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Abstract

Numerous programming languages based on process calculi have been develo-
ped for biological modelling, many of which can generate potentially unbounded
numbers of molecular species and reactions. As a result, such languages cannot
rely on standard reaction-based simulation methods, and are generally imple-
mented using custom stochastic simulation algorithms. As an alternative, this
paper proposes a generic abstract machine that can be instantiated to simulate
a range of process calculi using a range of simulation methods. The abstract
machine functions as a just-in-time compiler, which dynamically updates the set
of possible reactions and chooses the next reaction in an iterative cycle. We ins-
tantiate the generic abstract machine with two Markovian simulation methods
and provide encodings for four process calculi: the agent-based pi-calculus, the
compartment-based bioambient calculus, the rule-based kappa calculus and the
domain-specific DNA strand displacement calculus. We present a generic me-
thod for proving that the encoding of an arbitrary process calculus into the
abstract machine is correct, and we use this method to prove the correctness
of all four calculus encodings. Finally, we demonstrate how the generic abs-
tract machine can be used to simulate heterogeneous models in which discrete
communicating sub-models are written using different domain-specific languages
and then simulated together. Our approach forms the basis of a multi-language
environment for the simulation of heterogeneous biological models.

Keywords: generic abstract machine, stochastic simulation, pi-calculus,
bioambient calculus, kappa calculus, correctness, implementation

1. Introduction

Biological systems typically involve large numbers of components with com-
plex, highly parallel interactions and intrinsic stochasticity. To model this com-
plexity, numerous programming languages based on process calculi have been
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developed, including variants of the stochastic pi-calculus [23, 27, 20], BlenX [8],
the kappa calculus [5], LBS [18], variants of the bioambient calculus [26, 19] and
the DNA strand displacement calculus [21, 15]. Many of these calculi are expres-
sive enough to generate potentially unbounded numbers of molecular species and
reactions. As a result, they cannot rely on standard reaction-based simulation
methods such as [12, 10], which require fixed numbers of species and reactions.
Instead, a custom simulation algorithm is typically developed for each calcu-
lus. The choice of algorithm depends on the nature of the underlying biological
system, such as whether exact simulation is required [11, 10], whether certain
reactions operate at different timescales [12, 28], or whether non-Markovian
reaction rates are needed [2, 16].

Rather than implementing custom stochastic simulation algorithms for each
process calculus, we propose to use a generic abstract machine which can en-
code a range of process calculi and which can be instantiated to use a range
of reaction-based simulation algorithms. The abstract machine functions as a
just-in-time compiler, which dynamically updates the set of possible reactions
and chooses the next reaction in an iterative cycle. Thus, the abstract machine
computes only those species and reactions which are needed to proceed with
the simulation. The abstract machine is instantiated to a particular calculus
by defining two functions: one for converting a process of the calculus to a set
of species and another for computing the set of possible reactions between spe-
cies. The abstract machine is instantiated to a particular simulation algorithm
by defining three functions: one for computing the next reaction, another for
computing the reaction activity from an initial set of reactions and species popu-
lations, and a third for updating the reaction activity as the species populations
change over time.

Although the idea of integrating different modelling and simulation methods
within a common framework is not a new one [9], our approach is the first at-
tempt to formally define a generic framework for simulating a broad range of
process calculi with an arbitrary reaction-based simulation algorithm. Main-
taining a clear separation between the simulation algorithm and the language
specification allows us to readily instantiate the machine to different process
calculi and to add new simulation algorithms, such as the non-Markovian si-
mulation algorithm of [16], which can then be shared between calculi. This
allows for rapid prototyping of novel domain-specific modelling languages by
allowing substantial code re-use. Furthermore, the approach can be used to si-
mulate multiple interacting calculi simultaneously, producing a multi-language
environment for biological simulation.

There is another, perhaps more fundamental motivation for this work, which
is to understand and formalise the relationship between multiple biological mo-
delling languages. By defining a common abstract machine, we have essentially
defined an underlying computational model to which different languages can be
mapped. This is a first step towards a formal underpinning that encompasses
the execution semantics of multiple biological modelling languages.

We first use our generic abstract machine to simulate a variant of stochastic
pi-calculus [20], which supports a basic complexation primitive using bound
output. We instantiate the abstract machine so that it stores complexes as a
single species, allowing efficient simulation of systems involving complexation.
We also show how variants of the bioambient calculus [19], the kappa calculus
[7] and the DNA strand displacement calculus [15] may be encoded into the
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abstract machine. Each of these calculi is encoded by defining appropriate
functions for translating between species and processes of the calculus, and
for generating the set of reactions between species. We define a generic proof
of correctness for an arbitrary process calculus with respect to an arbitrary
Markovian simulation algorithm, which is parameterised by the functions used
to define that calculus. This approach can be re-used to quickly prove the
correctness of language implementations that instantiate the generic abstract
machine.

Simulating different domain-specific process calculi is important as it allows
us to choose the language which is best-suited for modelling the system of inter-
est. However, when we consider larger, more complex biological systems it may
not be appropriate to use one language for the entire model, since large-scale
biological systems tend to be composed of well-defined sub-units that can vary
considerably in function. A natural approach to modelling such complex sys-
tems is to construct the model from communicating sub-models, each of which
represents a well-defined functional unit of the system. Compositional modelling
is good practise and has additional benefits, as the sub-models can be analysed
independently and re-used in different settings. Our abstract machine is suffi-
ciently powerful to support models that are recursively composed of sub-models
written using different calculi.

The paper is structured as follows. In Sec. 2 we define the generic abstract
machine, and in Sec. 3 we instantiate the simulation method of the abstract
machine with the Direct Method [11] and the Next Reaction Method [10]. In
Sec. 4 we instantiate the abstract machine to encode the pi-calculus, the bioam-
bient calculus, the kappa calculus and the DNA strand displacement calculus.
In Sec. 5 we present a generic method for proving the correctness of the abs-
tract machine with respect to an arbitrary process calculus and a Markovian
simulation algorithm. We then present specific instances of this generic proof
for the various calculi. In Sec. 6 we show how multi-calculus models can be
implemented in this framework.

2. Generic Abstract Machine

2.1. Preliminaries
We first define the main syntactic conventions that will be used in the re-

mainder of the paper. We write Õ to denote a finite set {O1, .., ON} and I to
denote a finite multiset [I1, .., IN ]. We also allow a multiset I to be written as
a set of pairs {(I1, i1), .., (IM , iM )}, where each pair (I, i) denotes an element
I and its corresponding multiplicity i, with i > 0. We let ∪ denote set union
and ] denote multiset union, according to their standard definitions. We write
I1 ∈ I as short for (I1, i1) ∈ I in cases where we do not care about the multi-
plicity of I1. We write #S̃ to denote the number of elements in the set S̃. We
write {Ei | C1; ..;CN} to denote the set of elements Ei that satisfy all of the
conditions {C1, .., CN}. We write {E1 7→ v1, .., EN 7→ vN} to denote a mapping
from elements Ei to values vi. For a given mapping M , we write dom(M) for
the domain of M and M(E) for the value associated with element E in M . We
also write M{E 7→ v} for M updated so that E maps to v, and M \ E for M
updated so that the mapping for E is removed. Finally, we write M{M ′} for
M updated so that E maps to v in M for each mapping E 7→ v in M ′.
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T ::= (t, S,R) Time t, species map S, reaction map R
S ::= {I1 7→ i1, .., IN 7→ iN} Map from a species I to its population i
R ::= {O1 7→ A1, .., ON 7→ AN} Map from a reaction O to its activity A
O ::= (I, r, I ′) Reaction I r−→ I ′ with rate r

Definition 1. Syntax of the generic abstract machine, where a term T consists
of the current time t, a species map S and a reaction map R. We let I denote
a multiset of species [I1, .., IN ].

2.2. Syntax and Semantics
The syntax of the generic abstract machine is summarised in Definition 1.

A machine term T is a triple (t, S,R), where t is the current time, S is a map
from a species I to its integer population i, and R is a map from a reaction
O to its activity A, which is used to compute the next reaction. The data
structure for the activity A will depend on the choice of simulation algorithm.
Each reaction is represented as a tuple (I, r, I ′), where I denotes the multiset
of reactant species, I ′ denotes the multiset of product species and r denotes the
reaction rate. The syntax of species I is specific to the choice of process calculus.
The structure of a term of the abstract machine is summarised in tabular form
as follows:

Machine term T
Time t Species map S Reaction map R

Species Population Reaction Activity
I1 i1 I1

r1−→ I ′1 A1

. . . . . . . . . . . .

IN iN IM
rM−→ I ′M AM

To instantiate the abstract machine with a given process calculus, we simply
provide a function species(P ) for transforming a process P of the calculus to a
multiset of species, and a function reactions(I, Ĩ ′) for computing the multiset
of reactions between a new species I and an existing set of species Ĩ ′. The
species function is used to initialise the abstract machine at the beginning of
a simulation, while the reactions function is used to update the set of possible
reactions dynamically. This is an important technical development that allows
systems with potentially unbounded numbers of species and reactions to be
simulated, which is not possible using standard stochastic simulation algorithms.

To instantiate the abstract machine with a given simulation method, we
provide a function next(T ) for choosing the next reaction from a term T , a
function init(O, T ) for initialising a term with a multiset of reactions O, and
a function updates(I, T ) for updating the activity of the reactions in a term T
that are affected by a given species I. The abstract machine executes a given
simulation method by repeated application of the following rule:

(I, r, I ′), a, t′ = next(t, S,R)

(t, S,R)
a,(I,r,I′)−→ I ′ ⊕ ((t′, S,R)	 I)

(1)

This rule selects a reaction using the next function, which returns the chosen
reaction, its propensity a and the new simulation time t′. The chosen reaction

4



P ⊕ T , species(P )⊕ T
(I, i)⊕ (t, S,R) , (t, S′, R{R′}) if Ĩ ′ = dom(S); I /∈ Ĩ ′; S′ = S{I 7→ i};

O = reactions(I, Ĩ ′); R′ = init(O, (t, S′, R))

(I, i)⊕ (t, S,R) , (t, S′, R{R′}) if S(I) = i′; S′ = S{I 7→ i′ + i};
R′ = updates(I, (t, S′, R))

(t, S,R)	 (I, i) , (t, S′, R{R′}) if S(I) = i′; i′ ≥ i; S′ = S{I 7→ i′ − i};
R′ = updates(I, (t, S′, R))

Definition 2. Adding and removing species in the generic abstract machine.
We let O denote a multiset of reactions [O1, .., ON ]. If I is a multiset
{(I1, i1), .., (IN , iN )} we write I ⊕ T for (I1, i1) ⊕ .. ⊕ (IN , iN ) ⊕ T , and T 	 I
for T 	 (I1, i1)	 ..	 (IN , iN ).

is executed by removing the reactants I, adding the products I ′ and updating
the current simulation time in the machine term.

Definitions for adding and removing species are summarised in Definition 2.
A process P is added to a machine term T by computing the multiset of species
[I1, .., IN ] which correspond to P and then adding each of these species to the
term. If a new species I is already present in the term then its population is
incremented in S and the activity of the affected reactions is updated. If the
species is not already present in the term then its population is initialised in S
and new reactions for the species are computed, together with their activity. The
operation T 	 I removes the species I from the machine term T , by decreasing
the corresponding species populations and updating the activity of the affected
reactions.

For simulation of systems with large numbers of transient species, the ma-
chine can be modified so that species with zero population are garbage-collected.
This can be achieved by modifying the definition of species removal so that spe-
cies with zero population are removed from the species map, and reactions
involving those species are removed from the reaction map, as follows:

(t, S,R)	 (I, i) , (t, S′, R′) if S(I) = i′; i′ = i; S′ = S \ I; oi = R(Oi);
R′ = {Oi 7→ oi | Oi = (J, r, J ′); I /∈ J ; Oi ∈ dom(R)}

This definition implies that species are garbage-collected as soon as their
population reaches zero. In practice, this approach will have significant benefits
if a large number of species are used only once.

For Markovian simulation methods in which all reaction rates r are assumed
to be exponentially distributed of the form exp(λ), we can compute the Conti-
nuous Time Markov Chain (CTMC) of the abstract machine directly from (1).
We first derive a CTMC semantics from the reduction relation T a,O−→ T ′, using
the following rule:

a =
(∑

{b,O | T b,O−→T ′}
b
)
> 0

T
a−→ T ′

(2)

This rule sums the propensities b of all reactions T b,O−→ T ′ that give rise to the
same term T ′. The CTMC semantics therefore corresponds the set of initial
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transitions from a given term T . From this semantics we derive a corresponding
CTMC by recursively enumerating the set of all transitions starting from T , as
defined by the following recursive function:

CTMC (T ) = flatten({{T a−→ T ′} ∪ CMTC (T ′) | T a−→ T ′}) (3)

where flatten({S1, .., SN}) = S1 ∪ ..∪SN . Essentially, for each transition T a−→
T ′ we recursively compute the transitions for the resulting process T ′. Note
that we ignore the current time when checking equality between terms. As
an example, consider the machine term T = (0, S,R) with S = {A 7→ 3}
and R = {([A,A], r, [B]) 7→ 3 · r}. This defines a machine term with a single
reaction A + A

r−→ B and with three copies of species A, written [A,A,A] for
short. The corresponding CTMC for this machine term consists of the single
transition [A,A,A]

3·r−→ [A,B], which results from the application of the reaction
A+A

r−→ B. Since there are three ways in which the reaction can be applied,
the rate of the transition is given by 3 · r, which corresponds to the propensity
of the reaction.

3. Instantiating the Abstract Machine with a Simulation Method

This section describes how the abstract machine can be instantiated with a
chosen simulation method, by defining appropriate next , init and updates func-
tions. We first present an instantiation with the Direct Method [11] followed by
an instantiation with the Next Reaction Method [10]. In general, the abstract
machine can be instantiated to a range of other reaction-based simulation algo-
rithms, including algorithms for handling both Markovian and non-Markovian
rates simultaneously, as shown in [16].

3.1. Gillespie’s Direct Method
An instantiation of the generic abstract machine with the Direct Method

of [11] is outlined in Definition 3. Each reaction Oi in R is mapped to its
activity, which in this case is simply the propensity a of the reaction. The func-
tion propensity((I, r, I ′), S) computes the propensity of the reaction (I, r, I ′) by
multiplying the number of distinct combinations of the reactants I by the expo-
nential rate λ of the reaction, assuming that all reaction rates are exponentially
distributed of the form exp(λ). The number of distinct combinations of the
reactants is computed using the binomial coefficient, by looking up the popula-
tion of each reactant in the species map S. The function init(O, T ) computes
the propensity of each reaction in the multiset O using the initial species popu-
lations in T . In order to merge multiple instances of the same reaction, the rate
is multiplied by the number of occurrences of the reaction. Note that the merge
is only applicable in the case of Markovian simulation methods such as the Di-
rect Method, in which all of the reaction rates are assumed to be exponentially
distributed. The function updates(I, T ) recomputes the propensities of all the
reactions in T for which I is a reactant. Note that, in general, this function
should be defined in such a way that T 	(I1, i1)	(I2, i2) = T 	(I2, i2)	(I1, i1),
to ensure that the order in which species are removed has no effect on the corres-
ponding propensities. Finally, the function next(T ) chooses a reaction Oµ from
T with probability proportional to the reaction propensity aµ, and computes
the corresponding duration t′ of the reaction according to [11].
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next(t, S,R) , (Oµ, aµ, t+ t′) if a0 =
∑
Oi∈dom(R)R(Oi) > 0;

t′ = ( 1
a0

)ln( 1
n1

);
∑µ−1
i=1 ai < n2a0 ≤

∑µ
i=1 ai

init(O, (t, S,R)) , {Oi 7→ propensity(Oi, S) | Oi ∈ merge(O)}
merge(O) , {(I, exp(λ× oi), I ′) | ((I, exp(λ), I ′), oi) ∈ O}

updates(I, (t, S,R)) , {Oi 7→ propensity(Oi, S) | Oi ∈ dom(R);

Oi = (J, r, J ′); I ∈ J}

propensity({(I1, i1), ..(IN , iN )}, exp(λ), I ′), S) , λ×
(
S(I1)
i1

)
× ..×

(
S(IN )
iN

)
Definition 3. Instantiation of the generic abstract machine with the Direct
Method [11], where n1 and n2 denote two random numbers from the standard
uniform distribution U(0, 1). The notation

(
n
k

)
denotes the binomial coefficient

indexed by n and k, which computes the number of distinct k-element subsets
that can be obtained from a set of size n. All reaction rates r are assumed to
be exponentially distributed of the form exp(λ), where λ is a real number.

3.2. Next Reaction Method
An instantiation of the generic abstract machine with the Next Reaction

Method (NRM) of [10] is outlined in Definition 4. Each reaction Oi in R is
mapped to its activity, which is recorded as a pair (a, t), where a is the propensity
of the reaction and t is the putative time at which the reaction is scheduled to
occur. The definitions of the propensity and merge functions are the same as
in Definition 3. The next reaction is chosen to be the one with the smallest
putative time, as defined by the function next(T ), which returns the chosen
reaction (J, r, J ′) together with its putative time t′ and its propensity a (4).

When a new reaction is created, the NRM computes the putative time of
the reaction according to its propensity (5). This algorithm also provides a
way to update the putative times of Markovian reactions when their propensity
changes, without generating a new random variable (6). When a new reaction
is added to the machine, its propensity is computed and used to generate a
random variable following the probability distribution of the reaction (5). Mar-
kovian reactions are updated by computing the new propensity and rescaling
the putative time (6). It may be that the old propensity is 0, preventing direct
use of the rescaling function. This case can be handled by keeping additional
variables to register the last non-zero propensity and to rescale according to this
old value (as discussed in note 11 of [10]). Similarly, if the new propensity is 0,
the putative time is set to infinity.

4. Instantiating the Abstract Machine with a Process Calculus

This section instantiates the generic abstract machine with four different
process calculi, namely the stochastic pi-calculus, the bioambient calculus, the
kappa calculus and the DNA strand displacement calculus, by defining appro-
priate species and reactions functions. The stochastic pi-calculus is an example
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next(t, S,R) , (O, a, t′) if R(O) = (a, t′); a > 0; (4)
t′ = min{t | R(O) = (a, t)}

init(O, (t, S,R)) , {Oi 7→ (t′, a) | Oi ∈ merge(O); (5)
a = propensity(Oi, S); t′ = t+ delay(a)}

updates(I, (t, S,R)) , {O 7→ (t′, a′) | R(O) = (t′′, a);O = (J, r, J ′); (6)
I ∈ J ; a′ = propensity(O,S);

t′ = t+ (a/a′)(t′′ − t)}

Definition 4. Instantiation of the generic abstract machine with the Next
Reaction Method [10]. The activity of each reaction O is recorded as a pair A =
(a, t), where a denotes the reaction propensity and t denotes the putative time
at which the reaction is scheduled to occur. The function delay(a) computes a
time interval for an exponential reaction with propensity a.

of an agent-based modelling language, where the behaviour of an individual is
described by a separate process. Here we focus on how multiple instances of
process complexes can be grouped together for improved efficiency. The bio-
ambient calculus is an example of an agent-based language with compartments.
Here we focus on the aspects of the instantiation that relate specifically to the
movement of compartments relative to each other. The kappa calculus is an
example of a rule-based modelling language, in which the interactions between
individuals are described as rules. Here we focus on the correspondence bet-
ween rules and reactions. Finally, the DNA strand displacement calculus is an
example of a domain-specific modelling language, tailored to a particular class
of systems. Here we focus on demonstrating how a domain-specific calculus can
be handled within the generic framework.

For each calculus, the semantics of the calculus itself is used to derive the
corresponding reactions function, in contrast with [16]. Furthermore, a separate
process function is defined for each calculus, in order to translate a species
back to a process. This function will be used to prove the correctness of the
instantiations in Sec. 5. In general, there are many different ways in which the
abstract machine can be instantiated with a given calculus, with broad scope for
calculus-specific optimisations. The abstract machine can also be instantiated
to a broad range of calculi beyond the ones presented here.

4.1. Stochastic Pi-Calculus
In this section we present an instantiation of the generic abstract machine

with a variant of stochastic pi-calculus. The instantiation includes an optimi-
sation for the simulation of process complexes. The instantiation is based on
[16], with the key difference that the reactions function is now defined directly
in terms of the calculus semantics.

4.1.1. Calculus Syntax and Semantics
The syntax of the variant of stochastic pi-calculus used in this paper is given

in Definition 5 and is based on [20]. A process P can be a choice of actions C,
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P ::= C Choice
| X(ñ) Instance
| P1 | P2 Parallel
| νxP Restriction

π ::= τr Delay
| !x(ñ) Send
| !x(νm̃ ) Bind
| ?x(m̃) Receive

C ::= πi11 .P1 + ..+ πiNN .PN Actions
E ::= X1(m̃1) 7→ P1, .., XN (m̃N ) 7→ PN Environment

Definition 5. Syntax of stochastic pi-calculus, where the empty choice denotes
the null process 0. For each definitionX(m̃) 7→ P in the environment, we assume
that m̃ ⊆ fn(P ), where fn(P ) denotes the free names of P . The restriction νxP
binds the name x in P and both !x(νm̃ ).P and ?x(m̃).P bind names m̃ in P .
We also assume that all recursive calls to a definition are guarded inside an
action prefix π, such that for a given definition X(m̃) 7→ P , any recursive call
to X inside P can only occur after an action π. This prevents infinite expansion
of process definitions.

P | 0 ≡ P (7)
P1 | P2 ≡ P2 | P1 (8)

P1 | (P2 | P3) ≡ (P1 | P2) | P3 (9)
νx0 ≡ 0 (10)

νx νy P ≡ νy νxP (11)
νx (P1 | P2) ≡ P1 | νxP2 if x /∈ fn(P1) (12)

X(ñ) ≡ P {ñ/m̃} if E(X(m̃))=P (13)

Definition 6. Structural congruence axioms in the stochastic pi-calculus, as-
suming a global environment E. Structural congruence is reflexive, symmetric
and transitive, and holds in any context inside a process or a choice. Processes
are assumed to be equal up to renaming of bound names and reordering of terms
in a choice.

τ ir.P + C
r,i−→ P (14)

!x(ñ)i1 .P1 + C1 | ?x(m̃)i2 .P2 + C2
rate(x),(i1,i2)−→ P1 | P2{ñ/m̃} (15)

!x(νñ)i1 .P1 + C1 | ?x(m̃)i2 .P2 + C2
rate(x),(i1,i2)−→ νñ(P1 | P2{ñ/m̃}) (16)

P
r,w−→ P ′ ⇒ νxP

r,w−→ νxP ′ (17)

P
r,w−→ P ′ ⇒ P | Q r,w−→ P ′ | Q (18)

Q ≡ P r,w−→ P ′ ≡ Q′ ⇒ Q
r,w−→ Q′ (19)

Definition 7. Reduction in the stochastic pi-calculus, where a reduction iden-
tifier w can be either a single identifier i denoting a delay, or a pair of identifiers
(i1, i2) denoting an interaction.
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an instance X(ñ) of a definition X with parameters ñ, a parallel composition
of processes P | Q, or a process νxP with a private channel x. A choice C
consists of a competition between zero or more actions πi.P , where π is the
action that can be performed, after which process P is executed, and i is an
index used for identifying individual actions. We take 0 to be the default index,
and we abbreviate π0 to π. An action π can be a delay τr of rate r, a send
!x(ñ) of values ñ on channel x, a send !x(νñ ) of private values ñ on channel x,
or a receive ?x(m̃) of values m̃ on channel x. An environment E consists of a
set of definitions X(m̃) 7→ P , where X is the name of the definition, m̃ are its
parameters and P is the corresponding process.

The structural congruence axioms for the stochastic pi-calculus are summari-
sed in Definition 6 in the standard way, and the reduction rules are summarised
in Definition 7. The notation P

r,w−→ P ′ states that the process P can reduce
to P ′ by performing a reaction w at rate r. The reaction identifier w can be
an index i denoting a particular delay τ ir, or a pair of indices (i1, i2) denoting
an interaction between two actions with indices i1 and i2, respectively. A pro-
cess can evolve on its own by executing a delay τr. Two processes can evolve
simultaneously by communicating or binding with each other. Communication
between two processes occurs when one process sends values ñ on a channel
x, denoted by !x(ñ), and a parallel process receives these values on the same
channel x, denoted by ?x(m̃). A binding between two processes can occur if
one process sends private values ñ on a channel x, denoted by !x(νñ ), which
are then shared only between the sender and receiver, representing the forma-
tion of a complex between the two. Note that we include an explicit notion of
bound output !x(νñ ) in order to directly model the formation of complexes in
the calculus. This also allows us to convert a restricted choice νm !x(m) to a
choice !x(νm ), where the scope of the binding is moved inside the choice. This
in turn simplifies the treatment of complex formation, for example in rule (16).

Stochastic behaviour is introduced into the calculus by associating each delay
τr with a rate r and by associating each channel x with a corresponding rate
given by rate(x). Each channel x therefore denotes a pair (n, r), where n denotes
the channel name and r denotes the channel rate, such that rate((n, r)) = r.
We assume that distinct channels have distinct names, and that renaming of
channels preserves the rate. Each rate characterises a probability distribution.
For exponentially distributed rates of the form exp(λ), the probability of a
reaction occurring within time t is given by F (t) = 1 − e−λt. The average
duration of the reaction is given by the mean 1/λ of this distribution.

We derive a CTMC semantics for the stochastic pi-calculus directly from its
reduction relation, by first defining an indexed form for processes as follows,
based on [19].

Definition 8. A process P is in indexed form if it is of the form νx1 ..νxM (C1 |
.. | CN ) and each unguarded action πi is associated with a unique index i.

We can show that every process is structurally congruent to a process in
indexed form, up to renaming of indices (the proof is straightforward). Note that
the sole purpose of the indices is to uniquely identify each individual action, and
that renaming these indices has no effect on the reductions that a given process
can perform (see [19] for further details). Note that a process in indexed form
does not necessarily remain in indexed form after a reduction takes place. For
example, consider the process τ1

r .(X | X) with X 7→ τ2
r in the environment.
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This process is in indexed form since each unguarded action has a unique index.
However, after a reduction we obtain the process (τ2

r | τ2
r ), which is no longer

in indexed form. In general, indexed form is used to uniquely identify each
reduction by labelling it with the indices of the actions involved. Thus, it is
important that processes are not equal up to renaming of indices, otherwise
an infinite number of reactions could be generated. Moreover, we only need to
convert a process to indexed form when we wish to count the number of distinct
reductions, for example when computing the CTMC corresponding to a given
process. The CTMC semantics is then given by the following rule, assuming
process P is in indexed form, where the function index (P ′) converts process P ′
to indexed form.

a =

(∑
{λ,w|P exp(λ),w−→ P ′}

λ

)
> 0

P
a−→ index (P ′)

(20)

The requirement that a > 0 ensures that we can derive P a−→ P ′ precisely when
there is a stochastic pi-calculus reduction from P to P ′. We rely implicitly on
the fact that λ > 0 for all exponential rates λ. Using this semantics, we then
derive a corresponding CTMC for a given process P by recursively enumerating
the set of transitions P a−→ P ′ for each distinct process P ′, according to (3). For
the purposes of computing the CTMC we assume that processes are distinct up
to structural congruence and injective renaming of indices. This ensures that we
do not generate duplicate transitions P a−→ P ′ if P ′ is re-ordered or its indices
are renamed.

4.1.2. Computing Species and Reactions from Calculus Processes
To instantiate the generic abstract machine with the stochastic pi-calculus,

the first step is to define what constitutes a species. Here we assume that
a species is either an instance X(ñ) or a complex of instances νñ (X1(ñ1) |
. . . | XM (ñM )), where each instance corresponds to a choice of actions. Our
approach is motivated by the observation that a choice of actions is the basic
unit of computation, where two parallel choices interact by communicating over
shared channels. An alternative approach could be to assume that a species
corresponds directly to a choice of actions, instead of using a named instance
X(ñ). Our decision to use a named instance has the advantage that a species
can be explicitly identified in a biological model by a meaningful name, and that
the results of a simulation can be directly linked to the original model via this
name. In order to formalise the notion of a species in stochastic pi-calculus, we
define a normal form for processes (Definition 9), and show that all processes
are structurally congruent to a normal form (Proposition 12).

Proposition 12. All processes of the stochastic pi-calculus are structurally
congruent to a normal form according to Definition 9.

Proof. By induction on Definition 10. Using the structural congruence rules
of Definition 6, we augment the environment such that all choices are defined
separately (13), and we replace all instances that are not a choice with their
corresponding process definition (13). Using the structural congruence rule for
scoping (12), we modify the scope of a restriction such that a process is a parallel
composition of species, where each species is either an instance or a complex.
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P ::= I1 | .. | IN Species
I ::= X(ñ) Instance
| νz̃ (X1(ñ1) | .. | XM (ñM )) Complex

C ::= πi11 .P1 + ..+ πiNN .PN Choice
E ::= X1(m̃1) 7→ C1, .., XN (m̃N ) 7→ CN Environment

Definition 9. Normal form of stochastic pi-calculus processes, where N ≥ 0
and M ≥ 1. A process P is considered to be in normal form if it consists of a
parallel composition of species I, where a species can be an instance X(ñ) or
a complex of instances νz̃ (X1(ñ1) | . . . | XM (ñM )) and where every instance
X(ñ) corresponds to a choice of actions. We assume that z̃ ∩ ñ1 ∩ . . .∩ ñM 6= ∅
and z̃ ⊆ ñ1 ∪ . . . ∪ ñM , so as to minimise the scope of restricted names.

normal(0) , 0

normal(X(ñ)) , X(ñ) if E(X(ñ)) = C

normal(X(ñ)) , normal(P ) if E(X(ñ)) = P 6= C

normal(P1 | P2) , normal(P1) | normal(P2)

normal(C) , X(ñ) if E(X(ñ)) = C andX fresh

normal(νxP ) , insert(x,normal(P ))

insert(x,
∏
iIi) , (νz̃

∏
kKk) |

∏
jIj if Ik = νz̃kKk

and x ∈ fn(Ik), x /∈ fn(Ij)

and
⋂
z̃k = ∅, z̃ = {x} ∪

⋃
z̃k

and i ∈ I, j ∈ J , k ∈ K and J ∩ K = ∅, I = J ∪ K

Definition 10. Computing the normal form of a stochastic pi-calculus process.
We write

∏
i Pi as short for P1 | .. | PN , assuming i ∈ {1, .., N}. We write

E(X(ñ)) = C as an abbreviation for E(X(m̃)) = C ′ where C = C ′{ñ/m̃}. The
case for normal(C) assumes that the environment contains a fresh definition X
for the choice C, such that E(X(ñ)) = C and X is not used elsewhere.

species(P ) , [I1, .., IN ] if normal(P ) = (I1 | .. | IN )

process([I1, .., IN ]) , (I1 | .. | IN )

reactions(I, J̃) , mset(unary(I) ∪ binary(I, (J̃ ∪ {I})))
mset(L̃) , {((I, r, I ′), k) | k = #{(I, r, w, I ′) ∈ L̃}; (I, r, w, I ′) ∈ L̃}

unary(I) , {([I], r, w, species(P )) | I r,w−→ P}
binary(I1, J̃) , {([I1, I2], r, w, species(P )) | I2 ∈ J̃ ; i1 ∈ I1; i2 ∈ I2;

w = (i1, i2); (I1 | I2)
r,w−→ P}

Definition 11. Generic abstract machine instantiated for the stochastic pi-
calculus, using the definition of reduction in the calculus to derive the reactions.
We assume a fixed global environment E containing all instance definitions. We
write i ∈ I if identifier i is present within species I.
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Using our normal form for processes (Definition 9), we now define the various
functions that are needed to instantiate the generic abstract machine for sto-
chastic pi-calculus (Definition 11). The function species(P ) converts a process
to a multiset of species, the process(I) function converts a multiset of species to
a process, and the function reactions(I, J̃) computes the multiset of reactions
that the species I can perform with the set of species J̃ . The function mset
converts a set of reactions L̃, in which each reaction has a unique identifier w,
to a multiset of reactions O in which the identifiers are discarded. Note that the
reactions function returns a multiset rather than a set since the same reaction
can potentially be generated in multiple different ways, e.g. as in the process
X 7→ τr.Y + τr.Y . The function returns the multiset of unary reactions (delays)
combined with the multiset of binary reactions (communications and bindings).

4.1.3. Example
We illustrate the application of the generic abstract machine to the stochastic

pi-calculus with the following simple example of complex formation.

A = !x(νu).AB(u)
AB(u) = !u.A

B = ?x(u).BA(u)
BA(u) = ?u.B

Initially, 100 copies of processes A and B are added to the empty machine term,
written (100 · A | 100 ·B)⊕ (0, ∅, ∅), where the notation 100 ·X represents 100
parallel copies of the process X. This gives rise to the machine term (0, S,R),
where S and R are as follows:

S ={A 7→ 100, B 7→ 100}
R =[([A,B], rate(x), [νu (AB(u) | BA(u))]) 7→ (104 · (rate(x)), t1)]

The reaction involving species A and B is executed at time t1, after which one
copy of the species A and B are removed and one copy of the complex is added
to the resulting machine term:

νu (AB(u) | BA(u))⊕ ((t1, S,R)	 [A,B])

This gives rise to the machine term (t1, S1, R1), where S1 and R1 are as follows:

S1 ={A 7→ 99, B 7→ 99, νu (AB(u) | BA(u)) 7→ 1}
R1 =[([A,B], rate(x), [νu (AB(u) | BA(u))]) 7→ (9801 · (rate(x)), t3),

([νu (AB(u) | BA(u))], rate(u), [A,B]) 7→ ((rate(u)), t2)]

Note that existing simulation algorithms such as that from [20] handle N copies
of the complex νu(AB(u) | BA(u)) by creating a globally fresh name for each
restricted channel u, as follows:

νu1 . . . νuN (AB(u1) | BA(u1) | . . . | AB(uN ) | BA(uN ))

In contrast, our approach treats these asN copies of the same complex νu(AB(u) |
BA(u)), resulting in fewer species, fewer reactions and therefore a significantly
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more efficient simulation. For the example described above, if there are N com-
plexes we end up with a memory consumption of 2N + 2 species and N + 1
reactions. In contrast, if we store complexes as species we end up with only 3
species and 2 reactions, resulting in a memory saving of order N . For many
systems, the number of complexes can easily exceed 10000. If we use the next
reaction method for simulation, the complexity scales with the logarithm of the
number of reactions whose propensity is greater than zero[10]. For the above
example with N = 10000, if we store complexes as species we obtain on the
order of a 10000-fold saving in memory and a 10-fold speedup.

4.2. Instantiation to the Bioambient Calculus
The bioambient calculus was first presented in [26] for modelling mobile

compartments in biological processes. In this section, we instantiate the generic
abstract machine to a version of the stochastic bioambient calculus. We provide
full definitions for the bioambient calculus without the merge action, and briefly
outline a straightforward extension for incorporating merge.

4.2.1. Calculus Syntax and Semantics
The syntax and reduction rules of the stochastic bioambient calculus used in

this section are presented in Definition 13 and are based on [19]. A process P can
be a choice of actions C, an instance X(ñ) of a definition X with parameters ñ,
a parallel composition of processes P | Q, a process νxP with a private channel
x, or an ambient P

a
consisting of a process P inside the compartment named

a. A choice C consists of a competition between zero or more actions πi.P , as in
the stochastic pi-calculus. An action π can be a delay τr, a send γ!x(ñ) of values
ñ on channel x, or a receive γ?x(m̃) of values m̃ on channel x, where γ denotes
the type of communication. This can be inside the same ambient (local), from
one sibling ambient to another (s2s), from a child ambient to its parent (c2p)
or from a parent ambient to a child (p2c). In addition, an action π can be a
move µ!x on channel x or an accept µ?x on channel x, where µ denotes the type
of movement. This can be an ambient entering one of its siblings (in), a child
ambient leaving its parent (out) or a merge of two sibling ambients (merge). An
environment E consists of a set of definitions X(m̃) 7→ P , as in the stochastic
pi-calculus.

We derive a CTMC semantics for the bioambient calculus directly from its
reduction relation, by first defining an indexed form for processes based on [19].

Definition 14. A process P is in indexed form if it is of the form νx1 ..νxM (C1 |
.. | CN | P1

a1 | .. | PK
aK

) where each process P1, .., PK is in indexed form,
each ambient index a1, .., aK is unique and each unguarded action πi is associa-
ted with a unique index i.

We can show that every process is structurally congruent to a process in
indexed form, up to renaming of indices (the proof is straightforward [19]).
The CTMC reduction semantics is then defined by the following rule, assuming
process P is in indexed form, where the function index (P ′) converts process P ′
to indexed form:

a =

(∑
{λ,w|P exp(λ),w−→ P ′}

λ

)
> 0

P
a−→ index (P ′)

(21)
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P,Q ::= C | X(ñ) | P |Q | νxP | P
a

Process

C ::= πi11 .P1 + . . .+ πiNN .PN Choice
E ::= X1(m̃1) 7→ P1, . . . , XN (m̃N ) 7→ PN Environnment

π ::= τr Delay
| γ!x(ñ) Send
| γ?x(m̃) Receive
| µ!x Move
| µ?x Accept

λ ::= γ | µ Binary actions

γ ::= local Local
| s2s Sibling
| c2p Parent
| p2c Child

µ ::= in Enter
| out Leave
| merge Merge

τ ir.P + C
r,i−→ P

local!x(ñ)i.P + C | local?x(m̃)i
′
.P ′ + C ′

rx,(i,i
′)−→ P | P ′{ñ/m̃}

Q | c2p!x(ñ)i.P + C
a

| Q′ | c2p?x(m̃)i
′
.P ′ + C ′

rx,(i,a,i
′)−→ Q | P

a
| Q′ | P ′{ñ/m̃}

Q | p2c!x(ñ)i.P + C | Q′ | p2c?x(m̃)i
′
.P ′ + C ′

a
rx,(i,a,i

′)−→ Q | P | Q′ | P ′{ñ/m̃}
a

Q | s2s!x(ñ)i.P + C
a

| Q′ | s2s?x(m̃)i
′
.P ′ + C ′

b
rx,(i,a,i

′,b)−→ Q | P
a
| Q′ | P ′{ñ/m̃}

b

Q | in!xi.P + C
a

| Q′ | in?xi
′
.P ′ + C ′

b
rx,(i,a,i

′,b)−→ Q | P
a
| Q′ | P ′

b

Q | out!xi.P + C
a

| Q′ | out?xi
′
.P ′ + C ′

b
rx,(i,a,i

′,b)−→ Q | P
a
| Q′ | P ′

b

Q | merge!xi.P + C
a

| Q′ | merge?xi
′
.P ′ + C ′

b
rx,(i,a,i

′,b)−→ Q | P | Q′ | P ′
b

P
r,w−→P ′ ⇒ P

a r,w−→ P ′
a

P
r,w−→P ′ ⇒ νxP

r,w−→ νxP ′

P
r,w−→P ′ ⇒ P | Q r,w−→ P ′ | Q

Q ≡ P r,w−→P ′ ≡ Q′ ⇒ Q
r,w−→ Q′

Definition 13. Syntax and core reduction rules of the stochastic bioambient
calculus, based on [19]. For convenience, we write rx as shorthand for rate(x).
Each reduction is labelled with its rate r and an index w which is a list of
identifiers that denote the actions and ambients involved in a given reduction.
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As in Sec. 4.1, we derive a corresponding CTMC for a given process P by
recursively enumerating the set of transitions P a−→ P ′, for each distinct process
P ′, according to (3). For the purposes of computing the CTMC we assume that
processes are distinct up to structural congruence and injective renaming of
indices.

4.2.2. Computing Species and Reactions from Processes
The most important feature of the bioambient calculus is the compartmenta-

lising of processes into nested ambients, which prevents local reactions between
processes from occurring across different ambients. We extract a flat set of reac-
tions from a bioambient process by annotating all processes with the identifier
of the ambient in which they are currently located. This assumes that each
ambient is associated with a unique identifier, according to Definition 14. The
hierarchical structure of ambients is specified by location species, where the lo-
cation (a, b) means that the ambient a is a child of the ambient b. The identifier
root is used to denote the top-level enclosing ambient. For example, the process

P1| P2

a
b

is translated as the species multiset P b1 , P a2 , (a, b), (b, root) where root

is the identifier of the root ambient and a and b are ambient identifiers that are
assumed to be globally unique. The assigning of locations to species in the de-
finition of species(P ) is formally presented in Definition 15, where the function
process(I) returns the process corresponding to the multiset of species I.

The computation of reactions between species is defined in Definition 16.
The reduction rules of the bioambient calculus are used directly to compute
the set of reactions between process species I1 and I2 with their corresponding
locations. For example,

Q1 | in!x.P1

a
| Q2 | in?x.P2

b
−→ Q1 | P1

a
| Q2 | P2

b

is encoded by the following reaction in the abstract machine:

in!x.P a1 + in?x.P b2 + (a, root) + (b, root) −→ P a1 + P b2 + (a, b) + (b, root)

Since the population of any location species is always either 0 or 1, applying such
a reaction would disable reactions involving the old (a, root) location of ambient
a, and reactions involving the new (a, b) location would become possible instead.

Note that we do not explicitly include functions for supporting the merge

operation in Definition 15. This can be achieved in a straightforward way by
augmenting the location species with the notion of an ambient alias (a = b),
which states that a is merged into ambient b. Following the merge, every ins-
tance of ambient identifier a needs to be replaced with b. This is achieved by
defining a normal form for species, which removes ambient aliases by substitu-
ting the corresponding ambient identifiers. For example, consider the process

A | X
a
| B | Y

b
with X = merge!xi.X2 and Y = merge?xi

′
.Y2. We have the

following reaction:

Xa + Y b + (a, root) + (b, root) −→ Xb
2 + Y b2 + (a = b) + (b, root)

After application of the reaction, the set of species is [Xb
2, Y

b
2 , A

a, Bb, (a =
b), (a, root), (b, root)], which is normalised to [Xb

2, Y
b
2 , A

b, Bb, (b, root)].
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I ::= X(ñ)a Process species
| L Location species

L ::= (a, b) Ambient Location

species(0) , ∅
species(P ) , species(P, root)

species( P
a′

, a) , species(P, a′) ] [(a′, a)]

species(X(ñ), a) , [X(ñ)a] if E(X(ñ)) = C

species(X(ñ), a) , species(P, a) if E(X(ñ)) = P 6= C

species(C, a) , [X(ñ)a] if E(X(ñ)) = C andX fresh

species(νxP, a) , species(P {y/x}, a) if fresh(y)

species(P1 | P2, a) , species(P1, a) ] species(P2, a)

process(I) , process(I, root)

process(I, a) , parallel(J ] {( process((I\J), b)
b

, 1) | (b, a) ∈ I})

if J = {(X(ñ), k) | (X(ñ)a, k) ∈ I}

Definition 15. Functions for converting between species and processes. Note
that the case for species(C, a) assumes that the environment contains a fresh
definition X for the choice C, such that E(X(ñ)) = C and X is not used
elsewhere.

reactions(I, Ĩ ′) , mset(unary(I) ∪ nary(I, (Ĩ ′ ∪ {I})))
unary(I) , {([I], r, w, species(P, a)) | I r,w−→ P ; I = X(ñ)a}

nary(I, Ĩ ′) , nary2 (I, Ĩ ′) ∪ nary3 (I, Ĩ ′) ∪ nary4 (I, Ĩ ′)

nary2 (I1, Ĩ ′) , {(I, r, w, species(P, a)) | process(I)
r,w−→ P ;w = (i1, i2)

I = [I1, I2] = [X(ñ)a, Y (m̃)a]; I2 ∈ Ĩ ′}
nary3 (I1, Ĩ ′) , {(I, r, w, species(P, b)) | process(I)

r,w−→ P ;w = (i1, a, i2);

I = [I1, I2, I3] = [X(ñ)a, Y (m̃)b, (a, b)]; a 6= b; [I2, I3] ⊆ Ĩ ′}
nary4 (I1, Ĩ ′) , {(I, r, w, species(P, c)) | process(I)

r,w−→ P ;w = (i1, a, i2, c);

a 6= b; a 6= c; (d = b or d = c); [I2, I3, I4] ⊆ Ĩ ′;
I = [I1, I2, I3, I4] = [X(ñ)a, Y (m̃)b, (a, d), (b, c)]}

Definition 16. Instantiation of the generic machine to the bioambient calculus.
We write parallel(I1, . . . , IN ) to stand for the process I1 | · · · | IN and I\J for
multiset difference. Note that in the cases for nary2 ,nary3 and nary4 we exploit
the fact that the order of elements within a multiset is not fixed, for example
in nary2 it is possible that I1 = Y (m̃)a and I2 = X(ñ)a.

17



There is also broad scope for calculus-specific optimisations. For example,
multiple distinct ambients containing the same process could be grouped toge-
ther as a single species, and complexes in the bioambient calculus could be trea-
ted in a similar fashion to complexes in the stochastic pi-calculus, by modifying
the normal function along the lines of Definition 10 to handle the hierarchical
structure of bioambient processes. The treatment of complexes for bioambients
is almost identical to that of stochastic pi-calculus, except that now complexes
can potentially span multiple ambients. Having previously discussed how com-
plexes can be optimised in Sec. 4.1, here we have focussed on how hierarchical
compartments can be implemented in the generic abstract machine. The opti-
misation of complexes greatly increases the complexity of the definitions, and
is not essential for defining a working implementation. For simplicity, we have
therefore chosen to leave the optimisation of complexes for bioambients as future
work. The ability to omit this complexity also highlights the flexibility of the
generic abstract machine in supporting a range of implementations for a given
calculus.

4.2.3. Simple Example
Consider the following bioambient process definitions:

E = in?s.EL(s) + in?p.EL(p) S = in!s.X + τr
EL(x) = out?x.E P = in!p.X + τr

X = out!s.S + out!p.P

and the initial process E
a
| S|P

b
. After populating the machine, the reac-

tion map S contains the species Ea, (a, root), Sb, P b, (b, root) and the related
reactions are:

1. Ea + Sb + (a, root) + (b, root) −→ EL(s)a +Xb + (a, root) + (b, a)

2. Sb −→ 0

3. Ea + P b + (a, root) + (b, root) −→ EL(p)a +Xb + (a, root) + (b, a)

4. P b −→ 0

Suppose that reaction 1 is chosen. Then, the ambient at location (b, root) moves
to (b, a). The species (b, root), Ea, Sb are set to zero population and new species
EL(s)a, Xb are created. The propensities of reactions 1, 2 and 3 are set to zero
and a new reaction involving the added species is computed:

5. EL(s)a +Xb + (a, root) + (b, a) −→ Ea + Sb + (a, root) + (b, root).

4.3. Instantiation to the Kappa calculus
In this section we describe an instantiation of the generic abstract machine

to simulate a variant of the kappa calculus [7].

4.3.1. Calculus Syntax and Semantics
Kappa [6, 7] is a rule-based language suitable for modelling biological inter-

actions. Kappa offers a compact formalism to describe the various interactions
occurring between agents present in a solution. An agent is defined by its name
and a set of sites it can use to interact with other agents. A site is either free or
bound to one and only one other agent. A site may also have an internal state,
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P,G ::= [a1, .., aM ] Solution
a ::= A(σ) Agent
σ ::= {s1, . . . , sM} Interface

s ::= xλι Site
ι ::= ε | m ∈ V Internal state
λ ::= ε | i ∈ N Binding state

E ::= (G1, r1, G
′
1), .., (GN , rN , G

′
N ) Rule set

Definition 17. Syntax of kappa expressions, where r denotes the rate of a rule
application, A is an agent name and x is a site name.

xλrιr /x
λ
ι , xλrιr

xλr/xλι , xλrι

∅/σ , σ

sr, σr/s, σ , sr/s, σr/σ

A(σr)/A(σ) , A(σr/σ)

∅/G , G

ar, G
′/a,G , ar/a,G

′/G

Definition 18. Kappa solution replacement.

φ ∈ embed(G,P ) : G 7→ P is an embedding from a (partial) solution G to a
solution P if for all a, b ∈ G:

φ(a) = φ(b)⇒ a = b;Name(a) = Name(φ(a));Site(a) ⊆ Site(φ(a))

xλι ∈ Intf(a)⇒ xλ
′

ι′ ∈ Intf(φ(a)) with λ = λ′ and (ι = ε or ι = ι′)

Definition 19. Embedding between two solutions. Name, Site, and Intf
retrieve respectively the name A, the site names {x1, . . . , xM}, and the interface
σ of the given agent instance.

(G, r,G′) ∈ E φ ∈ embed(G,P )

P
r,(φ,G,r,G′)−→ φ(G′)/P

Definition 20. Kappa transition system, assuming a global fixed rule set E.

I ::= P

process([I1, . . . , IN ]) , I1 ]α · · · ]α IN
species(P ) , [I1, . . . , IN ] with process([I1, . . . , IN ]) = P and

∀Ik, valid(Ik) and ∀I ′k ⊂ Ik, I ′k 6= Ik, not valid(I ′k)

with valid([a1, . . . , aM ]) ⇐⇒ (xiι ∈ Intf(ak)⇒
∃ a unique k′ 6= k, x′iι′ ∈ Intf(ak′))

reactions(I1, Ĩ ′) , mset({(I, r, w, species(P ′)) | process(I)
r,w−→ P ′;

I1 ∈ I; Ĩ ⊆ ({I1} ∪ Ĩ ′); #I = #(species(G));w = (φ,G, r,G′)})

Definition 21. Generic abstract machine instantiated for kappa, assuming a
global fixed rule set E. A species I is a minimal valid solution. ]α stands for
the multiset union where species binding states are renamed to ensure the global
validity of the solution. .
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e.g. phosphorylated or unphosphorylated. The interactions between agents
are specified by rules, which describe the transformation to apply on agents
when a certain context matches. The context in which a rule is active consists
of a multiset of partial agents describing the binding state and internal state
of sites taking part in the transformation; all other sites should be discarded
from the specification, giving a partial definition of an agent. For instance,
the binding between two agents A(x, y), B(x, y) can be specified by the rule
A(x), B(y) → A(x1), B(y1) if the binding only depends on the sites x and y
being free in A and B, respectively; 1 stands here for the binding state of the
sites and is shared by precisely two sites in different agent instances. Defini-
tion 17 sums up the syntax of kappa. We denote by P a solution (multiset)
of completely defined agents, and by G a solution of partially defined agents.
Solutions are equal up to injective renaming of binding states.

Given a solution P , applying a rule (G, r,G′) requires an embedding φ :
G 7→ P (Definition 19) to map a partial agent specification to its specification
in P . If such a mapping exists, the rule can be applied. We consider that two
embeddings φ1, φ2 are equivalent if there exists an isomorphism and embedding
Φ : G 7→ G such that φ1 = Φ.φ2[6]. By abuse of notation, the specification of
agents in G′ are extended using the same embedding, and are denoted by φ(G′).
As all agent instances present in G′ are present in G, φ(G′) is defined for all
agents in G′, and the modifications applied on agents in G′ override the mapped
instances. The replacement of those agent instances in P is written φ(G′)/P
(Definition 18). To ensure that the solution obtained is well-formed, binding
states not present in G are mapped to fresh values by φ. The transition system
is stated in Definition 20, and a CTMC semantics can be derived from it using
the following rule:

a =

(∑
{P r,φ,(G,r,G

′)−→ P ′}
r

)
> 0

P
a−→ P ′

(22)

Note that creation and deletion of agents are not allowed in this setting, but
the definitions can be readily extended to support this.

4.3.2. Computing Species and Reactions from Processes
The instantiation of our generic abstract machine to kappa is given in De-

finition 21. A species I corresponds to a completely defined, minimal, valid
solution (i.e. a kappa-species). A solution is valid if every binding state is
shared by exactly two agents. Hence, extracting species from a solution splits
the multi-set of agents into a multi-set of minimal valid solutions. Note that
we may need to rename binding states to ensure that a given species always
contains the same binding values between its agents. A solution can be reco-
vered from a multiset of species by the multiset union where binding states are
renamed to ensure the global validity of the solution. The multiset of reactions
between a species I1 and a set of species Ĩ ′ is computed using the transition
system from Definition 20: there is one reaction for each rule (G, r,G′) for which
there exists at least one embedding from a multiset of species in {I1}∪ Ĩ ′ which
contains I1 and which has the same number of agents as in G. The propensity
of the obtained reaction (I, r, J) corresponds to the number of possible different
embeddings from G to I which result in J after application of the rule.
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4.3.3. Simple Example
Consider the following kappa rules:

A(x, zu), B(y) � A(x1, zp), B(y1)

A(x1), B(y1), C(zu) → A(x), B(y), C(zp)

with initial solution E = 100 · A(x, zu), 100 · B(y), 100 · C(zu). Initially, the
species map is {A(x, zu) 7→ 100, B(y) 7→ 100, C(zu) 7→ 100} and one reaction
involving the initial species is computed:

1. A(x, zu), B(y)→ [A(x1, zp), B(y1)]

When applying this reaction, a new species [A(x1, zp), B(y1)] is created with po-
pulation 1. The populations of A(x, zu) and B(y) are decreased by 1. The new
species map is then {A(x, zu) 7→ 99, B(y) 7→ 99, C(zu) 7→ 100, [A(x1, zp), B(y1)] 7→
1}; two reactions involving the new species are then computed:

2. [A(x1, zp), B(y1)]→ A(x, zu), B(y)

3. [A(x1, zp), B(y1)], C(zu)→ A(x, zp), B(y), C(zp)

If the same reaction is applied again, the population of the species [A(x1, zp), B(y1)]
is increased to 2 and the reaction multiset is conserved: the species map becomes
{A(x, zu) 7→ 98, B(y) 7→ 98, C(zu) 7→ 100, [A(x1, zp), B(y1)] 7→ 2}.

4.4. Instantiating the generic machine to the DSD calculus
The DNA strand displacement language (DSD) [21, 15] was developed to

model DNA circuits that perform computation via strands of DNA displacing
one another. The language has been used to model and analyse a broad range
of circuits, some of which have been implemented experimentally, including a
logic-based circuit for computing the square root of a binary number [24], and
a collection of artificial neurons arranged to form an associative memory [25].
In this section we instantiate the generic abstract machine with a variant of the
DSD calculus, based on [15] and [14].

4.4.1. Syntax and semantics of the DSD calculus
The syntax of the DSD calculus is presented in Definition 22 in terms of

domains M, sequences S, strands A, complexes G and processes D. A corresponding
graphical representation is also given. Essentially, a process D of the calculus
is a collection of DNA species, where each species can be either a single strand
A or a complex G of strands bound to each other. Each strand consists of a
sequence S of domains and has a given orientation, where upper strands <S> are
oriented to the right and lower strands {S} are oriented to the left. Two single
strands with opposing orientations can bind to each other along complementary
sequences to form a double-stranded complex, with the upper strand on top and
the lower strand on the bottom. Specifically, a complex {L’}<L>[S]<R>{R’}
represents an upper strand <L S R> bound to a lower strand {L’ S* R’} along
the double-stranded region [S], which is formed by the sequence S bound to
its complementary sequence S*. The strands <L>,{L’} and <R>,{R’} represent
overhanging upper and lower strands to the left and right of the double-stranded
region, respectively. Some of these overhangs can potentially be empty, in which
case they are omitted. Two complexes G1 and G2 can be joined along a common
lower strand, written G1:G2, or along a common upper strand, written G1::G2.
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D ::= A Strand
| G Complex
| D1|D1 Composition

A ::= <S> Upper strand

| {S} Lower strand

M ::= N Long domain
| N^ Short domain

S ::= M Domain
| M* Complement
| S1 S2 Concatenation

L,R ::= ∅ Empty
| S Sequence

G ::= {L’}<L>[S]<R>{R’} Double stranded complex [S] with
overhanging single strands <L>, <R>
and {L’}, {R’}

| G1:G2 Complexes joined along lower strand
| G1::G2 Complexes joined along upper strand

Definition 22. Syntax of the DSD calculus, in terms of domains M, sequences
S, strands A, complexes G and processes D. We omit empty upper strands <∅>
and lower strands {∅} as an abbreviation. Where present, the graphical re-
presentation below is equivalent to the program code above. We abbreviate
a toehold N^ to N in the graphical representation, and use distinct colours for
distinct toeholds.

In the graphical representation of complexes we omit the colons altogether and
connect the strands, as shown for example in Definition 23.

Sequences S are divided into domains, where a domain M represents a nucleo-
tide sequence with explicit information about its orientation. For example, the
domain 5’-CACACA-3’ denotes the nucleotide sequence CACACA oriented to
the right, from its 5’ end to its 3’ end. This can also be written as 3’-ACACAC-
5’, which denotes the same nucleotide sequence oriented to the left. In general
we assume that distinct domains are mapped to distinct, non-interfering nucleo-
tide sequences. This allows us to abstract away from the underlying nucleotide
sequences that occur in physical DNA strands. The complement M* of a do-
main M is obtained by reversing its orientation and taking the Watson-Crick
complement (C-G, T-A) of each nucleotide in the domain. For example, the
complement of 5’-CACACA-3’ is 3’-GTGTGT-5’, such that complementary nu-
cleotides stick together when a domain is placed on top of its complement in an
opposing orientation. Similarly, the complement S* of a sequence S is obtained
by replacing each domain in S with its complement.

A domain can be either a long domain N or a short domain N^, also known
as a toehold. The basic assumption is that toeholds are short enough to bind
reversibly, while long domains are long enough to bind irreversibly. We also
assume that two strands can only interact with each other via complementary
toeholds. This ensures that all bindings are reversible, which reduces deadlock
interferences by allowing unintentional bindings to be undone. The assumption
is enforced syntactically by a well-formedness constraint, which ensures that no
long domain and its complement are simultaneously unbound anywhere in the
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system. Additional details are provided in [15, 14].
The reduction rules of the DSD calculus are presented in Definition 23. The

rules are of the form D
r,R−→ D’, which states that D can reduce to D’ by perfor-

ming an interaction with rate r according to rule R. The rules can be applied
to strands and complexes inside larger contexts to the left and right, as descri-
bed in Definition 23. Rules (RB) and (RU) define reversible toehold binding
and unbinding reactions between an upper and lower strand. Rule (RC) allows
complementary toeholds to bind if they are opposite each other in the same
complex. Note that we do not provide versions of these three rules in which N
is not a toehold, since our well-formedness assumption ensures that only com-
plementary toeholds are exposed simultaneously. Rule (RM) defines a branch
migration reaction, where a free overhanging strand partially replaces a bound
strand in a complex. The sequence of the overhanging strand must match the
sequence of the bound strand in order for the migration to take place. Rule
(RD) can be thought of as a special case of (RM) in which the sequences match
right to the end, such that the bound strand is completely displaced. Rule (GB)
allows two complexes to bind on a shared toehold to form a longer complex, and
rule (GU) allows the complex to break apart. Rule (GD) extends the strand
displacement rule (RD) to the case where the displaced strand was previously
holding two complexes together. Note that the ability to chain complexes to-
gether means that complexes can be of potentially unbounded length. As a
result, it is infeasible to statically convert a process of the DSD calculus to a
set of reactions for simulation. Instead, more sophisticated dynamic simulation
techniques are required, which is a natural fit with the generic abstract machine
presented in this paper.

In practice, since DNA strands and complexes can adopt multiple physical
orientations in three-dimensional space, we define a set of equivalence rules
between strands and complexes in Definition 25. The first two rules state that
strands and complexes are equal up to rotation, while the next two rules account
for the fact that the same physical complex can be written in multiple ways using
the textual syntax. Additional reduction rules are presented in Definition 26,
which allow a reduction to take place up to re-ordering of processes, and when
gates and strands are reversed or complemented.

The CTMC semantics for the DSD calculus is given by the following rule,
where the rate of a transition from process D to D′ is given by the sum of the
rates of all the distinct reactions by which this transition can occur:

a =

(∑
{λ,w|Dexp(λ),w−→ D′}

λ

)
> 0

D
a−→ D′

(23)

The reaction identifier w is used to identify distinct reactions, and is obtained
by first sorting the strands and complexes in process D, for example in lexi-
cographic order, and then assigning a position i to each strand and complex.
The reaction identifier w consists of the positions of the strands and complexes
directly involved in the reduction, and is of the form (i, j) for binary reductions
and (i) for unary reductions. As in Sec. 4.1, we use the CTMC semantics to
derive a corresponding CTMC for a given process D. We recursively enumerate
the set of transitions D a−→ D′ for each distinct process D′, according to (3),
where processes are considered to be distinct up to structural congruence.
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...{L’ N^* R’}... | <L N^ R> ←→N+,RB
N-,RU ...{L’}<L>[N^]<R>{R’}...

:::[S]<N^ R>{N^*}... N~,RC−→ :::[S N^]<R>...

:::[S1]<S R1>:<L2>[S S2]::: S~,RM−→ :::[S1 S]<R1>:<L2 S>[S2]:::

:::[S1]<S2 R1>:<L2>[S2]<R2>... S~,RD−→ :::[S1 S2]<R1>...|<L2 S2 R2>

:::[S1]<R1 N^ R>{R1’} ←→N+,GB
N-,GU :::[S1]<R1>{R1’}::

| {L N^* L2’}<L2>[S2]::: {L}[N^]<R>:{L2’}<L2>[S2]:::

:::[S1]<S R1>:<L2>[S]{R1’}::
S~,GD−→ :::[S1 S]<R1>{R1’}

{L2’}<R2>[S2]::: | {L2’}<L2 S R2>[S2]:::

Definition 23. Elementary reduction rules of the DSD calculus. For each rule,
the graphical representation below is equivalent to the program code above. We
let S~ denote the migration rate of a sequence S, and N+ and N- denote the bin-
ding and unbinding rates of a toehold N^, respectively. We let fst(S) and lst(S)
denote the first and last domain in a sequence S, respectively, and we assume that
fst(R2) 6= fst(S2) for rule (RM). This ensures that branch migration is maximal
along a given sequence and that rules (RM) and (RD) are mutually exclusive.
We define syntax abbreviations for contexts, where H denotes a possibly empty
complex, and (◦) denotes either upper or lower concatenation. We write :::[S]
as an abbreviation for H1◦1{L3}<L3’>[S] and [S]::: for [S]<R3>{R3’}◦2H2 .
We also write ...{S}... for H1:{S}:H2 and G... for G:H2. We assume that conca-
tenation with an empty complex has no effect.
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rotate(<S>) , {rev(S)}
rotate({S}) , <rev(S)>

rotate({L’}<L>[S]<R>{R’}) , {rev(R)}<rev(R’)>[S*]
<rev(L’)>{rev(L)}

rotate(G1:G2) , rotate(G2)::rotate(G1)
rotate(G1::G2) , rotate(G2):rotate(G1)

rev(<S>) , <rev(S)>
rev({S}) , {rev(S)}

rev({L’}<L>[S]<R>{R’}) , {rev(R’)}<rev(R)>[rev(S)]
<rev(L)>{rev(L’)}

rev(G1:G2) , rev(G2)::rev(G1)
rev(G1::G2) , rev(G2):rev(G1)

Definition 24. Rotating and reversing strands and complexes in the DSD
calculus, where rev(S) reverses the order of domains in the sequence S.

G ≡ rotate(G)
A ≡ rotate(A)

:::[S1]<R1>{R S}:{L}<L2>[S2]::: ≡ :::[S1]<R1>{R}:{S L}<L2>[S2]:::
:::[S1]<R S>{R1}::{L2}<L>[S2]::: ≡ :::[S1]<R>{R1}::{L2}<S L>[S2]:::

D≡D’ ⇒ D|D2 ≡ D’|D2

Definition 25. Structural congruence rules of the DSD calculus, which rely on
the definitions of contexts from Definition 23. Parallel composition (|) is assu-
med to be commutative and associative, and structural congruence is assumed
to be reflexive, symmetric and transitive.

D
r,R−→ D’ ⇒ rev(D)

r,R−→ rev(D’)

D
r,R−→ D’ ⇒ com(D)

r,R−→ com(D’)

D
r,R−→ D’ ⇒ D|D2

r,R−→ D’|D2

D2 ≡ D
r,R−→ D’ ≡ D2’ ⇒ D2

r,R−→ D2’

Definition 26. Inductive reduction rules of the DSD calculus. We assume that
rev(D) reverses all of the strands and complexes in process D, while com(D)
complements all of the sequences in process D.

4.4.2. Computing Species and Reactions from Processes
Functions for converting between species and processes in the DSD calculus

are given in Definition 27, where a species is a strand or complex, and a process
is a parallel composition of species.

4.4.3. Example
We illustrate the application of the generic abstract machine to the DSD

calculus with a simple example of a logical AND gate made of DNA. In this
example, two inputs <1^ 2> and <3 4^> cooperate to displace the output <2
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species(I1 | .. | IM ) , [I1, .., IM ]

process([I1, .., IM ]) , I1 | .. | IM

Definition 27. Converting between processes and species in DSD, where a
species I is a strand A or a complex G.

reactions(I, Ĩ ′) , unary(I) ∪ binary(I, Ĩ ′)

unary(I) , {([I], r, I ′) | [I]
r,R−→ I ′}

binary(I1, Ĩ ′) , {([I1, I2], r, I ′′) | I2 ∈ Ĩ ′; [I1, I2]
r,R−→ I ′′;R ∈ {RB,GB}}

Definition 28. Compiling species to reactions in DSD. We write I r,R−→ I ′ if (I1 |
· · · | IM )

r,R−→ (I ′1 | · · · | I ′N ) holds, where I = [I1, .., IM ] and I ′ = [I ′1, . . . , I
′
N ].

3> from the initial gate {1^*}[2 3]{4^*}. A possible sequence of reductions is
shown below, starting from an initial process with one copy of each input and
one gate:

<1^ 2> |

{1^*}[2 3]{4^*} | <3 4^>

1+,RB−→ [1^]<2>:[2 3]{4^*} | <3 4^>

2~,RM−→ [1^ 2]:<2>[3]{4^*} | <3 4^>

4+,RB−→ [1^ 2]:<2>[3]:<3>[4^]

3~,RD−→ [1^ 2]:[3 4^] | <2 3>

If we start with 100 copies of each input and 100 gates we obtain the machine
term (0, S,R), where S and R are as follows and where I1 =<1^ 2>, I2 =<3
4^>, O =<2 3>, G6 ={1^*}[2 3]:<3>[4^] and G1, ..., G5 correspond to the
complexes from the above sequence of reductions, in order of appearance:

S ={I1 7→ 100, I2 7→ 100, G1 7→ 100}
R =[({I1, G1}, 1+, [G2]) 7→ (104 · 1+, t1)

, ({I2, G1}, 4+, [G6]) 7→ (104 · 4+, t2)

By the end of the simulation all of the inputs are consumed and converted into
the output, with S = {G5 7→ 100, O 7→ 100} and R = [], assuming that reactions
with propensity zero are garbage collected.
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(P )t , P ⊕ (t, ∅, ∅)
[t, S,R] , process(S)

Definition 29. Translating between calculus processes P and machine terms
T . The function (P )t encodes a process P to a corresponding term at a given
time t. The function [T ] decodes a term T to a corresponding process, and is
parameterised by the calculus-specific function process(S). For a given species
map S = {I1 7→ i1, .., IN 7→ iN}, with a slight abuse of notation we also allow
S to stand for the multiset of species {(I1, i1), .., (IN , iN )}.

reactionset(S, S′) , {(I, r, I ′) | (I, r, I ′) ∈ reactionset(S);S′ = (S \ I) ] I ′}
reactionset(S) , merge({(Oi, ki) | (Oi, ki) ∈ reactions(I, Ĩ ′);

set(S) = {I} ∪ Ĩ ′})

Definition 30. Additional functions used for the proofs. We write S as syn-
tactic sugar for the multiset of species corresponding to S, as described above.
The merge function for combining multiple identical reactions is as defined in
Definition 3.

5. Correctness

In this section we prove the correctness of the generic abstract machine
for process calculi with Markovian semantics and exact mass-action simulation
methods. The proof is given in terms of equivalence between Continuous Time
Markov Chains (CTMCs), following the approach outlined in [4]. It is sufficient
to show that the CTMC generated by the calculus semantics is the same as the
one generated by the abstract machine. Furthermore, as discussed for example
in [10], all exact stochastic simulation algorithms with mass action kinetics select
reactions and times according to the correct probability distributions, so that
the probability of generating a given trajectory with the simulation algorithm
is exactly the probability that would come out of the solution of the Master
Equation. Thus, it is sufficient to prove the correspondence between the CTMC
of a given process calculus and the CTMC generated by a given simulation
method with mass action kinetics. In this case we use the Direct Method.

5.1. Generic Statement of Correctness Theorems
We define a function (P )t which encodes a process P in the calculus into a

corresponding term in the abstract machine at a given simulation time t. We
also define a function [T ] which decodes a term T in the abstract machine into
a corresponding process in the calculus. The encoding and decoding functions
between the calculus C and the machine CM are stated in Definition 29. The
definition of decoding requires that the user defines an additional process func-
tion for their calculus, which translates a multiset of species back into a process.
This can be thought of as an inverse to the species function—indeed, we must
establish this fact for a particular encoding to be correct.
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The correctness of an encoding is established by demonstrating a reduction
equivalence between the calculus and the machine. In order to preserve the cor-
respondence, we assume a notion of structural congruence for machine terms,
where terms are structurally congruent up to renaming of definitions, garbage-
collection of unused definitions and structural congruence of processes. We also
assume that the structural congruence on machine terms allows additional spe-
cies with population 0 and additional reactions with propensity 0. As before, we
assume a top-level environment E of definitions throughout. It suffices to prove
correctness with respect to the Direct Method of stochastic simulation (Defi-
nition 3), as the Direct Method and the Next Reaction Method are equivalent
and are known to be correct.

In this section we present a generic technique for proving correctness of some
calculus C, which comes equipped with species, reactions and process functions
which induce an abstract machine instantiation CM . In order to exploit our
generic proof one must prove the following propositions.

Proposition 31 (Species correctness). ∀P, I: process(species(P )) = P and
species(process(I)) = I.

Proposition 32 (Reaction correctness). ∀S, S′, a: process(S)
a−→ process(S′)

iff a =
∑
{O∈reactionset(S,S′)} propensity(O,S) and a > 0.

Assuming that these propositions all hold, we now present general proofs
of soundness and completeness for calculus encodings, which relate the CTMC
semantics of the abstract machine (3) and the CTMC semantics of the calcu-
lus. As mentioned in Definition 30 we write S not only for a species population
map but also for the corresponding multiset of species. We say that an abs-
tract machine term is well-formed, and write wellformed(T ), if T = (t, S,R)
and dom(R) = reactionset(S). The structural congruence on abstract machine
terms described above allows us to ignore any additional reactions O for which
propensity(O,S) = 0. It is straightforward to show that (P )t is well-formed
for all processes P and that well-formedness is preserved by abstract machine
reductions. The generic correctness theorems are now as follows.

Theorem 33 (Generic soundness). ∀T, T ′, a: if T ∈ CM and wellformed(T )

and T a−→ T ′ then [T ]
a−→ [T ′].

Proof. Assume that T a−→ T ′ with T = (t, S,R) and T ′ = (t′, S′, R′). By defini-
tion of abstract machine CTMC reduction (3) we have that a =

∑
{b,O|T b,O−→T ′}

b

with a > 0.
If T b,O−→ T ′ with O = (I, r, I ′) then by definition of abstract machine re-

duction (1) we have that T ′ = I ′ ⊕ ((t′, S,R) 	 I) for some t′. By definition
of species addition (⊕) and removal (	) we have that S′ = (S \ I) ] I ′. By
definition of the next function for the Direct Method (Definition 3) we also have
that O ∈ dom(R) and b = propensity(O,S) > 0. Since T is well-formed, by
definition of wellformed we get that dom(R) = reactionset(S) and therefore O ∈
reactionset(S). Since S′ = (S\I)]I ′, by definition of reactionset(S, S′) we have
thatO ∈ reactionset(S, S′). Therefore a =

∑
{O∈reactionset(S,S′)} propensity(O,S)

with a > 0. Therefore by Proposition 32 we have that process(S)
a−→ process(S′).

By definition of [·] we have that [T ] = [(t, S,R)] = process(S) and [T ′] =

[(t′, S′, R′)] = process(S′). Therefore [T ]
a−→ [T ′] holds as required.
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Theorem 34 (Generic completeness). ∀P, P ′, a: if P ∈ C and P a−→ P ′ then
(P )t

a−→ (P ′)t′ for some t, t′.

Proof. Assume that P a−→ P ′ with S = species(P ) and S′ = species(P ′). By
Proposition 31 we have that process(S)

a−→ process(S′). Therefore by Proposi-
tion 32 we have that a =

∑
{O∈reactionset(S,S′)} propensity(O,S).

Let (P )t = (t, S,R) = T and (P ′)t′ = (t′, S′, R′) = T ′. By definitions of (·)t
and the addition function (⊕) and the init function for the Direct Method (De-
finition 3) we have that dom(R) = reactionset(S) and R(O) = propensity(O,S)
for each reaction O in dom(R). Similarly, we have dom(R′) = reactionset(S′)
and R′(O′) = propensity(O′, S′) for each reaction O′ in dom(R′).

If O ∈ reactionset(S, S′) with O = (I, r, I ′) then by definition of reactionset
we have that S′ = (S\I)]I ′. Therefore by definition of species addition (⊕) and
removal (	) we have that T ′ = I ′⊕((t′, S,R)	I). Therefore by definition of abs-
tract machine reduction (1) we have that T b,O−→ T ′ with b = propensity(O,S).
Therefore a =

∑
{b,O|T b,O−→T ′}

b with a > 0. Therefore by abstract machine

CTMC reduction (3) we have that T a−→ T ′. Therefore (P )t
a−→ (P )t′ holds for

some t, t′, as required.

We now prove correctness results for the stochastic pi-calculus, the bioam-
bient calculus, the kappa calculus, and the DSD calculus, by proving Proposi-
tion 31 and Proposition 32 for each calculus in turn.

5.2. Stochastic Pi-Calculus
To prove that the encoding of stochastic pi-calculus is correct we rely on the

fact that every process is structurally congruent to its normal form, as shown
in Proposition 12. Given the definition of species(P ) in Definition 11, it follows
that if P ≡ P ′ then species(P ) ≡ species(P ′). This is important as it shows
that we can convert back and forth between a species and its normal form
representation without losing any information on the corresponding species in
the generic abstract machine.

Proof of species correctness. It is trivial to see that Proposition 31 holds for sto-
chastic pi-calculus because the species function simply turns a parallel composi-
tion of species (from the normal form) into the corresponding multiset, whereas
the process function simply turns the multiset back into a parallel composition
which is structurally congruent to the original process.

Proof of reaction correctness. We know that process(S)
a−→ process(S′) holds

iff a =
∑
{λ,w|process(S)

exp(λ),w−→ process(S′)}
λ with a > 0.

We will write indices(P, P ′) for the set {w | ∃r. P r,w−→ P ′}. In the stochastic
pi-calculus, indices w can either be a single index i for a unary delay or a pair
index (i1, i2) for a binary communication or binding. Given an index w, we
define helper functions src(w), tgt(w) and rate(w) as follows, where we write
i ∈ I to mean that the action index i appears in the choice corresponding to
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species I (this is well-defined since each index only appears once).

src(w) ,

{
I if w = i and i ∈ I
I1 | I2 if w = (i1, i2) and i1 ∈ I1 and i2 ∈ I2

tgt(w) , P ′ if src(w)
exp(λ),w−→ P ′

rate(w) , exp(λ) if src(w)
exp(λ),w−→ tgt(P ′)

We say that w ≈ w′ holds iff src(w) = src(w′), tgt(w) = tgt(w′) and
rate(w) = rate(w′). We write indexsets(P, P ′) for the set of ≈-equivalence
classes in indices(P, P ′). We will write src(w̃), tgt(w̃) and rate(w̃) to mean
src(w), tgt(w) and rate(w) for some/any w ∈ w̃.

Now, we observe that process(S)
exp(λ),w−→ process(S′) holds iff src(w)

rate(w),w−→
tgt(w), where S′ = (S\species(src(w)))]species(tgt(w)). If we let reaction(w̃) =
(species(src(w̃)), rate(w̃), species(tgt(w̃))) then it is clear from these definitions
and the definitions from Definition 11 that

{reaction(w̃) | w̃ ∈ indexsets(process(S), process(S′))} = reactionset(S , S′)

i.e. that every ≈-equivalence class of indices in indices(process(S), process(S′))
corresponds to a particular reaction in the abstract machine. Writing p(S) to
abbreviate process(S) and size(w̃) for the number of indices in w̃, we get that∑

{λ,w|p(S)
exp(λ),w−→ p(S′)}

=
∑
w∈indices(p(S),p(S′)) rate(w)

=
∑
w̃∈indexsets(p(S),p(S′))(rate(w̃)× size(w̃))

=
∑
{reaction(w̃)|w̃∈indexsets(p(S),p(S′))} propensity(reaction(w̃), S)

=
∑
O∈reactionset(S,S′) propensity(O,S).

Hence we get that a =
∑
O∈reactionset(S,S′) propensity(O,S) with a > 0.

5.3. Bioambient Calculus
In the case of bioambient calculus, the proof of Proposition 31 is less straight-

forward, because the definitions of the species and process functions must take
care to handle ambient locations correctly. Although the results in this section
apply to the bioambient calculus without the merge action, they can be readily
extended to incorporate this action.

Proof of species correctness. By induction on the definitions of the species and
process functions in Definition 15 and Definition 16. The most delicate case is
for ambients, as we must show that the ambient locations and the structure of
the ambient tree are preserved. In computing species(P, a) the a identifier is
added to all instances at the current position in the hierarchy to indicate their

location. When an ambient P ′
a′

is encountered, the location species (a′, a) is
created and we use the location a′ instead of a as we recurse within P ′. When
we convert back to processes, the definition of process(I, a) collects all instances
at the current location in the ambient hierarchy, then uses the location species
to recursively rebuild the child trees within appropriately labelled ambients.
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Proof of reaction correctness. This proof is similar to the proof of reaction cor-
rectness for the stochastic pi-calculus outlined above. The main difference is
that the definition of the src and tgt functions must reflect the fact that indices
on bioambient reactions are different and more complicated than those for the
stochastic pi-calculus. In particular, we add an additional argument L̃ to src
and tgt which is the set of all location species present in the system:

src(w, L̃) ,



I if w = i and i ∈ I
I1 | I2 if w = (i1, i2) and i1 ∈ I1 and i2 ∈ I2
I1 | I2 | (a, b) if w = (i1, a, i2) and i1 ∈ X(ñ)a

and i2 ∈ Y (m̃)b and a 6= b and (a, b) ∈ L̃
I1 | I2 | (a, d) | (b, c) if w = (i1, a, i2, b) and i1 ∈ X(ñ)a

and i2 ∈ Y (m̃)b and {(a, d), (b, c)} ⊆ L̃
and a 6= b and a 6= c and (d = b or d = c)

tgt(w, L̃) , P ′ if src(w, L̃)
exp(λ),w−→ P ′

In the final two cases for src(w, L̃), we also allow for the symmetric case where
i1 ∈ Y (m̃)b and i2 ∈ X(ñ)a. In order to reconstruct a process from tgt(w, L̃) we
also need the correct ambient identifier to pass to the species function. To this
end we introduce a new function loc(w, L̃) which computes the correct location
for a given index w, and is defined as follows:

loc(w, L̃) ,



a if w = i and i ∈ X(ñ)a

a if w = (i1, i2) and i1 ∈ X(ñ)a and i2 ∈ Y (m̃)a

b if w = (i1, a, i2) and i1 ∈ X(ñ)a

and i2 ∈ Y (m̃)b and a 6= b and (a, b) ∈ L̃
c if w = (i1, a, i2, b) and i1 ∈ X(ñ)a

and i2 ∈ Y (m̃)b and {(a, d), (b, c)} ⊆ L̃
and a 6= b and a 6= c and (d = b or d = c)

As before, we also allow for the symmetric case where i1 ∈ Y (m̃)b and
i2 ∈ X(ñ)a in the final two cases here. When we come to translate tgt(w, L̃)

back into species we actually compute species(tgt(w, L̃), loc(w, L̃)), using the
definition of species(P, a) from Definition 15, which ensures that the instances
are labelled with the correct ambient identifier. These definitions follow those
from Definition 16 and we handle merged reactions by summing over all indices
w. Hence we can use a proof sketch similar to that for reaction correctness in the
stochastic pi-calculus presented above, to show that process(S)

a−→ process(S′)
iff a =

∑
O∈reactionset(S,S′) propensity(O,S) with a > 0.

5.4. Kappa Calculus
We present proofs of the requisite correctness lemmas for the kappa instan-

tiation.

Proof of species correctness. This follows directly from species and process spe-
cification in Definition 21.
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Proof of reaction correctness. We know that process(S)
a−→ process(S′) iff a =∑

{process(S)
r,φ,(G,r,G′)−→ process(S′)}

r with a > 0. Given a rule (G, r,G′), every

different embedding φ ∈ embed(G, process(S)) contributes to the propensity of
the obtained reaction. Let us define the multiset of reactions F , where one
reaction is present for each different rule-embedding pair which generates it:

F = mset({(species(φ(G)), r, w, species(φ(G′)/φ(G))) | (G, r,G′) ∈ E;

φ ∈ embed(G, process(S));φ(G′)/process(S) = process(S′);

w = (φ,G, r,G′)})

For all ((I, r, I ′), k) ∈ F , we know that (I, r, I ′) ∈ reactionset(S, S′). Given a
rule (G, r,G′) and a minimal valid solution Ga ⊆ G, we write {φ1, . . . , φL} ⊆
embed(G, process(S)) for the set of embeddings that are different only in the
mapping of the speciesGa, and are such that φ1(G) = · · · = φL(G) = process(I).
We get that species(φ1(Ga)) = · · · = species(φL(Ga)) = Ia with Ia ∈ I; there-
fore L = S(Ia). By induction, we obtain r× k = propensity((I, r, I ′), S). Hence
it follows that

∑
((I,r,I′),k)∈F (r × k) =

∑
{process(S)

r,φ,(G,r,G′)−→ process(S′)}
r, which

is equivalent to a =
∑
{O∈reactionset(S,S′)} propensity(O,S) with a > 0.

5.5. DSD Calculus
Finally, we outline proofs of the requisite correctness lemmas for the DSD

instantiation.

Proof of species correctness. This follows directly from the definitions of the
species and process functions in Definition 27.

Proof of reaction correctness. This follows directly the definitions of the reactions
function in Definition 28 and the CTMC semantics in (23). Essentially, the tran-
sitions derived by the CTMC semantics for a given process correspond exactly
to the reactions derived by the reactions function, such that the transition rates
correspond to the propensities of the reactions.

6. Multi-Calculus Models

Up to now we have discussed models where the behaviour of the entire
system is derived using the rules of a single process calculus. However, the
generic abstract machine defined in Sec. 2 is general enough to allow multi-
calculus (heterogeneous) models to be constructed from components written
using different calculi. This approach allows us to choose the most appropriate
domain-specific language to formalise each different aspect of the system.

6.1. Defining a Multi-Calculus Model
For a calculus C we will write PC for the type of processes in that calculus

and IC for the corresponding type of species. The definition of reactions as a
tuple (I, r, I ′) induces a type RC of reactions for calculus C in terms of the
associated species type IC . Writing Pfin(X) for the set of all finite subsets
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of X, the types of the species and reactions functions for calculus C can be
summarised as follows.

speciesC : PC → Pfin(IC)

reactionsC : IC → Pfin(IC)→ Pfin(RC)

Now suppose that we wish to define a heterogeneous model using the finite set
of sub-calculi C ≡ {C1, . . . , Cn}, each of which is defined as above. Note that
we will refer to C as a calculus in the same way as Ci. Assuming that the
process types and species types for the various sub-calculi are all disjoint, we
define process and species types for C in terms of those for the sub-calculi, as
follows.

IC , IC1 ] · · · ] ICn

PC , PC1
× · · · × PCn × Pfin(RC)

A species in calculus C is simply a species in one of its sub-calculi. Note that
since the species types are assumed to be disjoint, we can always tell which
calculus a particular species came from. A process in calculus C consists of
a process in each of the sub-calculi Ci along with a set of reactions in the C
calculus. Since the species in the C calculus could be from any of the sub-calculi,
these reactions are the only way that species from different calculi can interact
(the rules of each sub-calculus can, by definition, only produce species from
that calculus). We refer to these reactions as glue reactions as they provide the
interface to link the various components together. The modeller must supply
the glue reactions up front, but this is not a problem in practise as the glue
reactions should arise naturally from the structure of the heterogeneous model.

Before we proceed, we need to extract the species for a given calculus from
the multi-calculus species type. If Ĩ ∈ IC then define πCi(Ĩ) = {I | I ∈ I; I ∈
ICi}. It follows that πCi(Ĩ) ∈ ICi for all i and furthermore that{πCi(Ĩ) | i ∈
{1, . . . , n}} partitions Ĩ. Now, let P ∈ PC stand for a multi-calculus process
such that P ≡ (PC1

, . . . , PCn , G) where G is the (user-specified) set of glue
reactions. Then, the species and reactions functions for the C calculus are
defined as follows.

speciesC(P ) , speciesC1
(P1) ] · · · ] speciesCn(Pn)

reactionsC(I, Ĩ) , reactionsCi(I, πCi(Ĩ)) ] glue(I, Ĩ, O) if I ∈ ICi

where the glue function is defined as follows.

glue(I, Ĩ, G) , {(O, 1) | O ∈ G; I ∈ reactants(O); reactants(O) ⊆ Ĩ ∪ {I}}

We get the starting species for the C calculus by simply taking the starting spe-
cies in each individual sub-calculus. To compute the reactions between species
I and the set of existing species Ĩ we first use the reactions function from the
appropriate sub-calculus to compute all possible reactions within that calculus.
However, we must also include inter-calculus reactions—we compute these by
looking through the set G of glue reactions to find any reactions for which we
know about all of the reactants, and where the new species I is one of the
reactants. (The second criterion ensures that each glue reaction is only added
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once because each species I is only considered once by the compiler during a
simulation run.) These inter-calculus reactions allow the sub-models written
in different domain-specific languages to interact with each other across the
boundaries of their respective species types. We can now use the techniques
described above to derive a simulator for multi-calculus models containing com-
ponents written in different calculi.

6.2. Simple Example
We now consider a simple example of a multi-calculus model, which will use

components written in the stochastic pi-calculus and the kappa calculus. Our
process definitions in the stochastic pi-calculus are as follows.

A , !x.C B , ?x.0 C , ?z.0

The use of the z channel, which does not appear elsewhere, ensures that the
process C cannot take part in any subsequent pi-calculus reactions. Our initial
stochastic pi-calculus process will be 100 copies of A and 100 copies of B. Now,
our kappa rule is as follows.

X(a), Y (a) → X(a1), Y (a1)

Our initial kappa solution will consist of 100 copies of Y (a). Finally, we include
the following glue reaction in our definition of the multi-calculus model.

C −→ X(a)

This glue reaction links the stochastic pi-calculus processes and kappa agents
together to create a working multi-calculus model. Starting with 100 copies
each of A, B and Y (a), the first interaction will be between A and B, which will
lead to the creation of C. We know that C cannot take part in any stochastic
pi-calculus interactions but it can trigger the glue reaction, producing the kappa
agent X(a). This then activates the kappa part of our multi-calculus compiler
definition, since X(a) and Y (a) can bind to each other on the site a, replacing
them with the agents X(a1), Y (a1), which cannot take part in any reactions at
all. This demonstrates how glue reactions allow communication between the
separate components of a multi-calculus model.

6.3. Biological Example
The previous example used the generic abstract machine to integrate biolo-

gical models written using different modelling paradigms, namely process-based
and rule-based. Here we show how the generic abstract machine can also inte-
grate domain-specific languages, such as DSD, with more general-purpose lan-
guages, such as pi-calculus. Although DSD was developed specifically to model
computation performed by DNA strand displacement systems, such systems will
ultimately operate within the context of living cells. For example, [1] proposed
a system which could take as input RNA strands representing known cancer
markers, and produce as output a DNA strand which was a known anti-cancer
drug. Although this particular system required additional restriction enzymes to
function, it is possible to envisage a strand-displacement variant. Furthermore,
since RNA and DNA can form complexes and are structurally quite similar, we
can use DSD to model both the RNA and DNA strands. An example system is
{a^*}[A b^]:[B c^]<C>, represented graphically as:
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Figure 1: Execution of a strand displacement logic circuit, which produces an output <B c^
C> if both inputs <a^ A> and <b^ B> are present. Each execution step represents a merged
sequence of strand binding, branch migration and strand displacement reactions.

This DNA complex takes as input two RNA strands <a^ A> and <b^ B>, and
produces an output DNA strand <B c^ C> if both inputs are present. Thus,
the complex acts as a logical AND gate. The gate is somewhat more complex
than the one presented in Sec. 4.4, since it further decouples the output strand
from the inputs. An execution trace for the gate in the presence of both inputs
is shown in Fig. 1. The input RNA strands could represent known cancer
markers, while the output strand could represent a known cancer antidote, such
as Vitravene, which functions by suppressing the production of the oncogene
MDM2, as outlined in [1].

We model the production and consumption of the RNA strands using the
following glue reactions, which allow species from both calculi to interact, where
names beginning with g and r denote genes and messenger RNA in the pi-
calculus model, respectively:

gA()
r−→ gA() + <a^ A>

gB()
r−→ gB() + <b^ B>

<B c^ C> + rMDM2()
s−→ ∅

We then define a partial model of the host cell machinery in pi-calculus,
focussing on the production of the MDM2 protein via transcription and trans-
lation mechanisms, together with the machinery for tumour formation.

gM() = τr.(gM() | rMDM2())
rMDM2() = τm.(rMDM2() |MDM2())
MDM2() = !tumour.MDM2()

In general, the DSD circuit will be significantly more complex than the one
outlined above, as will the model of the host cell physiology. However, the basic
motivation remains the same - we can use a suitable domain-specific language to
model the computation involving DNA strand displacement systems, with all its
advantages, and use a more general-purpose language to model the behaviour
of the host cell.

6.4. Recursive Models
Note that there is no reason why the sub-calculi mentioned here could not

themselves be heterogeneous calculi whose species and reactions are computed
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recursively using a similar procedure. This means that we can define hierarchi-
cal models, where the sub-components could themselves contain sub-components
written using various different domain-specific languages, using our generic abs-
tract machine as a common implementation layer. This could be a promising
approach for modelling larger biological systems as these are often inherently
hierarchical and composed of many different kinds of functional unit, while the
fundamental mode of interaction is still via chemical reactions.

The ability to define complex, heterogeneous and recursive models in the
same framework as simple single-calculus models demonstrates the expressive
power of the generic abstract machine presented in this paper.

7. Discussion

In this paper we have presented a generic abstract machine for the simu-
lation of process calculi with potentially unbounded numbers of species and
reactions. We have instantiated the abstract machine with two Markovian si-
mulation methods and four process calculi, namely the stochastic pi-calculus,
the bioambient calculus, the kappa calculus and the DNA strand displacement
calculus. We have demonstrated the correctness of Markovian abstract machine
instantiations for these four calculi by means of a generic proof method. Fi-
nally, we have defined a general method for simulating multiple process calculi
simultaneously.

This paper is a significantly revised and extended version of two conference
papers, [16] and [22]. In [16] we defined a generic abstract machine together with
its instantiation to the stochastic pi-calculus. We also summarised an instantia-
tion to the bioambient calculus in an appendix. Here we provide full details on
the instantiation to bioambients and we present significantly revised encodings
for both calculi, which define the reactions functions directly in terms of the ope-
rational semantics of the calculus. This greatly simplifies the instantiations and
also simplifies the corresponding proofs of correctness. We also instantiate the
abstract machine to the kappa calculus and the DSD calculus, to demonstrate
the broader applicability of our approach. In [16] we briefly outlined a proof
of correctness of the generic abstract machine with respect to the stochastic
pi-calculus with general distributions. In this paper we prove generic correct-
ness theorems for an arbitrary process calculus with Markovian rates. These
theorems are parameterised by the species, process and reactions functions for
that calculus. We provide instances of this proof for the stochastic pi-calculus,
the bioambient calculus, the kappa calculus and the DSD calculus. The idea of
multi-calculus simulation within our generic framework was originally proposed
in [22], whereas in this paper we provide full details of the approach.

For each of the four calculi presented in this paper, the calculus-specific
reactions function is derived from the underlying reduction semantics of the
calculus. This approach relies on the existence of an appropriate process function
from (multisets of) species back to processes and on the fact that processes can
be extracted from their context and still perform reductions. This suggests
that it may be possible to automatically derive an instantiation of many other
process calculi directly from their reduction semantics. It would be interesting
to characterise the collection of process calculi for which this is possible.

In addition to defining the species and reactions functions, the user must also
decide what constitutes a “species” for their calculus of interest. For example, in
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our instantiation to the stochastic pi-calculus we allow a species to be either an
instance (which is expanded out to a choice by consulting the environment) or a
complex. This allows us to optimise the treatment of complexes in the simulator,
which provides efficiency gains. Similar optimisations may be possible for our
instantiation of the bioambient calculus, but these refinements are left for future
work.

In future we might consider generalising the proof method to non-Markovian
rates, to reconcile this work with our non-Markovian simulation algorithm [16].
This would require defining non-Markovian semantics for each calculus, and
considering the correspondence between transitions of the calculus and the abs-
tract machine.

The use of garbage collection techniques to remove obsolete species and
their associated reactions from the abstract machine may be necessary in order
to make tractable the simulation of systems generating a large number of species
that are used only once. In Sec. 2 we briefly outlined how the abstract machine
could be adapted to garbage collect species with zero populations. However, in
cases where species are continually switching between zero and non-zero popula-
tions, more advanced garbage collection heuristics could be used. For example,
a memory model could be introduced such that all species with zero population
are garbage collected once the total number of species exceeds a given threshold.
Alternatively, a species could be garbage collected if its population remains zero
beyond a given number of simulation steps.

Custom simulation engines often rely on language-specific optimisations to
improve simulation efficiency. In this paper we have demonstrated how opti-
misations for some of these languages can be implemented within the generic
abstract machine. Examples include aggregation of complexes in the stochastic
pi-calculus, and computation of propensities for connected components in the
kappa calculus. Future work could investigate whether further optimisations,
such as the one outlined in [6] for connected components in kappa, could be
achieved by modifying the calculus instantiations in Sec. 4, or by generalising
the abstract machine definitions in Sec. 2.

The current abstract machine relies on a finite set of glue reactions, which
allows species from multiple calculi to interact with each other. An alternative
approach would be to define a notion of aliasing, which identifies species from
one calculus with species from another. Future work is needed to investigate
alternative methods for implementing interoperability between calculi.

Our generic abstract machine aims to simulate a broad range of process
calculi. This includes process calculi capable of n-ary interactions, and reac-
tions with arbitrary stoichiometric coefficients. To highlight the flexibility of
our approach, to date we have used the abstract machine to implement the
DNA Strand Displacement (DSD) calculus for modelling DNA circuits [21],
the Genetic Engineering of Cells (GEC) calculus for modelling of genetic de-
vices [17], and the Stochastic Pi Machine (SPiM) calculus for general modelling
of biological systems [29], by defining appropriate species and reactions func-
tions for each calculus. Simulators for these three calculi are available online at
http://research.microsoft.com/dna, http://research.microsoft.com/gec
and http://research.microsoft.com/spim, respectively. A comparison with
the previous SPiM implementation is outlined in the main text. Note that the
DSD implementation is based directly on the generic abstract machine, and as
such there is no prior implementation to compare with. Nevertheless, the gene-
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ric abstract machine greatly simplified the implementation of this calculus by
allowing significant code re-use. We have left the implementations of the kappa
and bioambient calculi for future work. In our experience, the approach outli-
ned in this paper has greatly accelerated the development of these programming
languages, by reducing the overhead for implementing custom stochastic simu-
lation algorithms and allowing code re-use between projects. We are currently
investigating implementations of other process calculi such as the brane calculus
[3] and a calculus based on statecharts [13].

Acknowledgements. We thank Filippo Polo for his work developing the SPiM
user interface and visualisations, and Kathy Gray together with the anonymous
reviewers for valuable comments.
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