified ML detector
are provided in the captions for comparison.

It can be seen that for the well-outside cell, none of the
attacker models can succeed. As a commonly observed pattern
(except for smart attackers), when attackers constitute small
fractions of the population in the cell, they are detected as
outliers, and their weights are reduced. Therefore, they cannot
move the cell average above the threshold. Once the attackers
gain enough population to meaningfully increase the average
without being individually detected, the entire cell is detected
as an outlier at higher levels (level 1 here).

The picture is not as rosy in the case of the borderline-
outside cell. It can be seen that once attackers obtain enough
population (23% to 35% depending on the attacker model),
they are able to successfully flip the detection outcome. This
is not a surprise, and is in fact a direct consequence of our
uncertainty model. In other words, once the mean of the
distribution is close to λ, very few compromised nodes with
reported measurements that are acceptable by the uncertainty
model can move the average and flip the outcome without
being detected. Note that such measurements could have come
from a valid distribution, and thus been legitimate.

Figures 2, 3, and 4 (pictures on right) depict the measured
average and final detection outcomes for vandalism attacks.
The results from an unmodified ML detector are provided in
the captions for comparison. Since the results and analysis are
similar to the exploitation attacks we do not discuss them in
detail and defer further analysis to the extended version of this
paper.
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Fig. 2. (left) Exploitation by +15dB Naive Attackers. ML detector is beat when 7 (4) nodes are compromised in the well-outside (borderline-outside) cell.
(right) Vandalism by -15dB Naive Attackers. ML detector is beat when 7 (3) nodes are compromised in the well-inside (borderline-inside) cell.
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Fig. 3. (left) Exploitation by Average Attackers. ML detector is beat when one node is compromised in both the well-outside and borderline-outside cases.
(right) Vandalism by Average Attackers. ML detector is beat when one node is compromised in both the well-inside and borderline-inside cases.

VI. EXTENSIONS & SIMULATION STUDY (PART 2)

The simulation results in Section V show that in areas where
the average (mean) of signal power is close to the detection
threshold, a modest fraction of compromised nodes in a cell
can change the outcome of spectrum sensing without being
detected. This is due to the difficulty of distinguishing between
legitimate variations in signal power and slightly skewed
false reports by attackers. Therefore, the attackers succeed
by effectively ‘hiding’ under the ‘acceptable’ measurement
variations. In this section we propose extending our solution
by using median as a safeguard, in conjunction with mean, for
secure primary detection. We show that our solution achieves
a desirable mix of accuracy (from mean), and robustness (from
median).

A. Median: A Safeguard for Collaborative Sensing

An alternative estimator for signal power in a cell is
the median of measurements. The median of a sample is
known to be robust to outliers. The median, however, has
the disadvantage that it does not use all the data available
in the sample, and therefore is often not as accurate as the

mean [40]. For a normal distribution, it is well known that
the sample mean is the most ‘efficient’ estimator, that is no
other unbiased statistic for estimating µ can have smaller
variance. The efficiency of median, measured as the ratio of the
variance of the mean to the variance of the median, depends
on the sample size m = 2n + 1 as 4n

π(2n+1) , which tends to
the value 2/π ≈ .63 as m becomes large [24]. So, we can
consider the following distribution for the median power in
a cell: Pmed ∼ N(µ, πσ2

2m ). Therefore, similar to Equation 2,
in order to use median for primary detection we can derive
the threshold λ′ such that the probability of missed detection
stays below a certain value (e.g. .95):

λ′ =

√
πσ√
2m

Q−1(.95) + pr (4)

where Q−1 is the inverse of standard Gaussian distribution tail
function. Note that since Q−1(.95) < 0 we have λ′ < λ.

The next question that arises is how we can integrate median
into our existing approach. To that end, we propose a frame-
work based on the following principles: (1) safety (in terms of
causing interference to primaries) is not compromised, and (2)



9

-90

-85

-80

-75

-70

-65

-60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
el

l 
P

o
w

er
 (

d
B

m
)

Number of Compromised Nodes in Cell

Well 

Outside 

Cell

Borderline 

Outside 

Cell

Primary

Present

Primary

Absent

Indeterminate

Primary

Present

Primary

Absent

-90

-85

-80

-75

-70

-65

-60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

C
el

l 
P

o
w

er
 (

d
B

m
)

Number of Compromised Nodes in Cell

Well Inside 

Cell

Borderline 

Inside Cell

Primary

Present

Primary

Absent

Indeterminate

Primary

Present

Primary

Absent

Fig. 4. (left) Exploitation by Smart Omniscient Attackers. ML detector is beat if one node is compromised in both the well-outside and borderline-outside
cases. (right) Vandalism by Smart Omniscient Attackers. ML detector is beat if one node is compromised in both the well-inside and borderline-inside cases.

a reasonable combination of efficiency (i.e. mean) and robust-
ness (i.e. median) is achieved. In a given cell, we first perform
the hierarchical grid-based scheme proposed in Section III. If
the status of the cell is ‘neutral’ (see Algorithm 1), then we
perform the following additional operations. Consider Pmed
and Pavg to be the median and weighted mean of the power
measurements. We have the following four cases:

1) Pmed >= λ′ and Pavg >= λ: Since both estimators
agree on the positive outcome, we consider primary signal
to be present.

2) Pmed < λ′ and Pavg < λ: Since both estimators agree
on the negative outcome, we consider primary signal to
be absent.

3) Pmed >= λ′ and Pavg < λ: There exists a conflict;
primary is present based on the median, but is absent
based on the mean. Considering the importance of not
causing interference to primary users, we disregard the
potential optimality of the outcome from mean and opt
for the conservative choice of declaring primary present.
This choice is expected to reduce the chances of success-
ful vandalism attacks, but may increase the chances of
mistakenly declaring a borderline-outside cell as occupied
(due to the relative inefficiency of median).

4) Pmed < λ′ and Pavg >= λ: There exists a conflict;
primary is present based on the mean, but is absent
based on the median. The difference in opinions may be
caused by an exploitation attack, or simply a legitimate
inaccuracy by either of the two estimators. Given the
previous choices, if we go with the mean’s decision,
we are effectively taking the decision to be the ‘or’ of
the two. This choice has the drawback that would not
make exploitation attacks any harder to launch. On the
other hand, if we go with the median’s decision, we are
effectively ignoring mean in all the four cases, which is
not desirable. Since we know that λ′ < λ, the mean and
median are at least separated by λ − λ′. This may be a
sign of anomaly (e.g. an exploitation attack). We propose
considering this cell as indeterminate and using the

average power of the 8 neighboring cells (and compare
it to λ) to determine the cell’s status. We propose to
use a similar disambiguation technique for indeterminate
cells from Section III (‘conflicted’, ‘low,’ or ‘high’ in
Algorithm 1). For the cells at the border of the area of
interest (that do not have 8 neighbors), we consider the
status to stay indeterminate.

B. Simulation Study (Part 2)

We first study the effect of using median in conjunction
with mean in absence of attackers. This evaluation is done in
terms of false positive and false negative rates.

TABLE I
THE NUMBER OF FALSE POSITIVES AND FALSE NEGATIVES.

Algorithm False Positives False Negatives
Hierarchical Average-Based 16 10

(Section III)
Extended Median-Based 49 0

(Section VI)

Consider any cell that is entirely outside the no-talk radius of
the primary transmitter. If either of our approaches mistakenly
declare primary to be present in this cell, we count this as a
false positive. Similarly, consider a cell that is (in part) in
the no-talk radius of the primary. If either of our approaches
mistakenly declare primary to be absent for this cell, we count
this as a false negative. We measure false positive and false
negative rates in two cases: (1) when only the average-based
framework in Section III is used, and (2) when it is combined
with the median-based framework introduced in this section.
The results are summarized in Table I. The table shows the
number of false positives and false negatives for the final
decision (after disambiguating indeterminate cells) for both
approaches. The total number of cells is 1024. It can be seen
that in the absence of attackers the extended approach provides
an extra level of safety. This comes at the cost of higher false
positive rates.
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Fig. 5. Exploitation (left) and Vandalism (right) by Naive Attackers. Arrows represent change of final detection outcome based on extensions in Section VI.
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Fig. 6. Exploitation (left) and Vandalism (right) by Average Attackers. Arrows represent change of final detection outcome based on extensions in Section VI.

Next, we study the effectiveness of the extensions in this
section against exploitation and vandalism attacks. For this
purpose, we run the same experiments as in Section V with the
added extensions in this section. Figures 5, 6, and 7 represent
the results for Naive, Average, and Smart Omniscient attackers
respectively. The new changes are represented by arrows. In
particular, arrows originating from a ‘+’ or ‘−’ represent
scenarios for which cases (3) or (4) apply, that is when the
mean and median do not agree. The symbol at the head of the
arrow represents the final decision. Arrows originating from
a × represent cases that are considered indeterminate based
on the hierarchical scheme in Section III, and the sign at the
head of the arrow represents the final outcome after neighbor
averaging rule.

The results show that for the well-inside (well-outside) case,
in almost all scenarios, our solution completely nullifies the
effect of attackers. For borderline-inside (borderline-outside)
case, the attackers need to compromise at least 47% (41%) of
nodes to be able to succeed. Note that these ratios are higher
for the cases of less sophisticated attackers. The difference
between the results for exploitation and vandalism can be
explained by our conservative approach that prioritizes safety
(non-interference) over security. Overall, the results show a

considerable improvement over the original grid-based hierar-
chical scheme.

VII. RELATED WORK

Kaligineedi et al. [23] introduce methods to detect malicious
users that provide false measurements in collaborative sensing.
The proposal includes pre-filtering of outlying sensing data,
and a strategy to assign trust factors for weighting measure-
ments and potentially omitting some nodes. Our solution is
similar to their work in that it is based on outlier detection
and weighting mechanisms. However, their proposal does not
account for spatial variability of spectrum availability and only
focuses on detection in a small region. Their solution falls
short in cases where attackers constitute a large fraction of
nodes in a cell. In addition, their approach and evaluation only
considers simple ‘always yes’ and ‘always no’ attackers and
unlike us does not consider sophisticated attackers.

Chen et al. [12] also consider malicious false reporting in
collaborative sensing. They propose a weighted, reputation-
based data fusion technique based on the sequential probability
ratio test. The proposed scheme depends on apriori knowledge
of the reporting values of radios given the true state of
the world. It also does not account for spatial variability of
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Fig. 7. Exploitation (left) and Vandalism (right) by Smart Omniscient Attackers. Arrows represent change of final detection outcome based on extensions
in Section VI.

spectrum availability and only focuses on detection in a small
region. In addition, the proposed mechanism is designed for
hard-combining collaboration techniques, whereas we consider
soft-combining techniques. Min et al. [31] propose grouping
sensors in close proximity into clusters, and use shadow fading
correlation-based filters to exclude or minimize the effect of
abnormal sensor reports in detecting digital TV primaries.
Their work elegantly considers shadow-fading correlation
among nearby sensors, however, it only works when attackers
constitute less than 1/3 of the nodes in a cluster, and is not
able to detect regions that are dominated by attackers.

A number of proposals motivate and identify various se-
curity issues in cognitive radio networks [11], [14], [36].
Although the attacks we consider, or a variation of them, are
mentioned in these works and high-level ideas for mitigating
them are proposed, none of them provide detailed solutions
for addressing them.

A general area of related work is the broad subject of
secure data aggregation in wireless sensor networks. A com-
prehensive survey on secure data aggregation can be found
in [8]. Among the extensive body of work in this area, the
following are the most relevant to this work. Wagner coined
the term resilient aggregation [40], where he studies resilience
of various aggregators to malicious nodes in an analytical
framework based on statistical estimation theory and robust
statistics. We benefit from the problem setting as well as the
analysis technique in parts of this work, however, his work
is limited to small regions and does not consider outlier-
detection or combination of estimators as we do. Hur et
al. [22] propose a trust-based framework in a grid in which
each sensor builds trust values for neighbors and reports
them to the local aggregator. Our work is similar to this
work in that it is based on a grid. Their solution, however,
does not provide a global view for a centralized aggregator,
and also cannot identify compromised ‘regions.’ In addition,
their work does not consider statistical propagation models
and uncertainties in the data. Zhang et al. [42] propose a
framework that identifies readings not statistically consistent

with the distribution of readings in a cluster of nearby sensors.
Their proposal, however, is local, that is only works for a small
region. For example, it is not able to handle situations where
attacker can compromise a large fraction of the nodes in a
cluster. It also assumes the data comes from a distribution
in the time domain, which in not a valid assumption in our
domain.

Ganeriwal et al. [15] propose a reputation-based trust frame-
work, where each sensor maintains a local reputation and trust
for its neighbors. This work is very general, and is mainly
focused on local decision making at each sensor. It is also
local and peer to peer, meaning that the reputation is typically
considered to be updated based on the quality of pairwise
interactions between nodes.

Insider attacker detection in wireless networks is another
area of related work. This problem has been explored in a
general setting [9], [21], [43] as well as more specific contexts
such as insider jammers [27]. As an illustrative example
in the general context of sensor networks, Liu et al. [30]
propose a solution in which each node builds a distribution
of the observed measurements around it and flags deviating
neighbors as insider attackers. This work is again local and
peer to peer and does not work in areas with more than 25%
attackers. Krishnamachari et al. [26] consider fault tolerant
event region detection in sensor networks using a Bayesian
framework. This work differs from our work in that it only
considers faulty nodes that are not necessarily malicious, the
faulty nodes are assumed to be uniformly spread, and the
nodes itself participates in the detection process.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied malicious false reporting attacks on
collaborative sensing in the form of crowdsourcing spectrum
data. We provided a solution that is applicable to large regions
where no single ground truth is viable at all places. Our
solution uses outlier detection at two levels: (1) intra-cell
among individual CR measurements and (2) inter-cell by cor-
roboration among cells in a hierarchical structure. The results
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are used in a weighted detection mechanism, in conjunction
with a median-based framework, to eliminate or lower the
effect of the attackers. We provided a novel framework for
deriving the dispute thresholds for outlier detection based
on the underlying propagation and uncertainty model of the
signal power. We provided analytical and simulation results
to quantify the extent to which attackers can succeed. The
attackers in the simulations ranged from ones with very little
sophistication, to those with complete knowledge about their
neighbors and the detection mechanism (who use it to avoid
detection). Our results showed that in cases where attackers
are not near the border of the primary’s protection area, we can
detect and fully eliminate the effect attackers in a particular
region. For our worst-case scenarios, that is cells that are close
to the border of primary’s protection area in which attackers
employ smart strategies, we can nullify the effect of up to 41%
of attackers nodes.

In future, we will provide further analytical results and
a disciplined framework for quantifying the percentage of
compromised nodes that can flip the detection outcome as a
function of distance to the transmitter. We will also consider
more sophisticated uncertainty models (e.g. spatially correlated
shadowing). We will also consider cases in which multiple
primaries co-exist.
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