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ABSTRACT
Monitoring traffic density and speed helps to better manage traffic
flows and plan transportation infrastructure and policy. In this pa-
per, we present techniques to measure traffic density and speed in
unlaned traffic, prevalent in developing countries, and apply those
techniques to better understand traffic patterns in Bengaluru, India.
Our techniques, based on video processing of traffic, result in about
11% average error for density and speed compared to manually-
observed ground truth values. Though we started with intuitive
and straight-forward image processing tools, due to a myriad of
non-trivial issues posed by the heterogeneous and chaotic traffic
in Bengaluru, our techniques have grown to be non-obvious. We
describe the techniques and their evaluation, with details of why
simpler methods failed under various circumstances. We also ap-
ply our techniques to quantify the congestion during peak hours
and to estimate the gains achievable by shifting a fraction of traffic
to other time periods. Finally, we measure the fundamental curves
of transportation engineering, relating speed vs. density and flow
vs. speed, which are integral tools for policy makers.

1. INTRODUCTION
Traffic congestion leads to long and unpredictable commute times,

environmental pollution and fuel waste. These negative effects are
more acute in developing countries like India, where infrastructure
growth is slow because of cost and bureaucratic issues. Intelli-
gent traffic management and better access to traffic information for
commuters can help alleviate congestion issues to a certain extent.
Static sensors like loop detectors [2, 11, 13], video cameras [6,
7] and mobile sensors like GPS in vehicles [8, 9, 26, 31, 33] are
used for traffic monitoring purposes in developed contexts. Most
of these techniques, however, are only suited for lane based orderly
traffic in developed countries where the penetration of GPS devices
and smartphones is also sufficiently high.

Traffic in developing countries has significantly different charac-
teristics from traffic in developed countries. High heterogeneity in
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vehicle sizes makes defining lanes cumbersome. On a typical road
in India, all vehicles from buses to two-wheelers pack themselves
together to utilize the available road infrastructure. Traditional traf-
fic sensors have been designed to work for laned traffic, and without
careful modification to sensor placement and sensor data process-
ing, they are not suitable for monitoring unlaned traffic. We have
anecdotal evidence of this shortcoming, as the image processing
software from Bosch gives 55% median error on vehicle counts at
the Bengaluru traffic management center [24], and hence has been
replaced by manual monitoring of the video feeds to ensure accu-
racy.

There have been several efforts to design clean slate solutions for
unlaned traffic monitoring. One approach is to detect congestion
based on acoustic sensing [29], since chaotic traffic is often noisy.
Another system measures traffic density (the fraction of roadway
occupied by vehicles) based on variations in an RF signal between
wireless sensors placed on either side of the road [28]. This sys-
tem infers the length of traffic queues from an array of such sensors
leading up to a traffic light. These methods are insufficient because
firstly, they only yield a binary classification of traffic densities into
two-states: congested or free-flowing. Secondly, both methods re-
quire significant manual overhead to train the sensors for different
road characteristics [30].

There have been several initial attempts to process images and
videos of chaotic traffic [17, 18, 20, 25]. Jain et al. give two al-
gorithms [17, 18] to produce a binary classification of traffic den-
sity, one algorithm for daylight conditions and the other for night-
time. This research makes significant contributions as the tech-
niques work on low-quality webcam images, and not traditional
high-quality video feeds from traffic cameras. The algorithm for
nighttime is intuitive, but the algorithm for daytime processing is
more complicated, using a histogram of grayscale images to clas-
sify traffic which requires manual training; ultimately, this algo-
rithm is similarly limited to a binary classification of traffic. There
has not been an empirical evaluation of the accuracy of the algo-
rithm yet, which leaves uncertainty about its effectiveness in de-
tecting vehicles that match the grayscale color of the road.

Some techniques [12, 19] track vehicle features to calculate ve-
hicle trajectories across frames and have been thoroughly evalu-
ated in lane-based orderly traffic. Similar feature-based tracking
in unlaned traffic is done by Trazer [20]. It uses Haar features to
detect vehicles anywhere in a given frame and classifies each ve-
hicle into one of five categories: heavy vehicles, medium vehicles,
small four-wheelers, auto rickshaws and two-wheelers. Searching
for Haar features over an entire frame needs 8-core processors to
run in real time, 4 GB RAM and a 650 GB hard-drive in both on-
line and offline computation. Also, in high traffic density, vehicle
occlusion makes feature matching challenging.



Figure 1: Our video recorder mounted at Indiranagar, Malleshwaram, Mekhri Circle and Windsor, in Bengaluru, India.

Quinn and Nakibuule [25] describe a preliminary effort to com-
pute and group motion vectors between consecutive video frames
to show position and velocity of vehicle motion. There has not yet
been an evaluation comparing the velocity values to ground truth
values to evaluate accuracy of the system.

Due to the limitations of the current state of the art detailed
above, we present in this paper techniques to measure both traf-
fic density and speed from video processing of chaotic traffic in the
Indian city of Bengaluru. Our density measures are continuous, im-
proving upon binary classifications of free-flow and congested and
yielding the precise fraction of the road occupied. The density com-
putations are done in real-time on dual-core processors and hence
are directly usable for traffic monitoring in control rooms like Ma-
punity [4]. The density measures show about 11% error relative to
manual ground-truth measurements and are robust across vehicles
such as auto rickshaws, buses, cars, and two-wheelers. Our work
can be enhanced with prior research on automated camera calibra-
tion [14], as currently we do manual calibration. Also, our density
algorithm works under daylight conditions, and can be combined
with prior research on night vision [10, 18].

Our speed measurement, though computationally intensive, also
gives errors of about 11% relative to manually measured speed val-
ues. Along with the techniques to measure density, speed and their
corresponding evaluations, a major contribution in this paper is the
detailed description of the non-trivial issues we faced arising from
heterogeneous vehicles and chaotic traffic conditions.

We conclude by presenting some applications of these techniques.
Using 15 hours of empirical data from a certain road in Bengaluru,
we calculate the morning peak hours from our density measure-
ments. Such empirical information can incentivize commuters to
shift their travel times to non-peak hours, an idea proposed by
Merugu et al. [23]. Using the same data, we also present empir-
ical plots for the fundamental curves of transportation engineering
relating density vs. speed and flow vs. speed. Such empirical
transportation curves can give a better understanding of traffic con-
gestion and throughput. Though researchers have tried to charac-
terize and model Indian traffic [21, 22, 27], efforts have either been
simulation-based or limited in scale because of the manual pro-
cessing overhead required, which we overcome with our automated
density and speed measurement techniques.

2. EXPERIMENTAL METHODOLOGY
Our collaboration with Mapunity [4] gave us access to video data

from 180 traffic cameras in Bengaluru [3]. Though these are PTZ
cameras located at different road junctions that can rotate to focus
on traffic flow on a particular incoming or outgoing road at that
junction, the cameras’ primary purpose currently is to manually
observe traffic violators to penalize and fine them, especially those
who jump red lights. As a result, all of the cameras are pointed at
the intersection (see Figure 2), and not at any incoming or outgoing
road. Because of this limitation, we were unable to use those videos

Figure 2: Police cameras at (a) Aurobindo, (b) Udipi junctions.

for our study to measure density and speed of traffic on Bengaluru
roads.

To capture traffic movements, we used a Canon FS100 cam-
corder mounted on a tripod capturing video at 25 fps from different
roads around Bengaluru. The FS100 is a low-end camcorder, re-
leased in 2008, that has a resolution of 720x576; it is notable that
our technique does not depend on high-end video capture. In order
to get a full view of traffic, the cameras were mounted on foot-
bridges and overpasses above the road. The pictures of the camera
mounting at four different locations in Bengaluru can be seen in
Figure 1. After capturing traffic flows, the videos were brought
back to our lab for offline processing on an IBM R61 Thinkpad
laptop. OpenCV [5], the open source video and image processing
library from Intel, was used to process the videos.

3. ESTIMATING TRAFFIC DENSITY
In this section, we describe our technique for measuring traffic

density. We start our discussion by describing the final algorithm,
and then proceed to describe how we improve upon simpler and
more intuitive methods to account for various challenges inherent
to analyzing traffic in India. Finally we evaluate our method against
manually computed ground truth values to evaluate the accuracy of
our final algorithm.

3.1 Density Measurement Technique
To compute traffic density, we place a colored strip, either painted

or taped, horizontally across the surface on the road (see Figure 3).
The strip color is in stark contrast to the color of the road, such
as yellow or white against traditionally gray roads. In our de-
ployments, we used yellow-colored duct tape stuck manually to
the road, which remained in place for more than two days even in
spite of heavy traffic moving over it. Our camera, mounted above
the road and pointed downward, captured traffic driving over the
yellow tape which was later processed by our algorithm, described
below. The contrasting colors help indicate the presence and move-
ment of various vehicle types over the tape. Since many traffic-
related instructions like parking restrictions are painted on the road
in yellow, drivers did not pay much attention to the tape. Had we



Figure 3: Road (a) before and (b) after perspective correction.

used a more out-of-place color, such as fluorescent green, that may
have caused more distraction or alteration to traffic patterns.

Our basic strategy for computing density is to calculate the frac-
tion of the tape that is obscured by vehicles on every frame. While
this measurement reflects the density for only a one-dimensional
strip of the frame, when averaged over time the result is propor-
tional to the full two-dimensional frame density, assuming that ve-
hicles cross the tape at their average speed for the frame.

To detect obfuscation of the tape, we apply two separate tests.
The first test detects vehicles that have uniform coloration on their
roofs, such as buses, cars, and auto rickshaws. When such a ve-
hicle passes over the tape, it obscures the color contrast between
the tape and the road. That is, without obfuscation there are neigh-
boring pixels that have very different colors (yellow for the tape,
black for the road), but with obfuscation both of these pixels are
the same color (the color of the vehicle). We detect such cases by
differencing the pixels immediately inside and outside the tape, at
each position across the road; if the difference exceeds a threshold,
we report the presence of a vehicle at the corresponding position.

The second test detects vehicles that do not have a uniform col-
oration, including two-wheelers, open trucks, and the backs/sides
of other vehicles. Because there is spatial variation in the vehicle’s
color, this implies that there is temporal variation in color as the ve-
hicle travels over a fixed set of pixels. Thus, we detect the presence
of the vehicle by detecting changes in coloration – for a fixed set
of pixels overlapping the tape – between one frame and the next.
Overall, a vehicle is reported if it is detected by either of the tests
above.

After estimating the fraction of tape that is obscured by vehi-
cles, we adjust this estimate to compensate for systematic bias rel-
ative to ground truth values. This adjustment is needed for two
reasons. First, our algorithm still does not detect a fraction of some
vehicles, leading to a systematic under-estimate of vehicle density.
Second, when we extrapolate from one-dimensional density to two-
dimensional density, an adjustment is needed to normalize the mea-
surement scale. We implement the adjustment using a simple linear
model: given raw density r, the final density d = ar + b, where
a and b are learned using a training set of ground truth values. We
describe the details of the training and testing procedures in our
evaluation sections.

Our algorithm is formalized with pseudocode in Figure 4. On
line 2, as the algorithm processes each frame of the video, it per-
forms a perspective correction to make the resulting frame look
more similar to one that is taken vertically from above (see Fig-
ure 3). On line 3, the algorithm divides the tape into discrete pieces,
or rectangles; the overall density reported for a frame is the frac-
tion of rectangles that are obscured by a vehicle. As depicted in
Figure 5, each rectangle of the tape is paired with an adjacent rect-
angle of the road, in order to test the color contrast. We use the
notation {Bi,Yi} to denote these corresponding black and yellow
rectangle pairs. Line 4 applies both of the tests described earlier:

1: function COMPUTE-DENSITY
2: Correct perspective error of camera for frame N (shown

in Figure 3).
3: Divide the rectangular yellow tape and a parallel black

rectangle of the road, adjacent to the tape, into vertical
rectangle pairs {Bi,Yi} (shown in Figure 5).

4: For each {Bi, Yi} pair, consider the pair occupied if either:
(i) the RGB difference between Bi and Yi is below a

threshold C, or
(ii) the RGB difference between Yi in frame N and Yi

in frame N − 1 is more than a threshold T .
5: Compute raw density r as ratio of occupied rectangle pairs

to total rectangle pairs.
6: Compute corrected density d = ar + b, where a and b are

learned from training data.
7: end function

Figure 4: Algorithm to compute density for frame N .

Figure 5: Vertical pairs of black and yellow rectangles.

(i) testing changes in color between the tape and the road, and (ii)
testing changes in color from one frame to the next. Line 5 com-
putes the raw frame density in terms of the fraction of rectangles
that are obscured. Line 6 computes the corrected frame density
using a linear model, in which the parameters are gleaned from
training data.

3.2 How We Arrived at this Technique
Though the algorithm described above is complex and non-intuitive,

the complexities are necessary to accurately measure traffic density
due to several challenges for image processing. Here we describe
the simpler methods that we tried, the obstacles we encountered,
and the solutions we came up with to arrive at the final algorithm.

Background subtraction does not detect buses
Initially, we tried background subtraction, a well-known image pro-
cessing tool. In this method, the foreground pixels in frame N are
calculated by subtracting a background frame from it. The den-
sity of frame N is calculated by the ratio of foreground pixels to
total pixels in the frame. The background frame was manually se-
lected as a frame containing no vehicles to serve as the template,
where any pixel differences indicate a vehicle. This simple intuitive
method gave disastrous results because of a peculiar characteristic
of buses in Bengaluru.

Bengaluru buses have a gray cover on their roofs, probably as a
protection from heat and rain. Online image searches revealed sim-
ilar characteristics of buses in other Indian cities. This gray color is
almost the same color as the road, and therefore using background
subtraction does not detect a vehicle. In fact, when two buses stand
side by side occupying the entire road as shown in Figure 6, back-
ground subtraction measures no density (Figure 7).

Simple yellow-tape analysis is too sensitive to lighting
In order to handle the issue of gray bus tops, we introduced the
novel idea of using a high-contrast strip of tape on the road. As de-
scribed previously, we defined vertical rectangle pairs {Bi,Yi} and
computed density as the ratio of occupied rectangle pairs to total



Figure 6: Video excerpt with two buses, a
challenging case for density calculation.
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Figure 7: Background subtraction does
not detect the buses in video excerpt.
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Figure 8: Yellow tape analysis (simple al-
gorithm, not our best) detects the buses.

Figure 9: A bus with its shadow. Simple techniques are sensi-
tive to lighting conditions and may count the shadow as part of
the vehicle; our technique reports the correct density.

rectangle pairs. Our initial approach to detecting “occupied” pairs
was very simple. Building on the idea of background subtraction,
we manually selected a background frame without any vehicles,
containing only the empty road with the tape. For a frame N , if the
RGB color values of pixels in either Bi or Yi differed from corre-
sponding pixels in the background frame by more than a threshold
T , the pair {Bi,Yi} was considered occupied in that frame, indicat-
ing the presence of a vehicle. This approach detects gray buses due
to changes observed to the yellow rectangle Yi. It detects auto rick-
shaws (which are yellow) due to changes to the black rectangle Bi.
The algorithm also detects vehicles of other colors, as they change
the appearance of both rectangles.

This simple solution handled the issue of gray bus roofs, as seen
from Figure 8 where density in a frame with two buses is mea-
sured accurately. However, the shortcoming of this method is that
it is not robust to variable lighting conditions, in particular shad-
ows. Surprisingly, the shadows of vehicles caused the pixel colors
to change so much that no value of the threshold T was able to filter
the shadows and detect the vehicles accurately. Depending on the
angle of light, sometimes density was measured to be higher than
the actual density because the shadow made the vehicles look big-
ger than they actually were. An example of a vehicle with shadow
is shown in Figure 9. Also, for both this technique and for back-
ground subtraction, the manual selection of the background frame
was tricky. Lighting conditions changed over time, which meant an
empty frame under different lighting conditions could exhibit color
differences relative to the background frame, leading to non-zero
density measurement.

Our final algorithm is robust to these lighting variations by ex-
amining only the difference in color between black and yellow rect-
angles, as opposed to comparing either rectangle to an absolute
threshold. For example, in Figure 9, we do not mistake the shadow
as being part of the vehicle.

3.3 Evaluation
To evaluate our technique, we use two levels of analysis. The

first considers individual cars and compares the fraction of the tape
obscured relative to manually-measured values. The second con-

siders a longer period of general traffic and compares to a different
ground truth metric: the fraction of the entire frame that is occupied
by vehicles.

Individual vehicles
We consider ten vehicles of each type (auto rickshaws, buses, cars,
and two-wheelers), for a total of 40 vehicles. To simplify this anal-
ysis, we restrict our attention to vehicles that pass through the field
of view alone (i.e., there is no other vehicle visible in frames where
they are visible).

Ground truth: Our ground truth in this comparison is the frac-
tion of the tape that is obscured on each frame, as collected by man-
ual measurements. To collect this data, we examined each frame of
the video in which a vehicle overlapped the tape (488 frames total)
and measured the number of pixels obscured (by any part of the
vehicle) using a screen capture tool.

Automated algorithm: The automated algorithm worked as de-
scribed in the prior section, and was applied to every frame in which
the vehicle appeared (including frames in which the vehicle did not
overlap the tape). Where indicated below, we aggregated the per-
frame density by vehicle type to obtain an average density for each
vehicle in the frame. For illustrative purposes, we did not apply
any correction (line 6 of the algorithm) except in computing the
relative error rates; in this case, we trained the model on the per-
vehicle ground truth densities using least-squares linear regression
and leave-one-out cross validation.

Results: First we describe the raw density calculations (from
line 5 of the algorithm), in order to understand the accuracy of the
basic technique. Then we use the corrected density estimates in
order to compute the error rate of our technique.

Figure 10 illustrates the raw fraction of the tape obscured on a
frame-by-frame basis, using both automated and manual measure-
ments. We observe a good correlation (R2 = 0.81) between the
calculated values and the ground truth. Errors originate from two
sources. First, some parts of vehicles are not detected as obscur-
ing the tape, which results in points that fall below the trend line in
Figure 10. Second, a handful of shadows are detected as being part
of the vehicle, which results in points along the y axis in Figure 10.

To estimate the impact of these frame-level errors on the aggre-
gate density measurement, we average raw density values across
frames corresponding to a single vehicle. Results of this per-vehicle
density comparison appear in Figure 11. At the granularity of vehi-
cles, we observe a much higher correlation (R2 = 0.998) between
calculated and ground truth values.

The error rates1 of our final (corrected) density calculations are
shown in Table 1. Overall, our estimates show an average error rate
1Throughout this paper, the error rate e for a single calculation
is defined as e = |(c − t)/t|, where c represents the calculated
value and t represents the true value. When averaging the error rate
across multiple predictions, we ignore the few cases where t = 0.
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Figure 10: Comparison of frame-level density calculations with
ground-truth values. Density estimates represent raw values
(line 5 of algorithm), prior to correction.

vehicle type average error median error

auto rickshaws 9.3% 5.4%

bus 1.8% 1.2%

car 9.6% 11.4%

two-wheelers 13.8% 15.0%

all vehicles 10.9% 5.0%

Table 1: Density error rates per vehicle type. Densities rep-
resent corrected values, separately trained and tested for each
row of the table, using the vehicle type(s) in the first column.

of 10.9%, and a median error rate of 5.0%. Error rates are lowest
for buses (1-2%) and highest for two-wheelers (14-15%) due to the
size of those vehicles; for smaller vehicles, a fixed amount of error
results in larger error rate.

General traffic
In this section we expand the evaluation to a more realistic scenario,
in two respects. First, we consider general traffic, in which many
vehicles may be within the field of view at the same time. Sec-
ond, we estimate the density for the full two-dimensional frame,
and compare to corresponding ground truth values, rather than re-
stricting our attention to the fraction of tape that is occupied.

Our analysis utilizes three video segments from Malleshwaram.
In total, the videos last 130 seconds and include 122 vehicles. Con-
gestion varied across the segments, but was generally medium to
light. We did not evaluate bumper-to-bumper, stand-still traffic due
to the overhead of manual data collection; stand-still traffic requires
a large window of samples in order for the one-dimensional density
measured at the tape to match the two-dimensional density of the
frame.

Ground truth: To ascertain the ground-truth density, we man-
ually analyzed each frame of the videos (about 3250 frames to-
tal). After correcting the videos for perspective (as per Figure 3),
we measured the width and length of each vehicle, as well as the
frames in which points of interest on the vehicle (front and back
edges) both entered and exited the frame. Assuming constant vehi-
cle motion, this information is sufficient to calculate the fraction of
each vehicle that is visible on each frame.

One limitation of our ground-truth data is due to the camera per-
spective. Because we were not looking straight down on traffic, our
videos include a view of the back side of vehicles (even following
perspective correction). Due to the difficulty of automatically dis-
tinguishing between the top and the back of vehicles, for the sake
of this comparison we counted both the top and back of vehicles as
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Figure 11: Comparison of vehicle-level density calculations
with ground-truth values. Density estimates represent raw val-
ues (line 5 of algorithm), prior to correction.

part of the ground truth density. This introduces bias in two ways:
first, taller vehicles are reported to consume more space than they
actually do, and second, vehicles appear to grow as they progress
across the frame. For simplicity, we represent the vehicle size as
constant across frames; this size is calculated as the average of the
size upon entering the frame and the size upon exiting the frame.

Automated algorithm: For automatic calculation of density, we
started with the algorithm described previously to estimate the raw
fraction of tape that was obscured by vehicles on each frame. In
order to extrapolate to the density of a two-dimensional frame, we
simply average the one-dimensional densities over a window of val-
ues. We also make a small adjustment to compensate for the fact
that the tape was at the bottom of the frame: to estimate the full
frame density at frame N , we consider the tape values averaged
over a window centered at N − 7. Also, we correct the final esti-
mates by training against ground truth values for full-frame densi-
ties (using linear regression and leave-one-out cross validation).

Results: Results of the comparison are illustrated in Figure 12.
Our technique performs well, eliciting a good correlation between
predicted and true densities (R2 = 0.87). The average and median
error rates are 18% and 15%, respectively. This comparison uti-
lizes a window size of 6s, which is about the largest window that is
meaningful using our limited ground truth data.

Because our algorithm relies on averaging to extend the mea-
sured one-dimensional density to the full two-dimensional frame,
our results improve considerably with increasing window sizes.
This trend is illustrated in Figure 13, where average error rates de-
crease roughly ten-fold as the window grows from 1s to 6s. In the
applications described later, we use a window size of 30s, which
should yield even better accuracies for our technique.

4. ESTIMATING TRAFFIC SPEED
In this section we describe our speed estimation technique. Simi-

lar to our explanation of the density estimation technique in the pre-
vious section, we start by presenting the final algorithm followed by
a description of the inadequacies of simpler methods that prompted
our improvements culminating in the design of the final algorithm.
We conclude by evaluating the accuracy of our speed estimates rel-
ative to the manually observed ground truth.

4.1 Speed Estimation Technique
The algorithm to compute traffic speed for a frame N is given in

Figure 14. The goal is to find the displacement or offset between
pixels of two consecutive frames that maximizes the similarity be-
tween pixels of those two frames. In other words, if all pixels in
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frame N − 1 moved by that offset, then they would best match the
pixels in frame N .

We first correct perspective errors in both frames N − 1 and N .
Then we consider pixels PixelSet in frame N that have changed
by more than a threshold from the corresponding pixels in frame
N −1. This reduces the search space by ignoring stationary pixels,
where no new vehicles have entered and no old vehicles have left.
This also prevents mistaking the yellow tape for a car with speed
zero.

Then we consider pixels PixelSet’ in frame N−1, which contain
pixels within a search window distance from PixelSet. This search
window is chosen to reduce the search space to make computation
faster while still considering pixels at far enough distance to handle
high speed motion. With our 25 fps 720 by 576 pixels video, we
empirically found that a search window of 100 pixels is more than
sufficient to match vehicles moving at high speed.

The algorithm then finds the (x,y) offset between pixels PixelSet
in frame N and pixels PixelSet’ in frame N − 1, that minimizes
the total RGB difference over all pixels in PixelSet. This offset
represents the raw estimate of speed between frames N−1 and N .
Analogously to our density algorithm, we adjust the raw estimate
into a corrected value using a linear model based on training data,
which is returned from the algorithm.

4.2 How We Arrived at this Technique
Like density, our speed measurement technique also evolved from

simpler methods. Researchers previously have used motion vectors
to estimate vehicle motion [16, 25, 32]. As the embedded motion
vector values in MPEG2 videos are computed over a small search
space, for improved accuracy, we tried to compute motion vectors
between consecutive frames using OpenCV functions. The magni-

1: function COMPUTE-DIFF(frame 1, frame 2, pixelSet)
2: for each pixel p in pixelSet do
3: RGBdiff = RGBdiff + difference in RGB between p in

frame 1 and p in frame 2
4: end for
5: return RGBdiff
6: end function
7: function COMPUTE-SPEED(frame N − 1, frame N )
8: Correct perspective error of camera for both frames N − 1

and N (shown in Figure 3).
9: Let S be the set of pixels p s.t. RGB difference

between p in frame N − 1 and p in frame N is greater
than threshold T

10: Select the offset (i, j) within a search window, that
minimizes COMPUTE-DIFF(frame N − 1 shifted by
(i, j), frame N , S). The raw speed is set to j.

11: Compute the corrected speed s = aj + b, where a and b
are learned from training data.

12: return s
13: end function

Figure 14: Algorithm to compute speed for frame N .

tude of the motion vectors computed for each pixel in a frame, was
considered as the speed for that pixel.

Though moving vehicles were detected accurately using the OpenCV
motion vectors, when we looked at actual magnitudes of speeds,
and compared them to manually measured pixel movements be-
tween frames, we found the correlation to be extremely low (0.07
for one ground truth dataset). One challenge was that the motion
vectors were being computed independently for small blocks of
pixels; thus, pixels within a homogeneous region (such as roofs
of cars) might find a good match at a distance or direction different
than the velocity of traffic. Our algorithm can be understood as a
variation of MPEG2 motion estimation, but rather than consider-
ing small macroblocks, we consider a large set of pixels (those that
have changed between frames), thereby averting this problem.

It may be that techniques that track flow of features [12, 19, 20,
25] can give equal or better speed measurements than we present
here. However, we are unaware of any published evaluation of
feature-based techniques in unlaned traffic. The simplicity of our
technique may also make it more accessible to non-experts.

4.3 Evaluation
Similarly to the evaluation of density, the evaluation of our speed

algorithm proceeds in two steps: first for individual vehicles, and
then for general traffic.

Individual vehicles
We examine the speeds of 40 vehicles (10 of each type), using the
same data set as described in the density section.

Ground truth: We assume that each vehicle travels at a constant
rate, and calculate its speed based on the number of pixels traveled
in a given number of frames. We consider a window of frames that
is as large as possible while keeping the vehicle in view, and mea-
sure the number of pixels traveled during that time. To minimize
distortion due to perspective, we track a point on each vehicle that
is as close to the ground as possible (e.g., the lower-back edge, near
the rear tires).

One limitation of this data is that the assumption of constant ve-
hicle speed is sometimes violated, as vehicles accelerate or decel-
erate in response to upcoming road conditions.



y = 1.90x - 8.68

R² = 0.97
0

20

40

60

80

0 10 20 30 40

C
a

lc
 S

p
e

e
d

 (
k

m
/h

r)

True Speed (km/hr)

buses

y = 1.32x - 1.56

R² = 0.98
0

20

40

60

0 10 20 30 40

C
a

lc
 S

p
e

e
d

 (
k

m
/h

r)

True Speed (km/hr)

auto rickshaws

y = 1.33x - 8.29

R² = 0.96
0

20

40

60

0 10 20 30 40

C
a

lc
 S

p
e

e
d

 (
k

m
/h

r)

True Speed (km/hr)

cars

y = 1.20x - 0.91

R² = 1.00
0

20

40

60

0 10 20 30 40

C
a

lc
 S

p
e

e
d

 (
k

m
/h

r)

True Speed (km/hr)

two-wheelers

y = 1.26x + 0.47

R² = 0.48
0

20

40

60

80

0 10 20 30 40

C
a

lc
u

la
te

d
 S

p
e

e
d

 (
k

m
/h

r)
True Speed (km/hr)

all vehicle types

buses
auto rickshaws
cars
two-wheelers

Figure 15: Correlation between calculated and true speed values for individual vehicle types.

Automatic algorithm: To condense the algorithm’s per-frame
estimates into a single estimate for each vehicle, we use the median
value out of the frames in which the vehicle is present.

Results: The raw speeds (line 10 of the algorithm) are shown for
each vehicle type in Figure 15 and for all vehicle types combined
in Figure 16. The final error rates of corrected speed values are
summarized in Table 2.

These results reveal an interesting and important trend: the raw
speed values correlate better with ground truth for individual ve-
hicle types than they do for all vehicles combined. For individ-
ual vehicle types, the algorithm leads to correlations of at least
R2 = 0.96. However, for all vehicles combined, the correlations is
low (R2 = 0.48).

The cause of this trend is that different vehicles have different
heights, and taller vehicles appear faster to our algorithm because
they are closer to the camera. For example, in Figure 16, the speed
calculated for buses is high relative to all of the other vehicles, be-
cause buses are taller and closer to the camera.

Thus, in order for our technique to accurately measure the speed
of individual vehicles, it seems necessary to detect the vehicle’s
height. Perhaps this could be done with a stereo camera that cal-
culates the depth of each pixel, or an auxiliary device (such as a
rangefinder) that calculates distance to a target. Another approach
would be to utilize computer vision to detect the vehicle type, and
consequently infer the approximate height.

General traffic

Ground truth: We utilize the same data set as described in the
density evaluation. Our calculation of speed values is similar to the
single-vehicle case. However, in order to enable coding of more
ground-truth data with limited human resources, we utilized a more
approximate measurement. Instead of measuring the exact num-
ber of pixels traveled by cars, we measured the number of frames
needed to traverse the full field of view (576 pixels).

If a frame contains more than one vehicle, then we calculate the
overall speed for the frame as the weighted average of those vehicle
speeds, where the weights correspond to the ground-truth densities
for the vehicles. For example, if a bus and two-wheeler are travel-
ing at different rates in the same frame, then the overall speed will
give more weight to the speed of the bus, since it is a larger vehicle.
In computing the speed for a frame, we consider all vehicles that
have any part visible (including their back) within that frame.

Our coding has limited precision, as most vehicles require about
20 frames to cross the field of view. This implies an inherent impre-
cision of±2.5% for all vehicles, which is significant relative to our
algorithm’s error rate. In fact, one could argue that our algorithm
is, by construction, a better estimate of the true speed. Nonetheless,
we explore the correlation between both measurement techniques
as a rough validation of our technique.

Automated algorithm: We start by calculating the raw speed
values as described on line 10 of the algorithm. In order to discard
a handful of outlier values, we apply a five-point sliding median
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Figure 16: Correlation between calculated and true speed val-
ues for all vehicle types.

vehicle type average error median error

auto rickshaws 2.4% 2.4%

bus 1.7% 1.3%

car 1.3% 1.0%

two-wheelers 1.6% 1.7%

all vehicles 11.4% 11.2%

Table 2: Speed error rates per vehicle type. Speeds represent
corrected values, separately trained and tested for each row of
the table, using the vehicle type(s) in the first column.

across frames. Then, to compute the average speed over a window,
we consider all non-zero values within that window. If there are no
cars within a window, then we report the speed as zero. Finally, we
adjust the windowed speed values using a linear transformation,
analogous to line 11 of the algorithm. We learn the parameters
by training on windows of ground-truth speed values, using least
squares linear regression and leave-one-out cross-validation.

Results: Illustrated in Figure 17 are the results for a 6s window,
the largest that is meaningfully supported by our ground truth data
set. The algorithm performs accurately, with a high correlation to
ground truth (R2 = 0.94), a low average error (7.7%), and a low
median error (5.6%). Figure 18 shows that the error rate decreases
for larger window sizes, suggesting that the 30s window used in
our applications section is even more accurate than reported here.
These results are better than for the individual vehicle case because
there is a non-uniform distribution of vehicle types (in particular,
fewer buses) in real traffic.

5. APPLICATIONS
Having shown the accuracies of our density and speed measure-

ment techniques, we now present some possible applications. The
first application is to present current traffic conditions to commuters
to potentially affect their choice of travel time. The second appli-
cation is to compute the relationships between different traffic pa-
rameters like density, speed and flow.
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5.1 Application 1: Shifting Travel Times
The notion of using alternative routes to reduce travel time is a

well-known idea. In cities like Bengaluru, however, the lack of al-
ternative routes renders the strategy ineffective. Instead of choosing
different routes, Merugu et al. [23] proposed that commuters could
choose different travel times to reduce commute times. To further
the idea, this work also studied the concept of using economic in-
centives to encourage employees of a certain company to come to
their office earlier than their normal schedule.

To understand the attitude of commuters towards the idea of
shifting their travel times, we conducted a small survey. While
vehicles waited in a long queue at a red signal on Kasturba road
in Bengaluru, we polled drivers in stationary private vehicles about
their destination, their choice of travel time and whether they could
have traveled at a different time to avoid traffic. We conducted the
survey for 4.5 hours over 3 days and questioned 20 people, spend-
ing a minimum of 6 minutes with each person. Half of the people
answered that it was not possible for them to shift their travel time
because of several constraints at home or work, while the remaining
10 people said that for them it was possible to drive at a different
time. However, even those who were free to shift their travel time
were pessimistic about the effect of doing so. They felt that traf-
fic conditions would have been bad even at that different time. We
concluded that there is a gap between the commuters’ perceptions
of traffic patterns throughout the day and the reality, which a system
using our algorithm could address.

To empirically evaluate these commuters’ misgivings, we col-
lected 15 hours of video between 8:15am and 11:15am every day
on July 6th, 9th, 10th, 11th and 12th, 2012, on 5th Cross under-
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Figure 20: Traffic flux (20-minute moving average) from
8:15am to 11:15am on July 10.

pass at Malleshwaram in Bengaluru. These five dates covered every
day of the work week from Monday to Friday. The 5th Cross un-
derpass is close to a major city bus stop in a commercial area, and
is a busy stretch of road on weekdays. We manually noted the road
state and processed the collected videos offline to compute density
and speed.

Moving averages of frame densities and speeds over 20 minutes,
for 3 hours on July 10th, are shown in Figure 19. As the fig-
ure demonstrates, traffic density is low for the first hour, increases
until the worst congestion is observed between about 9:55am and
10:25am, and then decreases after 10:25am. The figure also demon-
strates the inverse relationship between speed and density. The pat-
tern of congestion was observed manually as well, and was similar
over all five days of data collection, though congestion was less on
July 9th for no observable reason.

Using Figure 19, we can revisit the question of commuter be-
havior. The figure shows that there are enough windows of time
where people, free to travel at alternate times, could travel and en-
counter much less congestion for this particular road stretch. It also
shows the empirical speed difference between free-flow and con-
gested traffic on this road. Thus the pessimism that the commuters
expressed in our interviews might sometimes result from a lack of
information about actual traffic situation. The current manual in-
spection of traffic feeds in Bengaluru, in the absence of automated
image processing techniques, can benefit from our techniques by
offering richer data with less effort. The end result would be to
provide commuters with accurate real-time or historical statistics to
help them make more informed decisions about their travel times.
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Figure 21: Speed vs. density (based on 30s moving averages).

5.2 Application 2: Fundamental Curves
We next seek to analyze the relationship among the different

traffic metrics like speed and density, and also flux, which is the
product of the previous two. From an individual commuter’s per-
spective, improving his or her own speed and hence commute time
matters the most. Hence he or she may choose to travel in a period
of low density. But from the perspective of traffic management, flux
or throughput is also important and higher flux enables handling of
more traffic at a particular intersection or road stretch. Thus higher
densities, if that translates to higher flux, might be preferred.

We first plot the flux values in Figure 20 for the same three hours
of data presented in Figure 19. As we see, the flux values during
periods of congestion (high density) are marginally lower than in
periods of free-flow (low density). Intuitively, an increase in den-
sity causes such a decrease in speed that the product of the two is
lower, than at low densities with high speeds.

We next compute density, speed and flux values for the video
data collected at Malleshwaram on July 10, which contains both
free-flow and congested traffic. After taking 30-second moving av-
erages of both speed and density, we average the speed values over
bins of 10% density values. The resulting speed vs. density plot is
shown in Figure 21. Similarly, we average the flux values over bins
of 10 speed values and the resulting flux vs. speed plot is shown in
Figure 22. This is the first attempt to plot these curves, also known
as the fundamental curves of transportation engineering [1], using
automated vision algorithms to collect empirical data on chaotic
and unlaned traffic in India.

The main observations that we make from Figures 21 and 22 are
as follows.

(1) The general shape of the curves in both figures matches the
theoretical relationships [1] as well as empirical relationships mea-
sured for laned traffic in Atlanta, Georgia, and California [15].
Speed decreases with increasing density in Figure 21. Flux values,
the product of speed and density, are low at low speeds with high
densities on the left part of Figure 22, and also low at high speeds
with low densities on the right. When both speed and density are
high enough, flux values are high in the middle.

(2) Though the general shape of the curves matches our expec-
tations, the exact nature of the curves might be interesting to study
in comparison to similar empirical graphs. For example, the maxi-
mum traffic speeds we observe are lower than in [15]. It is not clear
if this is an aspect of laned vs. unlaned traffic, or an artifact of our
observation point.

(3) An increase in speed is intended by commuters and traffic
management authorities, while the latter might also want to in-
crease flux. Density is probably not a necessary metric to optimize
directly. To operate at higher speeds, we want to remain as far to
the left as possible in Figure 21. For higher flux, say greater than
5 as shown by a horizontal line in Figure 22, speeds between 26
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Figure 22: Flux vs. speed (based on 30s moving averages).

and 38 km/hr are needed, as shown by vertical lines. Such speeds,
as seen by dotted lines in Figure 21, will require the density to be
approximately 40% or below.

(4) Though the maximum densities in Figure 21 are seen to be
near 100%, such high density values occur very infrequently. Fig-
ure 23 illustrates the fraction of overall flux that appears in each
of the binned density ranges for the congested period (9:45am to
10:35am) on July 10. As seen from the figure, 95% of the flux cor-
responds to densities of less than 80%. Let’s consider a value of
75% density as typical of highly congested scenarios; this density
is shown to be common in Figure 23, though it is not visible in
Figure 19 due to the 20-minute moving average. Figure 21 shows
that decreasing the density from 75% to 55% can double the speed.
This is shown by an arrow inside the region of interest marked by a
rectangle.

This observation is interesting for understanding how a shift of
travel times can impact congested periods. If an additional 20% of
the total roadway is cleared by time-shifting commuters, and addi-
tional vehicles do not come to take their place, then speeds for the
remaining vehicles can improve considerably. This phenomenon of
a small number of extra vehicles causing congestion collapse was
also observed by Jain et al. [18]. The feasibility of imposing such
shifts in travel times to positively impact congestion, using either
incentives or congestion pricing, will be interesting to explore.

The final question we consider is as follows: By how much would
speeds improve, over a fixed period on a given day, if the total
flux or throughput during that period is re-distributed with con-
stant speed and density? This question speaks to the “best case
scenario” of traffic control, in which rush hours are eliminated and
traffic speeds increase while maintaining the same volume of trans-
portation.

To address this question, we utilize 3 hours of data from July
10. Figure 24 plots the original distribution of speeds during this
time period. Observations from 30s windows are sorted by speed
and aggregated according to their flux. We find the majority (about
60%) of flux during this period was at 20 to 30 km/hr. To estimate
the impact of spreading out the flux, we first calculate the average
flux for the time period: 5.04. Then, Figure 25 plots the distribu-
tion of speeds observed for similar values of flux (between 4.5 and
5.5). The figure shows that speeds are typically above 35 km/hr,
representing a modest improvement for commuters. It remains a
question for future work as to how flux can be regulated with suffi-
cient precision to enable this benefit.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we present techniques to estimate traffic density

and speed from video analysis of chaotic unlaned traffic preva-
lent in developing countries. Our methods are accurate to within
about 11% of manually measured speed and density values. We
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age of flux that exhibited given speeds.
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Figure 25: For 30s windows with flux
between 4.5 - 5.5 on July 10, percentage
of total flux that exhibited given speeds.

also present some applications for our methods in detecting peak
traffic hours on a road and computing empirical relations between
traffic parameters like density, speed and flow.

There are several possible extensions to our work. First, our al-
gorithms were trained and tested in a single location and during
similar times of day. Generalization across different locations and
variable lighting conditions is an important task for future work.
Second, the current method needs video transfer from the road to
a lab for processing. One possible extension could be to imple-
ment our algorithms on TI’s image processing platforms or GPUs
to reduce the video communication costs. If that proves infeasi-
ble, we could potentially reduce the overhead of wired connections
for video transfer and study whether wireless video transfer over
3G or 4G provides sufficient quality for video analysis. Third, we
have examined temporal variations of density at a fixed location.
It could be interesting to examine spatial variations of density at
a fixed time, to see how different parts of a road network affect
each other. Overall our methods give sufficiently high accuracy
and shows good promise to be useful in real application scenarios.
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