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ABSTRACT

As the study of large graphs over hundreds of gigabytes
becomes increasingly popular in cloud computing, effi-
ciency and programmability of large graph processing
tasks challenge existing tools. The inherent random ac-
cess pattern on the graph generates significant amount of
network traffic. Moreover, implementing custom logics
on the unstructured data in a distributed manner is often
a pain for graph analysts. To address these challenges,
we develop Surfer, a large graph processing engine in
the cloud. Surfer resolves the bottleneck of network traf-
fic with graph partitioning, which is specifically adapted
to the network environment of the cloud. To improve the
programmability, Surfer provides two basic primitives
as building blocks for high-level applications – MapRe-
duce and propagation. Surfer implements both primitives
with automatic optimizations on the partitioned graph.
We implement and evaluate Surfer with common graph
applications on the MSN social network and the syn-
thetic graphs with over 100GB each. Our experimental
results demonstrate the efficiency and programmability
of Surfer.

1 INTRODUCTION

Large graph processing has become popular for vari-
ous applications on the increasingly large web and so-
cial networks [12, 13]. Due to the ever increasing size of
graphs, application deployments are moving from small-
scale HPC servers [16] towards the cloud with massive
storage and parallelism [20, 13]. Most processing tasks
in these graph applications are batch operations in which
vertices and/or edges of the entire graph are accessed.
Examples of these tasks include PageRank [19], reverse
link graphs, two-hop friend lists, social network influ-
ence analysis [21], and recommender systems [1]. The
inherent random access pattern on the graph generates
significant amount of network traffic. Moreover, graph
applications tend to be highly customized according to
user requirements. Therefore, a large graph processing
engine with high efficiency and programmability is a
must. This motivates us to develop Surfer to enable de-
velopers to easily implement their custom logics, and to
adapt to the cloud environment for efficiency.

The state-of-the-art studies on building such an en-
gine is to investigate whether current distributed data-

intensive computing techniques in the cloud [5, 10] are
sufficient for the programmability and efficiency. Most
of these studies are built on top of MapReduce, origi-
nally proposed by Google, which has become a popu-
lar computing paradigm for processing huge amounts of
data in a massively parallel way. The representative sys-
tems include DISG [25] and PEGASUS [12, 13]. With
the mature software stacks, they can handle very large
graphs. For example, the experiments of PEGASUS han-
dle a web graph with up to 7 billion edges.

While leveraging existing techniques for graph pro-
cessing is clearly a step in the right direction, the ef-
ficiency can be hindered by their obliviousness to the
graph structure. The underlying data model in MapRe-
duce, GFS [6], is flat, making it ideal for handling the
vertex oriented tasks on a large graph, e.g., filtering the
vertices with a certain degree. However, we found that
the obliviousness of MapReduce to the graph structure
leads to huge network traffic in other tasks. For example,
if we want to compute the two-hop friend list for each ac-
count in the MSN social networks, every vertex must first
send its friends to each of its neighbors, then each vertex
combines the friend lists of its neighbors. Implemented
with MapReduce, this operation results in huge network
traffic by shuffling the vertices without the knowledge of
the graph structure.

A traditional way of reducing data shuffling in dis-
tributed graph processing is graph partitioning [18].
Graph partitioning minimizes the total number of cross-
partition edges among partitions in order to minimize
the data transfer along the edges. Thus, Surfer stores
the graph into partitions, as opposed to a flat storage in
MapReduce. However, adopting MapReduce on the par-
titioned graph does not solve all the problems in the effi-
ciency and programmability.

First, storing and processing the partitioned graph
needs to be revisited in the cloud network environment.
The cloud network environment is different from those
in previous studies [16, 14], e.g., Cray supercomputers
or a small-scale cluster. The network bandwidth is often
the same for every machine pair in a small-scale cluster.
However, the network bandwidth of the cloud environ-
ment is uneven among different machine pairs. One ex-
ample of the bandwidth unevenness is caused by the net-
work topology in the cloud. Current cloud infrastructures

1



are often based on tree topology [7]. Machines are first
grouped into pods, and then pods are connected higher-
level switches. The intra-pod bandwidth is much higher
than the cross-pod bandwidth.

Second, MapReduce can not fully exploit the data lo-
cality on the partitioned graph, for example, data shuf-
fling after the Map stage is usually hash partitioning,
which is oblivious to the graph partitions. Even worse,
handling on the partitioned graph increases the program-
ming complexity. Taking a graph partition as input to
MapReduce, developers have to handle tedious imple-
mentation details such as graph partitions and boundaries
in their custom code.

These problems motivate us to look for the right
scheme for partitioning and storing the graph, and the
right abstraction on graph processing with partitioned
graph.

As for graph partitioning, we develop a bandwidth
aware graph partitioning algorithm to adapt different
bandwidth requirements in the process of graph parti-
tioning to the network bandwidth unevenness. The algo-
rithm models the machines used for graph processing as
a complete undirected graph (namely machine graph):
the machine as vertex, and the bandwidth between any
two machines as the weight. The bandwidth aware algo-
rithm recursively partitions the data graph with bisection,
and partitions the machine graph with bisection corre-
spondingly. The bisection on the data graph is performed
with the corresponding set of machines selected from the
bisection on the machine graph. The recursion continues
until the data graph partition can fit into the main mem-
ory. This method adapts the number of cross-partition
edges in the recursion of partitioning the data graph to
the aggregated amount of bandwidth among machines in
the recursion of partitioning the machine graph.

To exploit the locality on graph partitions, we intro-
duce iterative propagation to abstract the access pattern
of the batch processing on the graph. This idea is inspired
by brief propagation [22], a popular iterative graph ac-
cess pattern on the graph. In an iteration, information is
transferred along each edge from a vertex to its neigh-
bors in the graph. Propagation represents the common
access pattern among many graph applications, such as
the two-hop friend computation and PageRank.

Surfer provides the propagation primitive to facili-
tate developers to implement their custom logics. To use
the primitive, developers define two functions – transfer
and combine. Transfer is used to export data from a ver-
tex to its neighbors, while combine is for processing the
received data at a vertex. We further develop automatic
optimizations to exploit the data locality of graph parti-
tions.

Overall, Surfer supports both MapReduce and prop-
agation on partitioned graph. Developers can choose ei-

ther primitive to implement their applications. We have
evaluated the efficiency of the two implementations on a
MSN social network and synthetic graphs of over 100GB
each. These graphs are over five times much larger than
those in the previous studies [13]. The experimental re-
sults demonstrate that 1) our bandwidth aware graph par-
titioning scheme improves the partitioning performance
by 39–55% under different simulated network topolo-
gies, and improves the graph processing by 6–29%; 2)
our optimizations in propagation reduce the network traf-
fic by 30–95%, and the total execution time by 30–85%;
3) propagation outperforms MapReduce with a perfor-
mance speedup of 1.7–5.8 times, and with much fewer
code lines by developers.

The rest of the paper is organized as follows. We
review the related work on large-scale data processing
in the cloud, graph processing and graph partitioning in
Section 2. Section 3 describes our architectural design of
Surfer. We present our distributed graph partitioning al-
gorithm in Section 4, followed by graph propagation in
Section 5. We present the experimental results in Sec-
tion 6, and conclude this paper in Section 7.

2 PRELIMINARY AND RELATED WORK

We review the preliminary and the related work that is
closely related to this study.

Cloud network. A cloud consists of tens of thou-
sands of connected commodity computers. Due to the
significant scale, the network environment in the cloud
differs to the small-scale cluster. The current cloud prac-
tice is to use the switch-based tree structure to inter-
connect the servers [7]. At the lowest level of the tree,
servers are placed in a pod (typically 20-80 servers) and
are connected to a pod switch. At the next higher level,
server pods are connected using core switches, each of
which connects up to a few hundred server pods. With the
tree topology, a two-level tree can support thousands of
servers. The key problem of the tree topology is the net-
work bandwidth of any machine pair is not uniform, de-
pending on the switch connecting the two machines. The
average inter-pod bandwidth is much lower than the aver-
age intra-pod bandwidth [10, 23]. Moreover, as commod-
ity computers evolve, the cloud evolves and becomes het-
erogenous among generations [24]. For example, current
main-stream network adaptors provide 1Gb/sec, and the
future ones with 10Gb/sec. These hardware factors in-
duce the unevenness in the network bandwidth between
any two machines in the cloud.

The unique network environment in the cloud mo-
tivates advanced network-centric optimizations in cloud
systems (such as multi-level data reduction along the
tree topology [5, 23]) and scheduling techniques [11].
More details on these cloud systems can be found in
Appendix A.1. This paper develops network-centric opti-



mizations for partitioning, storing and processing a large
graph.

Large graph processing. Batched processing on
large graphs have become hot recently, due to the re-
quirement on mining and processing those large graphs.
Examples include PageRank [19] and triangle count-
ing [21]. Surfer is designed to handle the batched graph
processing applications.

There is some related work on specific tasks on large
graph processing in the data center [12, 25]. MapRe-
duce [5] and other systems such as DryadLINQ [23]
were applied to evaluate the PageRank for ranking
the web graph. HADI [12] and PEGASUS [13] are
two recent graph processing implementations based on
Hadoop. HADI [12] estimates the diameter of the large
graph. PEGASUS [13] supports graph mining opera-
tions with a generalization of matrix-vector multiplica-
tion. DisG [25] is an ongoing project for the web graph
reconstruction using Hadoop. Pregel [20] is a project
within Google for large-scale graph processing, inspired
by the bulk synchronous parallel model. However, there
is no sufficient public information about Pregel for com-
parison. None of these engines utilizes graph partitions
or extracts the access pattern specially for the batched
processing on the graph, as Surfer does.

Graph partitioning. We denote a graph to be G =
(V,E), where V is a (finite) set of vertices, and E is a
(finite) set of edges representing the connection between
two vertices. The graph can be undirected or directed.
This study focuses on directed graphs.

We use Gi to denote a subgraph of G and Vi to denote
the set of vertices in Gi. We define a (non-overlapping)
partitioning of graph G, P (G), to be {G1, G2, ..., Gk},
where ∀ i ∈ [1...k], k ≤ |V |, ∪k

i=1Vi = V , Vi ∩ Vj = ∅,
where i ̸= j. We define an edge to be an inner-partition
edge if both its source and destination vertices belong to
the same partition, and a cross-partition edge otherwise.
A vertex is an inner vertex if it is not associated with any
cross-partition edge. Otherwise, the vertex is a boundary
vertex.

Graph partitioning is a well-studied problem in com-
binatorial optimization. The problem optimizes an input
objective function. The input objective function in this
study is to minimize the number of cross-partition edges
with the constraint of all partitions with similar num-
ber of edges. This is because, the total number of cross-
partition edges is a good indicator for the amount of
communication between partitions in distributed compu-
tation. It is an NP-complete problem [17]. Various heuris-
tics [17, 18] have been proposed to find an optimal parti-
tioning. Karypis et al. [16, 14] proposed a parallel algo-
rithm for multi-level graph partitioning, with a bisection
on each level. We refer readers to Appendix A.2 for more
details on graph bisection. Metis and ParMetis are serial
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and parallel software packages respectively for partition-
ing graphs [18].

Existing distributed graph partitioning algorithms,
e.g., ParMetis [18], are suboptimal in the cloud. In par-
ticular, they do not consider the unevenness of the net-
work bandwidth in the cloud. While they have demon-
strated very good performance on shared-memory archi-
tectures [16], unevenness of network bandwidth results
in deficiency in partitioning itself and further in stor-
ing and processing graph partitions. For example, the
two partitions with a relatively large number of cross-
partition edges should be co-located within a pod, instead
of storing in different pods. Thus, we adapt the parallel
version of graph partitioning [14] to the network envi-
ronment in the cloud.

3 SYSTEM OVERVIEW

Surfer allows developers to program data analysis tasks
with MapReduce and propagation as building blocks.
In particular, developers implement their custom logics
in the user-defined functions provided in MapReduce
and propagation. The distributed execution of these user-
defined functions is automatically handled by Surfer. De-
velopers do not need to worry about the underlying de-
tails on the distributed execution in the cloud.

The design of Surfer aims at scaling in a large number
of machines in the cloud. Figure 1 shows the system ar-
chitecture of Surfer. The system consists of a job sched-
uler, a job manager, and many slave nodes. A job can
consist of multiple tasks implemented with MapReduce
or propagation. The job scheduler maintains the cluster
membership and coordinates resource scheduling. The
job manager takes a user’s job as input, and executes
the job by dispatching the corresponding tasks to slave
nodes. Each slave node stores a part of graph data and
executes the tasks assigned by the job manager. We re-
fer readers to Appendix B for more details on the Surfer
architecture.

The data graph is divided into many partitions with
similar sizes. We present our distributed graph partition-
ing algorithm in Section 4. The partitions are stored on
slave machines. For reliability, each partition has three
replicas on different slave machines. The replication pro-
tocol is the same as that in GFS [6].



Surfer uses the adjacency list storage as graph stor-
age. The format is < ID , d, neighbors >, where ID is
the ID of the vertex, d is the degree of the vertex, and
neighbors contains the vertex IDs n0, ..., nd−1 of the
neighbor vertices.

In the following, we introduce MapReduce and prop-
agation implementations from the developer’s perspec-
tive.

3.1 MapReduce
With the partitioned graph, Surfer provides the map
function with a graph partition as input, in order to ex-
ploit the data locality within the graph partition. Thus,
developers can exploit the locality of graph partitions
in the map function so that data reduction can be per-
formed at the granularity of graph partition. This can
improve the overall performance with reduced network
traffic. However, this reduces the programmability with
MapReduce. Handling graph partitions such as data re-
ductions requires tedious programming and lays the bur-
den of implementing such optimizations on developers.

Another issue is that the Reduce stage cannot take
the advantage of partitioned graphs. Since the Reduce
stage requires a traditional data shuffling (usually hash
partitioning) across the network, the Reduce stage is
still oblivious of graph partitions, and results in a large
amount of network traffic.

We use network ranking as a case study on compar-
ing the implementation with propagation and MapRe-
duce. Network ranking (NR) is to rank the vertices in
the graph using PageRank [19]. Ranking the social net-
work is useful in assigning reputation to individuals and
finding the influential persons [9]. The PageRank cal-
culation is iterative: the rank of a vertex at the current
iteration is calculated based on its rank and the ranks
of its neighbors in the previous iteration. Within an it-
eration, the access pattern of PageRank matches prop-
agation. Each vertex distributes a part of its rank to all
vertices it connects to. After the distribution, each ver-
tex adds up its awarded partial ranks. The basic way of
adding up the partial ranks for vertex v is PR(v) =
(1− d)/N + d(PR(t1)/C(t1)+ ...+PR(tm)/C(tm)),
where d is the random jump factor, N is the total num-
ber of vertices in the graph, {ti|1 ≤ i ≤ m} are the set
of neighbors for the vertex v, and PR(x) and C(x) are
the rank and the number of neighbor vertices of vertex x,
respectively.

In the MapReduce-based implementation, the map
takes a graph partition as input, and calculates the partial
ranks for all the vertices within the partition. We use a
hash table to maintain the partial rank of all the vertices.
With the hash table, the map function scans the partition
only once. During the scan, we need to fetch a vertex
from the partition, and update the partial rank in the hash

table. The reduce aggregates the partial ranks on each
vertex. The pseudo code of these two functions can be
found in Appendix D.

3.2 Propagation
Iterative propagation is to transfer the information of
each vertex to its neighbor vertices iteratively. At each
iteration, the information transfer is occurred along the
edges. This information flow consists of the basic pattern
on traversing the graph in parallel.

Propagation supports two user-defined functions,
namely transfer and combine. Function transfer de-
fines how the information is transferred along an edge,
and combine defines how the information from its neigh-
bors is combined at each vertex. In particular, transfer
takes a vertex/value pair as input, and outputs pairs of
a (neighbor) vertex and a value each. combine takes the
pair of a vertex and all the values associated with the ver-
tex generated in transfer , and outputs a pair of a node
and a value. The signatures of these two functions are as
follows.

transfer : (v, v′) → (v′, value), where v′ is v’s
neighbor.
combine: (v, bag of value) → (v, value′).

Both user-defined functions are operations on ver-
tices and edges. Surfer executes an iteration of propa-
gation in two steps: 1) the Transfer stage: Surfer calls
transfer on each vertex and its neighbor vertices, and
generates the intermediate result; 2) the Combine stage:
Surfer calls combine on the intermediate results gener-
ated in the Transfer stage.

Propagation remedies the deficiency and the pro-
grammability issues in MapReduce. Propagation allows
the underlying system to automatically exploit the local-
ity of graph partitions, without laying the burden on de-
velopers. We discuss the tails on optimizations in Sec-
tion 5. The Combine stage in propagation minimizes
data shuffling along the cross-partition edges, unlike the
costly data shuffling in the Reduce stage of MapReduce.

Implementing the network ranking example requires
only a few code lines in the user-defined functions (see
Appendix D). Compared with the user-defined functions
with MapReduce, the propagation-based implementation
is simple. With propagation, developers focus on their
custom logic, as opposed to a mixture of graph access
pattern and the application logic in MapReduce.

Propagation has the better programmability and the
higher efficiency than MapReduce when the access pat-
tern of the target application matches that of propagation,
mainly edge-oriented tasks. However, when the access
pattern of the tasks, e.g., vertex-oriented tasks, does not
match propagation, it is tricky to implement the target
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application with propagation. One of the example appli-
cation is to compute the histogram of the vertex degree.
MapReduce has a simpler implementation than propaga-
tion. To emulate the process of MapReduce, Surfer in-
troduces virtual vertex for developers to transfer the re-
sults to the designed virtual vertex, which virtually cre-
ates edges from the vertices in the graph to the virtual
vertex. On the virtual vertex, Surfer performs combina-
tion on the values from the vertices in the graph.

4 GRAPH PARTITIONING IN THE CLOUD

The way of partitioning and storing the graph is an im-
portant factor in the efficiency of Surfer. To address the
network bandwidth unevenness in current cloud environ-
ment, we propose a bandwidth aware mechanism to im-
prove the bandwidth utilization. The basic idea is to par-
tition and store the graph partitions according to their
numbers of cross-partition edges such that the partitions
with a large number of cross-partition edges are stored
in the machines with high network bandwidth. We start
with modeling the graph partitioning process with multi-
level bisections, and then develop our partitioning algo-
rithm based on the model.

4.1 Graph Partitioning Model

We model the process of the multi-level graph partition-
ing algorithm as a binary tree (namely partition sketch).
Each node in the partition sketch represents the graph as
the input for a bisection in the entire graph partitioning
process: the root node representing the input data graph;
a non-leaf node at level (i+1) representing the partitions
of the ith iteration; the leaf nodes representing the graph
partitions generated by the multi-level graph partitioning
algorithm.

The partition sketch is a balanced tree. If the num-
ber of graph partitions is P , the number of levels of the
partition sketch is (log2 P + 1). Figure 2 illustrates the
correspondence between partition sketch and the bisec-
tions in the entire graph partitioning process. In the fig-
ure, the graph is divided into four partitions, and the par-
tition sketch grows to three levels.

We further define an ideal partition sketch as a parti-
tion sketch via optimal bisections on each level. On each
bisection, the optimal bisection minimizes the number
of cross-partition edges between the two generated par-
titions. The ideal partition sketch represents the iterative
partition process with the optimal bisection on each parti-
tion. This is the best case that existing bisection-based al-
gorithms [18, 16, 14] can achieve. Partitioning with opti-
mal bisections does not necessarily result in P partitions
with globally minimum number of cross-partition edges.
The bisection-based partitioning algorithms are simpli-
fied with the tradeoff between the algorithm complexity
and the partitioning quality. Nevertheless, existing stud-
ies [16, 14] have demonstrated that they can achieve rel-
atively good partitioning quality, approaching the global
optimality. Thus, we use the ideal partition sketch to
study the properties of the multi-level partitioning algo-
rithm.

The ideal partition sketch has the following proper-
ties:
Local optimality. Denote C(n1, n2) as the number of
cross-partition edges between two nodes n1 and n2 in
the partition sketch. Given any two nodes n1 and n2 with
a common parent node p in the ideal partition sketch, we
have C(n1, n2) is the minimum among all the possible
bisections on p.

By definition of the ideal partition sketch, the local
optimality is achieved on each bisection.
Monotonicity. Suppose the total number of cross-
partition edges among any partitions at the same level
l in the partition sketch to be Tl. The monotonicity of the
ideal partition sketch is that Ti ≤ Tj , if i ≤ j.

The monotonicity reflects the changes in the number
of cross-partition edges in the recursive partitioning.
Proximity. Given any two nodes n1 and n2 with a com-
mon parent node p, any other two nodes n3 and n4

with a common parent node p′, and p and p′ are with
the same parent, we have C(n1, n2) + C(n3, n4) ≥
C(nπ(1), nπ(2)) + C(nπ(3), nπ(4)) where π is any per-
mutation on (1, 2, 3, 4).

The proof of proximity can be found in Appendix C.
The intuition of the proximity is, at a certain level of the
ideal partition sketch, the partitions with a low common
ancestor have a larger number of cross-partition edges
than those with a high common ancestor.

These properties of the partitioning sketch indicate
the following design principles for partitioning and stor-
ing graphs, in order to match the network bandwidth with
the number of cross-partition edges.

P1. Graph partitioning should gracefully adapt to the
bandwidth unevenness in the cloud network. The
number of cross-partition edges is a good indicator
on bandwidth requirements. According to the local



optimality, the two partitions generated in a bisec-
tion on a graph should be stored on two machine
sets such that the aggregated bandwidth between the
two machine sets is the lowest.

P2. The partition size should be carefully chosen for the
efficiency of processing. According to the mono-
tonicity, a small partition size increases the number
of levels of the partition sketch, resulting in a large
number of cross-partition edges. On the other hand,
a large partition may not fit into the main memory,
which results in random disk I/O in accessing the
graph data.

P3. According to proximity, the nodes with a low com-
mon ancestor should be stored together in the ma-
chine sets with high interconnected bandwidth in
order to reduce the performance impact of the large
number of cross-partition edges.

4.2 Bandwidth Aware Graph Partitioning
With the three design principles in mind, we develop a
unified algorithm for partitioning and storing the graph.
The algorithm gracefully adapts the network bandwidth
in the cloud to the number of cross-partition edges ac-
cording to the partition sketch.

We model the machines for processing the data graph
as a weighted graph (namely machine graph). In a ma-
chine graph, each vertex represents a machine. An edge
means the connectivity between the two machines repre-
sented by the vertices associated with the edge, and the
weight is the network bandwidth between them. We cur-
rently model the graph as an undirected graph, since the
bandwidths are similar in both directions. Given a set of
machines, the machine graph can be easily constructed
by calibrating the network bandwidth between any two
machines in the set. The left part of Figure 3 illustrates
the machine graph for a four-machine cluster with a tree
topology. The example cluster consists of two pods, and
each pod consists of two machines. Assuming that the
intra-pod network bandwidth is higher than the inter-pod
one, and the intra-pod bandwidth is the same across pods,
we have the machine graph with four vertices and six
edges. The edge representing the intra-pod connection is
thicker than that for the inter-pod connection, indicating
the network bandwidth unevenness.

In the remainder of this paper, we refer “graph” as
a graph, and “machine graph” and “data graph” as the
machine graph constructed from a set of machines in the
cloud, and the input graph for partitioning respectively.

In the bandwidth aware graph partitioning algorithm
(details in Appendix E), Surfer simultaneously partitions
the data graph and the machine graph with multi-level bi-
sections. At a certain level, Surfer assigns the machines

 

Figure 3: Mapping on the partition sketches between the
machine graph and the data graph

in a partition of the machine graph to perform partition-
ing on the partition of the data graph. The suitable num-
ber of partitions, P , is determined in according to the
available amount of main memory in the machine. This
is because graph processing, especially for propagation,
results in lots of random accesses on the partition. Thus,
Surfer performs the computation on the graph partition
when it is loaded into main memory. Denote the graph
size to be ||G|| bytes and the available memory in the
machine to be r bytes, we calculate P = 2⌈log2

||G||
r ⌉.

After L = ⌈log2
||G||
r ⌉ passes of bisection, each parti-

tion of the data graph can fit into the main memory for
processing.

Surfer partitions the machine graph using a local
graph partitioning algorithm such as Metis, since the
number of machines is in the scale of tens of thousands,
and the machine graph usually can fit into the main mem-
ory of a single machine. On the bisection of the machine
graph, the objective function is to minimize the weight
of the cross-partition edges with the constraint of two
partitions having around the same number of machines.
This objective function matches the bandwidth uneven-
ness of the cloud. The goal of minimizing the weight of
cross-partition edges in the machine graph corresponds
to minimizing the number of cross-partition edges in the
data graph. This is a graceful adaptation on assigning the
network bandwidth to partitions with different number of
cross-partition edges. The constraint of making partitions
with the same number of machines is for load-balancing
purpose, since partitions in the data graph also have sim-
ilar sizes.

Along the multi-level bisections, the algorithm tra-
verses the partition sketches of the machine graph and
the data graph, and builds a mapping between the ma-
chine and the partition. The mapping guides the ma-
chines where the graph partition is further partitioned,
and where the graph partition is stored in Surfer. Figure 3
demonstrates the mapping between an example machine
graph and a data graph for the partitioning algorithm.
The data graph partitioning is gracefully adapted to the
bandwidth unevenness of the cluster. The bisection on
the entire graph G is done on the entire cluster. At the
next level, the bisections on G1 and G2 are performed on
pods M1 and M2, respectively. Finally, the partitions are
stored in the machines according to the mapping.



This mapping satisfies the three design principles on
partitioning: 1) the number of cross-partition edges is
gradually adapted to the network bandwidth. In each bi-
section of the recursion, the cut with the minimum num-
ber of cross-partition edges in the data graph coincides
that with minimum aggregated bandwidth in the machine
graph. 2) The partition size is tuned according to the
amount of main memory available to reduce the random
disk accesses. 3) In the recursion, the proximity among
partitions in the machine graph matches that in the data
graph.

5 OPTIMIZATIONS IN PROPAGATION

Graph partitioning allows Surfer to exploit the locality of
graph partitions. This enables a number of optimizations
on reducing the network traffic. These optimization tech-
niques are automatically applied during the runtime ex-
ecution, without increasing the programming complex-
ity on developers. Since the optimizations in MapRe-
duce are similar to the previous study [5], this section
focuses on the optimizations in our propagation-based
Surfer (denoted as P-Surfer). We first present the exe-
cution on a single iteration of propagation in P-Surfer,
followed by multiple iterations of propagation.

5.1 Single-Iteration Propagation
P-Surfer performs the propagation on the partitions in
parallel on multiple machines. We briefly describe the
basic flow, and present the details of the algorithm in Ap-
pendix E.

For each partition, P-Surfer has two stages, namely
Transfer and Combine stage. In the Transfer stage, P-
Surfer applies the transfer function on each edge with
the optimizations. After the Transfer stage, all the inter-
mediate results required for the Combine stage is stored
on the same machine. If the source vertex is not in the
current partition, its data is read along the cross-partition
edge from the remote machine to the local machine.
Along with each partition, P-Surfer stores the informa-
tion about boundary vertices and cross-partition edges
to capture the locality of the graph partition. The infor-
mation is stored in two structures per partition: a hash
table constructed from the set of boundary vertices (such
as vertex a and c in Figure 4); a map on (v, pid), where v
is the destination vertex of cross-partition edge, and pid
is the ID of the remote partition that v belongs to. These
two data structures are generated from graph partition-
ing, and are kept in the main memory when processing
the corresponding partition.

In the Combine stage, P-Surfer applies the combine
function on the intermediate result generated by the
Transfer stage. Since the input data for the combine
function are already in the local machine, there is no net-

Cross-Partition Edge
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e

f

g

h

j
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l

i
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in Partition P2

V1 : {d, e, f}

V0 : {a, b, c}

V2 : {g, h}

V3 : {i}

Vinf : {j, k, l}

P1

Inner-Partition Edge

Figure 4: An example of cascaded execution of P-Surfer
on a partition.

work traffic in this stage. Finally, the results are written
to the disk.

The data transfer among graph partitions in P-Surfer
is developed with the low-level communication primi-
tives. The complexity of such low-level communication
is hidden from developers.

Within a partition, P-Surfer automatically applies lo-
cal propagation and local combination to reduce the net-
work traffic.

Local propagation. Local propagation is to perform
the propagation logic on an inner vertex within a parti-
tion. It can be performed on an inner vertex, because all
its neighbors are stored within the same partition. The lo-
cal propagation is performed on the intermediate results
generated from the transfer stage within the parti-
tion. For example, vertices d, e, g and h are feasible for
local propagation in Figure 4. The performance improve-
ment by the local propagation is determined by the inner
vertex ratio. The higher the inner vertex ratio, the more
vertices the local propagation can be applied to.

Local combination. Similar to MapReduce, P-Surfer
supports local combination when the combine function
is annotated as an associative function. P-Surfer applies
the local combination on the boundary vertices belong-
ing to the same remote partition, and sends the com-
bined intermediate results back to the local partition for
the Combine stage. We consider local combination on
boundary vertices only, since local propagation has been
applied on the inner vertex. For example, in Figure 4, the
local combination can be performed on vertices g and i,
and only their combined value is sent to common remote
vertex m. Local combination is similar to local propaga-
tion in reducing the size of intermediate results. The dif-
ference is that, local combination requires the associativ-
ity of the combine function, whereas local propagation
does not. In contrast, local propagation has requirement
on the graph structure within a partition, whereas local
combination does not.



5.2 Multi-Iteration Propagation
Some applications such as PageRank [19] require run-
ning propagation with multiple iterations. A naive ap-
proach is to perform the single-iteration propagation
multiple times. However, this approach results in signifi-
cant disk I/O, each iteration reading the result of the pre-
vious iteration from the disk, and writing the result of
the current iteration to the disk. There are opportunities
for reducing the disk I/O. They are based on the obser-
vation: given a vertex v in the partition p, if all the k hop
connected vertex for v are also in p, we can perform k
iterations of propagation on v with a scan on p. We de-
fine the set of such vertices in the partition p as Vk. For
any vertex v in Vk, the input values required in the k it-
erations of propagation are available, and thus we can
perform the k iterations in a batch. We call this pattern
cascaded propagation. We denote the vertices in a cycle
to Vinf , since their neighbors at an arbitrary number of
hops is also within the partition.

With the definition of Vk, we can also make an obser-
vation: except Vinf , the maximum k value in a partition
is the diameter of the partition. For simplicity, we set the
suitable number of iterations in a cascaded propagation
to be the smallest diameter of all the partitions, dmin.

P-Surfer with cascaded propagation with I iterations
is performed in two steps. The algorithm first processes
Vinf , since they are not limited by the number of iter-
ations. Next, the algorithm divides the I iterations into
multiple phases. Each phase performs dmin iterations
with cascaded propagation.

The amount of disk I/O saving depends on the ratio
of Vk (k ≥ 2). Figure 4 illustrates V0, ..., V3, and Vinf

for a partition. V0 contains all the boundary vertices in
the partition. If an application requires three iterations of
propagation, we can compute the final result at once in
first iteration for vertices in V3.

6 EVALUATION

In this section, we present the experimental results on
Surfer with real-world and synthetic graphs.

6.1 Experimental Setup
We have implemented and evaluated Surfer on a real de-
ployment of a cluster with 32 nodes with a Quad In-
tel Xeon CPU and 8 GB RAM each. All the machines
form a pod, sharing the same switch. The current cluster
provides even network bandwidth between any two ma-
chines. We denote the setting of the current cluster to be
T1.

We simulate different network environments in the
cloud. In particular, we use software techniques to simu-
late the impact of different network topologies and hard-
ware configurations. The basic idea is to add the latency

T2(2, 1) T2(4, 1) T2(4, 2) 

16 16 8 8 8 8 8 8 8 8 

Figure 5: The variants of topology T2.

Table 1: Elapsed time of partitioning on different topolo-
gies (hours)

Topology T1 T2(2,1) T2(4,1) T2(4,2) T3

ParMetis 27.1 67.6 87.6 131.0 108.0
Bandwidth aware 27.1 33.8 43.9 58.3 64.9

to the network transfer according to the bandwidth of the
connection between two machines. We consider the fol-
lowing two settings T2 and T3.

T2 simulates the popular tree network topology in the
cloud [7]. We use < #pod, #level > to represent the
configuration of the tree topology, where #pod is the
number of pods used for graph processing, and #level
is the number of levels in the topology. Figure 5 shows
the three variants of T2 with 32 machines examined in
our experiments. By default, the machine-machine band-
width for T2 is set to be 1/32 on the switch at the top
level, and 1/16 on the switch at the second level.

T3 simulates a cluster of different hardware config-
urations, with one half machines with lower bandwidth
than the other half. We reduce the bandwidth from the
machine with low bandwidth by one half.

The workloads consist of common graph applications
described in Appendix D. The applications include net-
work ranking (NR), recommender system (RS), triangle
counting (TC), vertex degree distribution (VDD), reverse
link graph (RLG), and calculating two-hop friend list
(TFL).

The data sets include a snapshot of the MSN social
network in 2007 and synthetic graphs, each of which is
over 100GB. The MSN network used in this study con-
tains 508.7 millions vertices and 29.6 billion edges. The
number of edges in the MSN graph is almost five times as
many as the largest one in the previous study [13]. Our
evaluation is mainly on the real-world social network,
and the synthetic graphs are used for parametric studies.

More details on our experimental setup and results in-
cluding those on scalability and fault-tolerance of Surfer
can be found in Appendix F.

6.2 Results on Partitioning
Table 1 shows the elapsed time for partitioning with our
bandwidth aware graph partitioning algorithm, and with
ParMetis [18] on T1, T2, and T3. The number of parti-
tions is 64, and each partition is around 2GB. Such a par-



tition size achieves a good partitioning quality, and the
processing on the partition can fit into the main memory.

On different environments (except T1), the band-
width aware graph partitioning algorithm achieves an im-
provement of 39–55% over ParMetis. ParMetis randomly
chooses the available machine for processing, which is
unaware of the network bandwidth unevenness. In con-
trast, by adapting the graph partitioning to the network
bandwidth, our algorithm effectively utilizes the network
bandwidth, and reduces the elapsed time of partition-
ing. This demonstrates the importance of the three design
principles of an efficient graph partitioning algorithm in
the cloud. Note that both techniques on T1 behave the
same, since every machine pair in T1 has the same net-
work bandwidth.

6.3 Results on Propagation
Single-iteration propagation. We first study the impact
of optimization techniques in the execution in a single-
iteration propagation. Tables 2 and 3 show the timing
and I/O metrics on the applications on T1. We implement
these applications with Surfer in the following optimiza-
tion levels.

O1. Surfer with graph partition storage layout generated
from ParMetis, and no other optimizations.

O2. Surfer with storage according to the machine graph
partitioning sketch, and no other optimizations.

O3. Surfer with local combination and local propaga-
tion, but with graph partition storage layout gener-
ated from ParMetis.

O4. Surfer with local combination and local propaga-
tion, with storage according to machine graph par-
titioning sketch.

The difference between O1 and O2 as well as
between O3 and O4 is the comparison between the
ParMetis’ layout and our bandwidth aware algorithm.
The difference between O1 and O3 as well as between
O2 and O4 is to evaluate the effectiveness of our local
optimizations (i.e., local combination and local propaga-
tion) in Surfer. Overall, we found O4 optimizes the per-
formance dramatically. We make the following observa-
tions on the optimizations on the topology T1.

First, comparing O1 with O2 and O3 with O4, we ob-
served that the bandwidth aware graph partitioning im-
proves the overall performance. Without local combina-
tion or local propagation, the performance improvement
is 3–17%. When both techniques are enabled, the per-
formance improvement is better, between 6% and 29%.
On T1, the performance improvement is contributed from
the intra-machine locality, since partitions with common
ancestor nodes in the partition sketch are stored on the
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Figure 6: Impact of bandwidth aware partitioning on dif-
ferent topologies

same machine. Surfer schedules the execution according
to the partition sketch and takes advantage of such lo-
cality. For propagation-emulated VDD, bandwidth ware
graph partitioning has little improvement, since VDD is
a vertex-oriented task.

Second, comparing O1 with O3 and O2 with O4, lo-
cal optimization techniques significantly reduces the net-
work I/O and disk I/O, and contributes to the overall per-
formance improvement. In specific, the performance im-
provement of these two optimization techniques is 22–
86% on the ParMetis’ layout, and 23%–87% on the stor-
age according to the machine graph partitioning sketch.

Therefore, comparing O1 with O4, the storage lay-
out and the two local optimizations are accumulative.
Their combined performance improvement is between
36% and 88%. Among the applications in our bench-
mark, the performance improvement for NR and TFL is
relatively high. Because these two applications generate
huge amounts of intermediate data, and local optimiza-
tions significantly reduces the data transfer, especially
when the data layout is according to the bandwidth aware
algorithm.

We further investigate the impact of bandwidth aware
graph partitioning algorithm on different network en-
vironments. Figure 6 shows the optimized propagation
with and without awareness of bandwidth on T2 and
T3. Bandwidth aware graph partitioning significantly im-
proves the performance on different network topologies,
with an improvement up to 71%.

Multi-Iteration Propagation. The performance im-
provement of cascaded propagation highly depends on
the structure of the graph. We studied the sets of Vk used
in the cascaded propagation on the MSN network, and
found that the ratio of vertices in Vk (k ≥ 2) is 7%. That
means, only 7% of the vertices can gain the benefit of
cascaded propagation.

We evaluate the cascaded optimization on the net-
work ranking. In the experiment, we run the network
ranking in different numbers of iterations. The results
show that cascaded propagation further improves the per-
formance of the optimized propagation with multiple it-
erations. When the number of iteration is three, cascaded
propagation improves response time by 8% and reduces
total disk IO by 12%. The performance improvement is



Table 2: Response time and total machine time of applications on T1 (Seconds)
VDD RS NR RLG TC TFL

Res. Total. Res. Total. Res. Total. Res. Total. Res. Total. Res. Total.
O1 325 5523 592 9291 3421 48498 3815 47213 20125 156243 43245 607854
O2 325 5523 436 8954 2653 46823 3124 39212 17431 134091 38212 589967
O3 233 3658 518 7220 736 14278 2994 32140 5426 98645 77345 82529
O4 233 3658 273 5133 658 12872 2715 30173 3335 85568 6315 75657

Table 3: Disk and network I/O of applications on T1 (GB)
VDD RS NR RLG TC TFL

Network. Disk. Network. Disk. Network. Disk. Network. Disk. Network. Disk. Network. Disk.
O1 3 127 13 162 136 619 93 553 87 1325 2886 7087
O2 3 127 11 160 114 570 58 477 72 1202 2271 4908
O3 1 122 5 133 28 183 28 303 65 265 169 651
O4 1 122 5 132 27 181 25 263 61 255 138 618

Table 4: Number of source code lines in user-defined
functions

Engine VDD NR RS RLG TC TFL
Hadoop 24 147 152 131 157 171

Home-grown MapReduce 33 163 168 144 171 194
Propagation 18 21 22 23 27 25
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Figure 7: Performance comparison between MapReduce
and P-Surfer

stable as we increase the number of iterations. The per-
formance improvement matches our observation on the
ratio of Vk (k ≥ 2).

6.4 Propagation vs. MapReduce
Table 4 shows the number of source code lines in user-
defined functions in Hadoop, our home-grown MapRe-
duce and Surfer. Our home-grown MapReduce has a sim-
ilar code size to Hadoop. The slight difference is for ours
is implemented in C++ and that of Hadoop is in Java.
Compared with both MapReduce variants, propagation
does not have to handle the details on graph partitions,
and thus have a much smaller code size. This demon-
strates a good programmability on propagation.

Figure 7 shows the performance comparison between
MapReduce and propagation on the applications. Propa-

gation is significantly faster than MapReduce on most
applications (except VDD). In particular, the speedup on
the response time is between 1.7 to 5.8 times. The ma-
jor contributor of the speedup is the reduction in net-
work IO: MapReduce with a data shuffling in the Reduce
stage, whereas propagation incurring network traffic
only for cross-partition edges. Specifically, propagation-
based implementations have 42.3–96.0% less network
I/O than their MapReduce-based counterparts. Emulat-
ing MapReduce in VDD, propagation has a similar per-
formance on MapReduce.

7 CONCLUSION

As large graph processing becomes popular in the cloud,
we develop Surfer towards a full-fledged large graph
processing system that scales in a large number of ma-
chines in the cloud. In this paper, we aim at improving
its efficiency and programmability, through supporting
two optimized primitives MapReduce and propagation
on partitioned graph. Adapting the unique network en-
vironment in the cloud, we develop a bandwidth aware
graph partitioning algorithm to minimize the network
traffic in partitioning and processing. Our evaluation on
the large real-world and synthetic graphs (over 100GB
each) shows that 1) the bandwidth aware graph parti-
tioning improves partitioning by 39–55%, and the exe-
cution of propagation by 6–28%; 2) propagation is 1.7 to
5.8 times faster than MapReduce, and with fewer source
code lines by developers.
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A MORE RELATED WORK

A.1 Data-Intensive Computing Systems

The increasingly large number of machines in the cloud
raises a number of cloud systems including MapRe-
duce [5], Hadoop [8] and Dryad [10]. There have been
multiple variants or extensions, such as Map-Reduce-
Merge [4] and DryadLINQ [23]. All of these systems al-
low the data analysts to easily write programs to manip-
ulate their large scale data sets without worrying about
the complexity of distributed systems.

Let us briefly review the software stack of the cur-
rent MapReduce implementation [5]. MapReduce pro-
vides two APIs for the developer to implement: map and
reduce. The map function takes an input key/value pair
(k1, v1) and outputs a list of intermediate key/value pairs
(k2, v2). The reduce function takes all values associ-
ated with the same key and produces a list of key/value
pairs. Developers implement the application logic inside
map and reduce. The MapReduce runtime manages
the parallel execution of these two functions. The run-
time consists of three major stages: (1) the Map stage
processes a unit of the input file and outputs (key, value)
pairs; (2) the Shuffling stage: MapReduce automatically
groups of all values by key using hash partitioning, (3)
the Reduce stage processes the values with the same key
and outputs the final result. The data is stored in the dis-
tributed and replicated file system named GFS [6].

A.2 Graph Bisection

Since graph bisection is a key operation in parallel graph
partitioning [16, 14], we briefly introduce the process of
bisection.

Figure 8 illustrates the three phases in a graph bi-
section, namely coarsening, partitioning and uncoars-
ening. The coarsening phase consists of multiple itera-
tions. In each iteration, multiple vertices in the graph are
coarsened into one according to some heuristics, and the
graph is condensed into a smaller graph. The coarsen-
ing phase ends when the graph is small enough, in the
scale of thousands of vertices. The partitioning phase
divides the coarsened graph into two partitions using a
sequential and high-quality partitioning algorithm such
as GGGP (Greedy Graph Growing Partitioning) [15]. In
the uncoarsening phase, the partitions are then iteratively
projected back towards the original graph, with a local
refinement on each iteration. The solid line in Figure 8
represents the cut after uncoarsening, and the dotted line
represents the cut after refinement. Local refinement can
significantly improve the partition quality [16]. The iter-
ations are highly parallelizable, and their scalability has
been evaluated on shared-memory architectures (such as
Cray supercomputers) [16, 14].

Coarsen

Partitioning

Uncoarsen

(refinement)

G G
1

G
2

Figure 8: The three phases in a graph bisection



B ARCHITECTURE OF SURFER

Given a graph processing job, Surfer performs the exe-
cution in two steps.
Step 1. A code generator in Surfer takes the user-defined
functions as input, and generates the executable for a dis-
tributed execution.
Step 2. Surfer performs the execution on the slave nodes.
During the execution, the job scheduler selects a machine
as the job manager, and the job manager dispatches the
tasks to the slave nodes. The job manager also records
resource utilization and estimates the execution progress
of the job. Surfer provides a GUI (Graphical User In-
terface) [3] to facilitate the programming in Step 1, and
displays the runtime dynamics to facilitate developers to
debug and analyze Step 2.

In the current system, it is developers’ choice to
select either MapReduce or propagation to implement
their tasks. As shown in our experimental evaluation,
propagation-based implementations are mostly more ef-
ficient than their MapReduce-based counterparts. Thus,
developers may choose propagation for the applications
matching the access pattern of propagation, and MapRe-
duce for other tasks. We are developing a high-level lan-
guage on top of MapReduce and propagation, to further
improve the programmability of Surfer.

The current job manager in Surfer is simple. It dis-
patches one more task to a slave node, when the slave
node finishes a task. Additionally, it provides executions
with fault tolerance to machine and task failures. The job
manager detects the failed slave machine using heartbeat
messages, and automatically handles the machine or task
failures. A machine failure can result in multiple task
failures. Surfer handles the machine failure according to
the task type. If the task is a Transfer task, Surfer simply
puts the task into the waiting list and re-executes it. If it
is a Combine task, the recovery requires re-transferring
the input from remote machines according to incoming
edges, prior to the re-execution. The data re-transmission
requires the knowledge on which partition the incoming
edge is from. Instead of maintaining a global mapping
from an arbitrary vertex ID to its partition ID, we encode
the vertex IDs such that the vertex IDs within a parti-
tion compose a consecutive range. Suppose a vertex is
the jth vertex in partition i (0 ≤ i ≤ (P − 1)), the en-
coded ID of the vertex is

∑P−1
k=0 pk + j, where pk is the

number of vertices in partition k. Surfer maintains the
number of vertices in each partition. From this encoding,
it is straightforward to find the partition ID for a vertex.

C PROOF OF PROXIMITY IN GRAPH PAR-
TITION MODEL

Proximity. Given any two nodes n1 and n2 with a com-
mon parent node p, any other two nodes n3 and n4

with a common parent node p′, and p and p′ are with
the same parent, we have C(n1, n2) + C(n3, n4) ≥
C(nπ(1), nπ(2)) + C(nπ(3), nπ(4)) where π is any per-
mutation on (1, 2, 3, 4).

Proof. According to local optimality, we know that
C(p, p′) = C(n1, n3) + C(n1, n4) + C(n2, n3) +
C(n2, n4) is the minimum. Thus, we have:

C(n1, n2) + C(n1, n4) + C(n3, n2) + C(n3, n4) ≥ C(p, p′)(1)

C(n1, n2) + C(n1, n3) + C(n4, n2) + C(n4, n3) ≥ C(p, p′)(2)

Substituting C(p, p′), we have

C(n1, n3) + C(n2, n4) ≤ C(n1, n2) + C(n3, n4) (3)

C(n2, n3) + C(n1, n4) ≤ C(n1, n2) + C(n3, n4) (4)

That means, we have C(n1, n2) + C(n3, n4) ≥
C(nπ(1), nπ(2)) + C(nπ(3), nπ(4)) where π is any per-
mutation on (1, 2, 3, 4).

D APPLICATIONS

In this section, we present the implementation of sev-
eral common applications in social network using propa-
gation. These applications represent basic processing on
graphs. We can find their counterparts on other graph ap-
plications such as web graph analysis.

Network ranking (NR). Network ranking is to gen-
erate a ranking on the vertices in the graph using PageR-
ank [19] or its variants. Applying ranking to social net-
work is used in assigning reputation to individuals and
finding the influential persons in the social network [9].
Algorithm 1 illustrates the user-defined functions of net-
work ranking with propagation.

Algorithm 1 User-defined procedures in propagation-
based PageRank
Procedure: Transfer (v, v′)

1: Emit (v′, v.rank×d
|v.neighbor| );

Procedure: Combine (v,
valueList)

1: for each value r in valueList do
2: v.rank+=r;
3: v.rank+=(1-d)/N ;
4: Emit (v);

As an example of comparing MapReduce and prop-
agation, we introduce the user-defined functions in the
MapReduce-based implementation. Algorithm 2 illus-
trates user-defined functions of network ranking with
MapReduce. We use a hash table to maintain the par-
tial rank of all the vertices. With the hash table, the map
function scans the partition only once. During the scan,
we need to fetch a vertex from the partition, and update
the partial rank in the hash table.



Algorithm 2 User-defined procedures in MapReduce-
and propagation-based PageRank
//MapReduce-based implementation;
Procedure: map (p)
Description: Compute the partial ranks in Partition p, and
maintain them in a hash table rTable .

1: for each vertex v in p do
2: δ = v.rank×d

|v.neighbor| ;
3: for Vertex v′ in v .neighbors do
4: if v′ is not in rTable then
5: rTable .Add(v′, δ);
6: else
7: rTable[v′]+= δ;
8: for each vertex v in rTable do
9: Emit (v, rTable[v]);

Procedure: reduce (v, valueList)
1: for each value r in valueList do
2: v .rank+=r;
3: v .rank+=(1-d)/N ;
4: Emit (v, v .rank );

Recommender system (RS). A simple recom-
mender system based on social network [1]. For exam-
ple, the system can show the advertisement of the prod-
uct one uses or the pages one views to his/her friends in
the network. We simulate a product recommending pro-
cess in a social network. In particular, we investigate how
the advertisement of a certain product propagates in the
network. The recommending starts with a set of initial
vertices who have used the product. For each individual
using the product in the network, i.e., the useProduct
value of the individual is true, the recommender system
recommends the product to all his/her friends. Each per-
son can accept the product recommending with a prob-
ability p. After a few iterations of propagation, the rec-
ommender system can examine the effectiveness of the
recommending.

Triangle counting (TC). Triangle counting has its
applications in web spam detection and social network.
Previous studies [21] show that the amount of triangles
in the social network of a user is a good indicator of the
role of that user in the community.

A triangle in the graph is defined as three vertices,
where there is an edge connected any two vertices among
them. Triangle counting requires a single iteration for
propagation on the graph. In the experiment, we pick
the subgraph from selecting a subset of vertices from
the large graph. Algorithm 3 shows the user-defined pro-
cedures in propagation-based triangle counting. In the
Transfer stage, we first select this subset of vertices in
the graph. In our experiments, the ratio of selected ver-
tices is 10%. Next, we transfer the neighbor list of the
source vertex of every edge to the target vertex. In the
Combine stage, we check whether the adjacent list has

overlapping with any of the awarded neighbor lists. A
procedure checkOverlapping is used to check whether
we find a triangle. But, we may count the same triangle
three times. To remove the duplicate counting, we can as-
sume an order of the vertices, say in the alphabetic order.
We only emit the vertex with the minimum ID.

Algorithm 3 User-defined procedures in Surfer-based
triangle counting
Procedure: Transfer (v, v′)
Description: Transfer the neighbor list along the edge between
v and v′.

1: Emit (v′, v’s neighbor list);
Procedure: Combine (v, valueList)
Description: Output the triangle.

1: for each list l in valueList do
2: if checkOverlapping (v’s neighbor list, l) is true then
3: Emit (v′, 1);

Vertex Degree Distribution (VDD). The degree dis-
tribution is an important property of a social graph.
For example, many social networks have demonstrated
the power-law distribution on vertex degrees. VDD is a
vertex-oriented task, where we use virtual vertices and
virtual edges for implementation. In the Transfer stage,
we emit the degree in the adjacency list to the target vir-
tual vertex. The virtual vertex ID is the same as the value
of the degree. In the Combine stage, only the virtual ver-
tex performs the combination on the data generated in
the Transfer stage.

Reverse Link Graph (RLG). RLG is to process all
the incoming edges for the directed graph. The task is to
reverse the source vertex and destination vertex for each
edge in the graph, and to store the reversed graph as ad-
jacency list among machines. In the Transfer stage, we
transfer the reversed edge to the new destination vertex.
In the Combine stage, we count the number of neighbors
in the reversed links, and store the neighbors in an adja-
cency list. Then we emit the new graph out.

Two-hop Friends List (TFL). The operation of find-
ing the list of two-hop friends has been used for analyz-
ing social influence spread, community detection and so
on. We use push operation to aggregate two-hop friends
at each vertex. In Transfer stage, we select a subset of
vertices in the graph. The ratio of selected vertices is
10% in our experiments. Every selected vertex pushes
its neighbor list to each of its neighbors. Thus, it receives
the neighbor list of its neighbors. In Combine stage, we
store distinct vertices in received neighbor lists as the ad-
jacency list of the destination vertex.

E DETAILED ALGORITHMS

Algorithm 4 illustrates the bandwidth aware graph parti-
tioning algorithm in Surfer.



Algorithm 4 Bandwidth aware graph partitioning in
Surfer
Input: A set of machines S in the cloud, the data graph G, the
number of partitions P (P = 2L, L = ⌈log2

||G||
r

⌉)
Description: Partition G into P partitions with
S

1: Construct the machine graph M from S;
2: BAPart(M , G, 1);//the first level of recursive calls.

Procedures: BAPart(M , G, l)
1: Divide G into two partitions (G1 and G2) with the ma-

chines in M ;
2: if M consists of a single machine then
3: Let the machine in M be m.
4: Divide G into 2L−l partitions using m with the local

partitioning algorithm;
5: Store the result partitions in m;
6: else
7: if l = L then
8: Select the machine with the maximum aggregated

bandwidth in M , and let it be m;
9: Store G in m;

10: else
11: Divide M into two partitions M1 and M2;
12: Divide G into two partitions G1 and G2 with the ma-

chines in M ;
13: BAPart(M1, G1, l+1);
14: BAPart(M2, G2, l+1);

The detailed process of single-iteration propagation
is illustrated in Algorithm 5.

F MORE DETAILS ON EXPERIMENTS

F.1 Experimental Setup
The cluster consists of 32 machines, each with a Quad
Intel Xeon X3360 running at 2.83GHz, 8 GB memory
and two 1TB SATA disks, connected with 1 Gb Ethernet.
The operating system is Windows Server 2003.

We implement Surfer in C++, compiled in Visual
Studio 9 with full optimizations enabled. We implement
our home-grown MapReduce primitive, following the
design and implementation described by Google [5]. We
do not provide the performance numbers on Hadoop,
since Hadoop is not supported as a production plat-
form in Windows [8]. For a fair comparison on the pro-
grammability with Hadoop, we have also implemented
all the applications with Java on Hadoop.

We use two metrics for the time efficiency: the re-
sponse time and the total machine time, where the re-
sponse time is the elapsed time from submitting the task
to Surfer till its completion, and the total machine time
is the aggregated total amount of time spent on the entire
task on all the machines involved. To understand the ef-
fectiveness of our optimizations, we report two I/O met-
rics: the total network I/O and the total disk I/O during

Algorithm 5 Basic flow of a single iteration of propaga-
tion
Input: Graph G(V,E)
Description: Perform one iteration of graph propagation with
transfer and combine functions.

1: for each partition p of G do
2: // The Transfer stage: the following loop is performed in

parallel.
3: Read p and associated values from disk;
4: for each non-cross-partition edge e in p do
5: call transfer on e;
6: for each vertex v in p do
7: if v is an inner vertex of partition p then
8: perform local propagation optimization;
9: //Handling the cross-partition edges.

10: if combine is associative then
11: perform local grouping optimization on pid in the

map (v, pid);
12: for each group g in the result of local grouping do
13: call transfer on e, where e is a cross-partition

edge in g;
14: read the intermediate results from g with local

combination remotely;
15: else
16: for each cross-partition edge e in p do
17: read the vertex that is not in the current partition

remotely;
18: call transfer on e;
19: //The Combine stage: the loop is performed in parallel. Af-

ter all the incoming data is transferred to local machine.
20: for each vertex v in p do
21: call combine on v and its value list;
22: Write updated p and values to disk;



Table 5: The statistics of inner edge ratios with different
partition sizes

Number of partitions 128 64 32 16
Partition granularity (GB) 1 2 4 8
ier of our partitioning(%) 50.3 57.7 65.5 72.7

ier of random partitioning(%) 1.4 2.2 4.1 6.8

the execution. We ran each experiment three times, and
report the average value for each metric. The measured
metric values are stable across different runs.

Simulating Different Network environments. T2 is
a tree topology. At each level of the tree topology, we
estimate the average bandwidth given to each machine
pair on all-to-all communication, since all-to-all commu-
nication is common in the data shuffling [7]. Suppose
the bandwidth of the switch is Bswitch Gb/sec. If all the
machines perform all-to-all communication, the worst-
case bandwidth for any pair of two machines sharing the
switch is Bswitch/(

∏#pod
i=1 Ni × (N −Ni)), where Ni

is the number of machines in the ith pod, and N is the
total number of machines in the cluster.

Our software approaches simulate the cross-pod
bandwidth by add a latency into the send/receive oper-
ations such that the time for sending the data matches a
specific bandwidth. Suppose we will send N bits. If the
target machine is in the same pod, we use send/receive
operations as the normal ones. Otherwise, we trigger
send/receive with a delay of N

Bswitch/(
∏#pod

i=1 Ni×(N−Ni))

seconds such that the elapsed time for finishing the oper-
ation matches the tree topology in the worst case. In our
experiments, the default delay is set to be 32 times on the
switch at the top level, and 16 times on the switch at the
second level.

T3 simulate a pod whose machines have two different
configurations. For simplicity, we simulate one half of
the machines randomly chosen from the pod having one
half bandwidth of the remainder machines in the clus-
ter. Let the former set of machines be LOW and the rest
machines belonging to set HIGH . If both of the source
and the target machines is in HIGH , we use send/receive
operations as the normal ones. Otherwise, we add a de-
lay the same as the data transfer time, since the net-
work bandwidth between two machines is limited by the
smaller one.

Synthetic graph generation. We generate synthetic
graphs simulating small world phenomenon. We first
generate multiple small graphs with small-world char-
acteristics using an existing generator [2], and next ran-
domly change a ratio (pr) of edges to connect these small
graphs into a large graph. The default value of pr is 5%.
We varied the sizes of the synthetic graphs for evaluating
the scalability of Surfer. The default size is 100GB, with
408.4 million vertices and 25.9 billion edges.
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Figure 10: Disk I/O rates rates over time for different executions of the NR

F.2 Experimental results

Partitioning quality. We first investigate how the par-
tition size affects the quality of partitioning. We quan-
tify the partitioning quality with the inner edge ratio,
ier = ie

|E| , where ie and |E| are the number of inner
edges and the total number of edges in the graph. Table 5
shows the ier values and the partition granularity with
the number of partitions varied. As we vary the num-
ber of partitions from 16 to 128, the partition size de-
creases from 8GB to 1GB, and the ier ratio decreases
from 72.7% to 50.3%. This validates the monotonicity of
graph partitioning: as the number of levels of the parti-
tion sketch increases, the number of cross-partition edges
increases. Although the partition size at 4GB or 8GB pro-
vides higher inner edge ratios, the partition and the in-
termediate data generated from Surfer usually cannot fit
into the main memory, and cause a huge amount of ran-
dom disk I/Os. Therefore, we choose 2GB as our default
setting, and divide the MSN graph into 64 partitions.

As a sanity check on the partition granularity, we
show the partition quality of randomly partitioning the
graph. The ier ratios of our partitioning algorithm are
significantly higher than those of random partitioning.
This confirms that graph partitioning achieves a high in-
ner edge ratio.

Impact of cross-pod network delay. We investi-
gate the impact of the simulated cross-pod network de-
lays. Figure 9 shows the results of network ranking on
T2(2, 1) when the simulated delay is varied from twice to
128 times. As the simulated delay increases, the perfor-
mance improvement of the bandwidth aware graph parti-
tioning algorithm becomes more significant. That means,
the bandwidth aware algorithm is very helpful when the
scale of the data center is huge.

Fault tolerance. Figure 10 shows the disk I/O rates
of an execution of the network ranking, where we inten-
tionally kill a slave node at 235 seconds (as shown in
Figure 10(a)). Upon detecting the failure, the job man-
ager immediately puts the task into the waiting list, and
later restarts the task on another available slave node. The
re-execution happens in another slave node (shown in
Figure 10(c)). Comparing the normal execution in Fig-
ure 10(b), the entire computation with recovery finishes

in 723 seconds including a startup overhead of 10% over
the normal execution.

Scalability. We evaluate scalability of P-Surfer for
network ranking through increasing the number of ma-
chines and meanwhile increasing the size of synthetic
graphs. Figure 11 shows the response time of P-Surfer
when the number of machines is varied from 8 to 32. As
the number of machines and graph size increase, the re-
sponse time slightly decreases, indicating that P-Surfer
has good scalability to accommodate increasing loads on
increasing number of machines.

MapReduce vs. propagation. Figure 12 shows the
performance comparison between MapReduce and prop-
agation for network ranking with the number of ma-
chines varied from 8, 16, 24, and 32. Propagation is 4.6
to 7.8 times faster than MapReduce.


