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Abstract— We present Footprint, a system for deliv-
ering online services in the increasingly common “inte-
grated” setting, where the same provider operates mul-
tiple elements of the infrastructure (e.g., proxies, data
centers, and a wide area network). Such integration can
boost system efficiency and performance by finely mod-
ulating how traffic enters and traverses the infrastruc-
ture. We show how such modulation can be practically
realized using a model that faithfully captures the com-
plex, time-varying dynamics of service workload. For
instance, when a group of users are directed to a new
proxy, their ongoing sessions continue to arrive at the
old proxy, and this load at the old proxy declines gradu-
ally. Footprint is currently being deployed in Microsoft’s
infrastructure. Our data-driven simulations show that,
compared to the current method, it can carry at least 50%
more traffic and reduce user delays by at least 38%.

1 Introduction
The emergence of cloud computing is reshaping how
online services and content are delivered. Historically,
the three types of infrastructure required for service
delivery—i) data centers (DCs) that host application
logic and state; ii) edge proxies that terminate TCP or
HTTP connections and cache content close to users;
iii) wide area networks (WAN) that connect DCs and
proxies—were owned and operated by different orga-
nizations (Figure 1a). But now, large cloud providers
such as Amazon, Google, and Microsoft operate all
three types of infrastructures for their own and their cus-
tomers’ services [6, 7, 9] ((Figure 1b). Infrastructure in-
tegration is also ongoing for massively-popular service
providers such as Facebook as they leverage their scale
to amortize infrastructure cost [8], and for large ISPs as
they begin offering content distribution services [10].

Infrastructure integration allows one to take a holis-
tic view of the system, to improve both performance and
efficiency. For instance, the state of the WAN (e.g. resid-
ual capacity of proxy-to-DC path) can be factored into
deciding which proxies serve which users.

But to our knowledge, current systems for deliver-
ing online services do not take such a holistic view.
Many such systems were designed for the traditional set-

Figure 1: Online Service Delivery infrastructure.

ting [13, 4, 11, 27]. Even those that operate in integrated
settings fail to leverage its unique opportunities. For ex-
ample, currently, in Microsoft’s network [14], WAN traf-
fic engineering (TE) operates independently, with no ad-
vance knowledge of load placed on it by edge proxies
and has no ability to steer load to a different proxy or DC
to relieve hotspots. At the same time, the edge proxies
have no knowledge of WAN TE. When they select DCs
for a user session, they need to know the quality of the
WAN paths to different DCs. They do so by probing the
paths, which is akin to looking in the rear view mirror:
it can detect congestion only after it occurs and cannot
guarantee congestion-freedom when load is moved.

This paper describes the design of the next genera-
tion of Microsoft’s online service delivery infrastructure,
called Footprint. Using an SDN-like central controller
model, Footprint jointly coordinates all key routing and
resource allocation decisions, to achieve desired objec-
tives. It decides how to map users to proxies, proxies
to DC(s), and traffic to WAN paths, and configures all
infrastructure components involved in service delivery,
including network switches, proxies, load balancers, and
DNS servers to achieve this mapping.

While it is not surprising that coordination among sys-
tem components (e.g., joint optimization of WAN TE and
proxy load management) can help, we show that fully re-
alizing the potential of infrastructure integration requires
faithful modeling of system dynamics. A major issue is
that after we change system configuration, its impact is
not immediate but manifests only gradually.

The reason is that ongoing user sessions will continue
to use the proxy that they picked at session start. Thus,
when the controller changes the proxy (or the DC) map-
ping for a group of users, traffic from those users will



not move immediately. Instead, the load on the second
proxy (or the second DC) will increase as new sessions
arrive and that on the first proxy (or DC) will decrease
as old sessions depart. The system model and control
algorithms must correctly account for this lag. Tradi-
tional network TE controllers such as SWAN [18] and
B4 [19] do not have to deal with this lag, since they op-
erate at packet granularity, and the impact of a configu-
ration change is immediate.

In this paper, using data from Microsoft’s service-
delivery network, we illustrate the modeling challenge,
and devise techniques to address it. To capture temporal
variations, we model system load and performance as a
function of time. Solving time-based models can be in-
tractable (e.g., time is continuous), but we show how all
load and performance constraints can be met by consid-
ering a small number of time points.

In addition to the modeling challenge, we address a
number of practical issues to design a scalable and robust
system. For example, we need to estimate the latency
to various edge proxies from different user groups in a
scalable manner. We will discuss these issues, and our
solutions for them in more detail later in the paper.

We implement our model and other techniques in an
SDN-style controller to build Footprint. Our prototype is
deployed fully in a modest-sized testbed and it monitor-
ing aspects are deployed in Microsoft’s service-delivery
infrastructure. We evaluate Footprint using these deploy-
ments and trace-driven simulations. We find that it en-
ables the infrastructure to carry at least 50% more traffic,
compared to Microsoft’s current method that does not co-
ordinate the selection of proxies, DCs, and WAN paths.
At the same, it improves user performance by at least
38%. We also show that Footprint’s system model is key
to achieving these gains.

The basic issue tackled by our model—gradual impact
of configuration changes—arises commonly in many
large-scale systems. For instance, session-based load
balancers and middleboxes have the same problem. We
believe that our model is flexible and can be adapted to
improve the efficiency of these other systems as well,
which is an increasingly important concern as the scale
of computing infrastructures grows.

2 Background and Motivation
Figure 1 shows a high-level view of online service deliv-
ery infrastructure. Data centers, which usually number
O(10), host application logic and hard state. Users con-
nect to DCs via edge proxies. The proxies help boost
performance by terminating TCP and HTTP connections
(coming over possibly lossy last mile paths) close to the
user and by caching some content (so it does not need to
be fetched from a distant DC).

In the traditional architecture, the data centers, the

Figure 2: Spatial modulation via joint coordination

edge proxies and the WAN that connects them are op-
erated by different entities. For example, the data cen-
ters may be owned by a hosting service, the edge proxies
may be owned by a company like Akamai and various
ISPs may provide connectivity between the data centers,
and to the edge proxies. As discussed earlier, large cloud
providers like Microsoft and Google, are moving towards
a more integrated architecture, wherein a single entity
owns and operates the data centers, the WAN connecting
the data centers, and the edge proxies.

Regardless of the architecture, any online service de-
livery system makes three decisions for user requests:
(i) selecting the proxy for the request (ii) selecting the
DC(s) for user sessions at a proxy, and (iii) selecting
WAN path(s) for traffic between proxies and DCs.

In the traditional setting, the three decisions are made
largely independently of one another, and typically with-
out the benefit of global knowledge. A third-party like
Akamai makes a decision about which proxy the user se-
lects, and which data center the request will be served
from. Various ISP routing policies decide how the traffic
flows between the data centers and the proxies.

Even in an integrated OSP, these decisions are often
made independently. For example, in Microsoft’s Fas-
tRoute system, anycast routing is used to direct clients to
nearby proxies [14]. The proxies independently decide
which data centers to route the request to, and the WAN
TE is performed independently as well.

In this paper, we argue for making service-delivery de-
cisions jointly. Joint decisions can significantly improve
efficiency, not only because of global information, but
also by offering new knobs that were previously unavail-
able. For example, consider Figure 2, where congestion
appears between P2 and DC2. In the traditional setting,
WAN TE cannot change how traffic enters and exits the
network as that is determined by proxy and DC selection.
To relieve congestion, it must rearrange how traffic flows
within the network. Sometimes that may not sufficient,
however (Figure 2b). Joint decisions can “spatially mod-
ulate” the traffic (i.e., change where it enters or exits the
WAN) by simultaneously controlling the proxy and DC
selection. As shown in Figure 2c, such spatial modula-
tion can help relieve congestion.

Spatial modulation is especially helpful when a large
fraction of WAN traffic is for user-facing services. This
situation holds for large cloud providers; they have a
separate WAN for non-user-facing traffic [18, 19]) To
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Figure 3: Overview of Footprint.

evaluate the benefit of spatial modulation in practice,
we analyze traces from Microsoft’s infrastructure, which
runs WAN TE and service delivery controller indepen-
dently [14]. We identified congestion events in the WAN
as those where the utilization of at least one link is over
80% during a 5 minute window. We find that all of
these events could be resolved using spatial modulation
of service traffic. We also repeated the study by artifi-
cially scaling traffic by 50%: the number of congestion
events went up by 1200% (because our WAN is heav-
ily utilized), but all of them could still be resolved. This
advantage of spatial modulation underlies the efficiency
and performance improvements of Footprint (§8).

While joint decisions can help, we will see that accu-
rate modeling of system dynamics is necessary to realize
its benefits. Next, we provide an overview of the Foot-
print architecture, and outline key challenges.

3 Overview of Design and Challenges
Figure 3 shows an overview Footprint. The controller
is bootstrapped with infrastructure and service profiles.
Infrastructure profile describes the topology, capacity in
terms of multiple resources (e.g., CPU, memory, band-
width), and latency of each component. A service’s pro-
file describes which proxies and DCs host it—not all ser-
vices may be hosted everywhere—and any constraints
on mapping users to proxies and DCs (e.g., Chinese
users must be served from China). When running, the
controller gets up-to-date information on system health,
workload, and user-to-proxy delays. Periodically, or af-
ter a failure, the controller computes and deploys new
system configuration based on this information. This
configuration determines, for the next period, how user
requests map to proxies, which DCs are used by proxies,
and which WAN paths are used.

Our design must address three categories of chal-
lenges: obtaining the necessary inputs, computing the
desired configuration, and implementing the computed
configuration. We provide a brief overview of these chal-
lenges in this section. Future sections provide more de-
tail, with a focus on the system model.

Obtaining dynamic inputs: In addition to static in-
puts such as WAN topology, the controller needs up-
to-date information about user-to-proxy delays, the load
on the system (i.e. load on WAN links, data center
and proxy utilization etc.), and information about system

Figure 4: Session affinity results in gradual load
changes in session routing on top of server overlays.

health (e.g. which links or proxies have failed etc.). We
have scalable infrastructure in place to collect the needed
information about WAN and proxy load and health [28].

A key challenge lies in scalably collecting information
about user-to-proxy delays. We address it in two ways.
First, we group users into groups–a user group (UG) is
a set of users that are expected to have similar relative
latencies to edge proxies (e.g., because they are proxi-
mate in Internet topology). Second, we measure delays
between UGs and proxies in a probabilistic manner. §6
describes these aspects in more detail.

Computing the configuration: We initially believed
that we could compute system configurations using a
linear program (LP) similar to TE controllers such as
SWAN [18]. However, we realized that Footprint con-
troller faces qualitatively different problems. The key
issue is that service sessions last longer than individual
packets and these sessions stick to their originally cho-
sen proxies and DCs during their lifetime.

More specifically, online services rely on DNS to di-
rect different users to different proxies–IP addresses of
the desired proxies are returned when the user looks up
the name of the service. The mapping of name to IP
addresses is changed to move load from one proxy to an-
other. The problem is that DNS changes cannot change
traffic distribution instantaneously. In addition to DNS
mappings being cached at the LDNS servers for the TTL
duration, there are two other problems. First, DNS map-
pings may be cached at the client well beyond the TTL
value (e.g., many browsers will not look up the same
hostname again within a tab, as long as the tab is open).
Second, persistent TCP connections used by HTTP 1.1
(and 2.0), can last well beyond DNS TTL as well.

This caching means that even after the Footprint con-
troller updates DNS mapping to point a group of users to
a new proxy, the traffic from ongoing user sessions from
that UG continues to arrive at the old proxy. Addition-
ally, the proxy must continue to send traffic from ongoing
sessions to the same DC. Otherwise, those sessions may
be abruptly terminated whenever system configuration is
changed (e.g., every 5 minutes).

Session stickiness makes it harder to compute robust
system configurations compared to traditional TE. For
instance, in Figure 4(a), traffic from R1 to R4, is ini-
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Figure 5: Session life time.

tially routed via R2. When the link R2-R4 is congested,
TE controller configures R1 to forward the traffic via
R3. This change is near instantaneous, and more impor-
tantly, largely transparent to the applications. However,
the Footprint controller does not have this luxury. Fig-
ure 4(b) shows an example. Initially, a group of users
(UG) use proxy P1 to access the service S hosted in the
data center (DC). When the path P1-DC is congested,
we need to reroute the traffic via P2. This can be done
by changing the changing the DNS mapping; i.e. the
name for service S resolves to the IP address of proxy
P2. However, this change only affects new user sessions,
and traffic from old sessions continues to arrive at P1,

The severity of the problem is illustrated in Figure 5.
Figure 5(a) shows the CDF of lifetime of TCP connec-
tions at our proxies. We see that about 5% of the connec-
tions last longer than 100 seconds. In our current imple-
mentation, Footprint adjusts DNS mappings every 5 min-
utes. Since new HTTP sessions arrive roughly uniformly
in a five minute interval, a large fraction TCP connec-
tions continue to send data to the “old” proxy after the
mapping is updated. Figure 5(b) shows that the num-
ber of sessions that are still active as a function of time.
Even if the DNS mapping is changed at the end of the
5 minute period, over 20% of the sessions will continue
to send data to the previous proxy. The previous proxy
must continue to handle this “old” traffic, and send it to
the same DC as before.

We deal with this challenge by incorporating session
lifetime and workload migration dynamics into our sys-
tem model, as described in the next section.

The reader may wonder why we simply do not kill the
old connections—that would obviate the need for model-
ing temporal behavior. However, as shown above, a large
number of “old” connections are active on each epoch
boundary. It is unacceptable to kill so many connec-
tions every five minutes. We may alleviate the problem
by updating system configuration less frequently (e.g.,
an hour); but we need our system to be responsive and
react quickly to demand bursts (e.g., flash crowds) and
faster updates lead to greater efficiency, as shown earlier
for WAN TE [18]. We may also alleviate the problem
by updating the client code gracefully handle changes to
proxy mappings; but this alternative is not available to us
because Footprint must accommodate a large number of
already-deployed (legacy) applications.

Implementing the computed configuration: The
computed configuration is implemented by updating
DNS mappings, proxy-to-DC mappings, and weights on
WAN paths. One issue that we face here is that changing
UG-to-proxy mappings (e.g., in response to WAN con-
gestion) can force user traffic onto paths with unknown
capacities. While we monitor UG-to-proxy path delays,
we are not reliably aware of path capacities. We thus pre-
fer that UGs continue to use current paths to the extent
possible. To ensure this, Footprint uses load balancers at
network edge that can forward user requests to remote
proxies. These load balancers allow us to decouple how
users reach our infrastructure and how their traffic flows
internally. We omit details of this mechanism (and its
modeling) due to lack of space.

4 System Model
The Footprint controller periodically decides how re-
quests and responses from each UG are going to traverse
the infrastructure. For example, in Figure 3, suppose it
makes a fraction of sessions from UG2 go through edge
proxy P2 and data center DC1, it also simultaneously
computes how to route request traffic in network from
P2 to DC1 and response traffic from DC1 to P2.

The controller computes how to assign new sessions
from each UG to a collection of end-to-end paths (or e2e-
paths) which includes two “servers”—an edge proxy y
and datacenter c—and two WAN paths—request and re-
sponse paths between y and c.

Each network path is a pre-configured tunnel, i.e., a se-
ries of links from the source to destination switch; there
are usually multiple tunnels between a source-destination
pair. Once a session is assigned to an e2e-path, it will
stick to the assigned proxy and data center; the WAN
paths taken by the traffic may change.

The assignments from sessions to e2e-path impacts
system efficiency as well as the latency experienced by
users. The controller must enable the infrastructure to
accommodate as much workload as possible, while en-
suring that the proxies, the data centers and the network
paths are not overloaded and that the traffic prefers low-
latency paths. The key to meeting these goals is to model
the load on resources with high fidelity, which we do as
described below.

4.1 Preliminaries
Table 1 shows key notations in our model, including its
inputs and outputs. The outputs contain routing decisions
for two types of traffic. The first type is unsettled edge
traffic due to new user sessions for services hosted on the
edge proxies. Here, the routing decision wθ ,g denotes the
fraction of new sessions from UG g assigned to e2e-path
θ . The second type is settled traffic, due to existing edge
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Inputs
g A user group (UG)
a j

g Session arrival rate of g in jth epoch
q(t) CDF of session lifetime
θ An e2e-path

Θg E2e-paths that can selected by UG g

e A “server” on an e2e path:
i.e. an edge proxy or a datacenter

p, l p: network path; l: a network link
bwl Bandwidth of link l

Ps,d
All network paths that starts from server s
and ends with server d

ξ ′s,d Non-edge traffic demand from s to d
hθ ,g Latency experienced by g when going through θ

α
A resource (e.g. CPU, memory etc.)
at an edge proxy or a datacenter

Mα,e Capacity of resource α at (e)
creq, crsp Bandwidth consumption of a request, response

T Length of an epoch
Intermediate variables

µα,z(t) Resource α’s utilization on z
nθ ,g(t) Number of sessions on θ from g
ne,g(t) Number of sessions on e from g: ∑∀θ :e∈θ nθ ,g(t)
aθ ,g(t) Session arrival rate on θ from g
ae,g(t) Session arrival rate on e from g: ∑∀θ :e∈θ aθ ,g(t)
ξs,d(t) Traffic of settled sessions s to d

f (t) CCDF of session lifetime
Outputs

wθ ,g Weight of new sessions of UG g on θ

ωp,s,d Weight of traffic from s to d on network path p

Table 1: Key notations in Footprint model.

sessions that stick to their servers and all non-edge traf-
fic carried by the WAN. Here, the routing decision ωp,s,d
denotes the fraction of non-edge (i.e., non-service) traffic
from source s to destination d assigned to network path
p. Note that s and d represent WAN endpoints connected
to datacenters, edge proxies, or neighboring ISPs. For in-
stance, for non-edge traffic s and d may be a neighboring
ISP and a datacenter; for service request traffic generated
from UGs, s is the proxy, while d is the datacenter.

Constraints: Because the sessions from g can only be
assigned to a subset of e2e-paths Θg whose proxies are
close enough to g, and similarly traffic from s to d can
only traverse a subset of network paths Ps,d that connect
s and d, we have the following constraints on routing:

∀g : ∑∀θ wθ ,g = 1, if θ /∈Θg, then wθ ,g = 0 (1)

∀s,d : ∑∀p ωp,s,d = 1, if p /∈ Ps,d , then ωp,s,d = 0 (2)

Before describing the system model based on which
we compute these routing decisions, we list the assump-
tions made in our modeling.

Assumptions: We assume that a data center is involved
in serving each user request, i.e., requests cannot be ful-
filled entirely by the proxy (though the proxy may have
some local logic and cached data). All requests for our
services require personalized responses based on hard
state that is only maintained in DCs.

We assume that the session arrival rate for a user group

g in j-th epoch a j
g, is known and fixed. In §6, we describe

how arrival rate is estimated. We have empirically veri-
fied that the arrival rate is fixed during each epoch, as the
epoch length that we use (5 minutes) is short. Our model
can be extended to account for errors in the estimated ar-
rival rate which will be discussed in §5.2. Similarly, we
assume that the distribution of session lifetimes, denoted
by q(t), is known.

We model proxies and datacenters as monolithic enti-
ties, ignoring their internal structure (and hence we refer
to them as “servers”). Without this simplifying assump-
tion, the model will become intractable as there will be
too many individual servers.

For ease of exposition, we assume that the infrastruc-
ture supports only one type of service. This service
generates request-response traffic, and the average band-
widths consumed by requests and responses is known
(creq, cresp). We define the capacity Mα,e of resource α

(e.g., CPU, memory) of server e in terms of number of
sessions. That is, we say that the CPU on a proxy can
handle a certain number of sessions. We assume that this
number is known, and fixed for a given α and a given
e. Since links can be viewed as a “server” with a single
resource–bandwidth—we will occasionally leverage this
view to simplify notation. In §5, we extend our model
to multiple services and a more detailed view of resource
and bandwidth consumption.

Finally, we assume that the system’s objective is to
find end-to-end paths that minimize user delays. We do
not consider other properties such as throughput or loss
rate, though we do model the impact of high utilized re-
sources on delay.

4.2 Temporal system dynamics
To model resource utilization, we first model the number
of active sessions consuming that resource. Let z denote
any element of an end-to-end path - a “server” or a link.
The number of active sessions on z is:

nz(t) = ∑
∀g

∑
∀θ :e∈θ

nθ ,g(t) (3)

nθ ,g(t) is the number of active sessions from UG g on
e2e-path θ at time t, and thus nz(t) is the total number of
active sessions on element z. nθ ,g(t) evolves with time,
as new sessions arrive and old ones depart.

Consider epoch k, which lasts from time t ∈ [kT,(k+
1)T ], where T is the epoch length. At the beginning of
the epoch (t = kT ), there are nold

θ ,g(kT) pre-existing ses-
sions that will terminate per the pattern defined by the
distribution of session life time. Simultaneously, new
sessions will continuously arrive, some of which termi-
nate inside the current epoch and others will last beyond
the epoch. At any given time, the total number of ses-
sions in the epoch is:
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Figure 6: The pattern functions derived from the session life time distribution of Bing in an epoch. The time
(x-axis) on each graph is relative to the start of the epoch.

nθ ,g(t) = nnew
θ ,g (t)+nold

θ ,g(t) (4)

We need to faithfully model how nnew
θ ,g (t) and nold

θ ,g(t)
evolve with time to provide achieve desired performance
and efficiency.

New sessions: The new session arrival rate on θ from
UG g is:

∀θ ,g : aθ ,g = ag×wθ ,g (5)

Recall that ag is the total arrival rate of sessions from UG
g, and we assume it to be fixed within an epoch.

At any given time t within the epoch k, nnew
θ ,g (t) is the

sum of the number of sessions which arrived in interval
[kT , t] and are still alive at t. From the session life time
CDF distribution q(t ′), we can easily derive f (t ′) = 1−
q(t ′), which is probability that a session is still alive after
duration t ′ since it started. Figures 5(a) and 6(a) show
examples of q(t ′) and f (t ′), respectively.

Therefore, at any given time τ ∈ [kT, t], the number
of new sessions that arrived in the interval [τ , τ +∆τ]
is aθ ,g×∆τ . Among these sessions, there will be f (t−
τ)aθ ,g×∆τ sessions left at time t. When ∆τ → 0:

nnew
θ ,g (t) =

∫ t

kT
f (t− τ)×aθ ,gdτ = aθ ,g×

∫ t−kT

0
f (τ)dτ (6)

= aθ ,g×F(t− kT )

where F(t) =
∫ t

0 f (τ)dτ , which represents the number of
sessions alive at t assuming unit arrival rate. Figure 6(b)
shows F(t), obtained from Figure 6(a).

Pre-existing sessions. At time t in epoch k, the number
of pre-existing sessions that arrived in epoch j ( j < k) is:

nold, j
θ ,g (t) =

∫ ( j+1)T

jT
f (t− τ)×a j

θ ,gdτ (7)

= a j
θ ,g×

∫ t− jT

t−( j+1)T
f (τ)dτ = a j

θ ,g×G(t− jT )

where a j
θ ,g is the observed arrival rate in epoch j and

G(t) = F(t)−F(t−T ). Therefore, the total number of
pre-existing sessions is:

nold
θ ,g(t) =

k−1

∑
j=0

a j
θ ,g×G(t− jT ) (8)

Figures 6(c) and (d) show examples of G(t− jT ) in two
epochs prior to current one, i.e., j = (k− 1)T and j =
(k−2)T , respectively when T = 300 seconds.

Server utilization: Given the number of active ses-
sions, the utilization of resource α on server e is:

µα,e(t) =
ne(t)
Mα,e

, (9)

Combining Eqns. 3, 4, 6, 8, and 9, the utilization of a
resource α on server e is:

µα,e(t) =
F(t− kT )×ae,g +∑

k−1
j=0 G(t− jT )×a j

e,g

Mα,e
(10)

Link utilization: To model link utilization, we account
for non-edge traffic and the fact that requests and re-
sponses consume different amounts of bandwidth, creq
and crsp, respectively.

An e2e-path θ contains a request path θreq from UG
to DC and a response path θrsp from DC to UG. Thus,
the total edge traffic load generated by new sessions on a
network link l is:

µ
′
bw,l(t) =

∑∀θ :l∈θreq nnew
θ

(t)creq +∑∀θ :l∈θrsp nnew
θ

(t)crsp

bwl
(11)

Pre-existing sessions stick to their originally assigned
servers, but the WAN paths they use can be adjusted. All
such sessions from site s to site d generates traffic de-
mand ξs,d :

ξs,d(t) = ∑
∀g
[ ∑
∀θ :s,d∈θreq

nold
θ ,g(t)creq + ∑

∀θ :s,d∈θrsp

nold
θ ,g(t)crsp] (12)

Network links are shared by edge and non-edge traffic.
Let ξ ′s,d be the traffic demand from source router s to
destination router d, the link load by non-edge traffic on
link l is:

µ
′′
bw,l(t) =

∑∀s,d ∑∀p:l∈p[ξs,d(t)+ξ ′s,d ]×ωp,s,d

bwl
(13)

Thus, the total utilization of network link l should be:

µbw,l(t) = µ
′
bw,l(t)+µ

′′
bw,l(t) (14)

4.3 Optimization objective
Equations 10 and 14 model the impact of routing deci-
sions on resource utilization. For computing the final
decisions, resource utilization is only half of the story.

6



0 0.5 0.750.9 1 1.1

Utilization, µ

0
20

50

100

200

P
e
n
a
lt

y
, 
P(
µ
) 

(m
s)

p=80µ−40

p=200µ−130

p=500µ−400

p=1000µ−900

Figure 7: Penalty function.

Our goal is not to exclusively minimize utilization, as
that can come at the cost of poor performance if user ses-
sions start traversing long paths. Similarly, the goal is
not to exclusively select shortest paths, as that may cause
overly high utilization that induces delays for users.

To balance the two concerns, as is common in TE
systems, we penalize high utilization in proportion to
expected delay it imposes [1]. Figure 7 shows the
piece-wise linear approximation of the penalty function
P(µα,e) we use. The results are not sensitive to the exact
shape—which can differ across resource types—as long
as the function has monotonically non-decreasing slope.

Thus, our objective function is:

min. ∑
∀α,e

∫ T

0
P(µα,e(t))dt + ∑

∀g,θ

∫ T

0
hg,θ ng,θ (t)dt (15)

The first term integrates utilization penalty over the
epoch, and the second term captures path delay. The
variable hg,θ represents the total latency when sessions
of UG g traverse e2e-path θ . It is the sum of UG-to-
proxy and WAN path delays.

4.4 Solving the model
Minimizing the objective under the constraints above
will assign values to our output variables. However, our
model uses continuous time and we must ensure that the
objective is limited at all possible times. To tractably
guarantee that, we make two observations. First, nnew

θ ,g (t)
monotonically increases with time and is also concave.
The concavity is valid if only dF(t)

dt = f (t) is monotoni-
cally non-increasing with t, which is always true because
f (t) is a CCDF (complementary cumulative distribution
function). Hence, we can use a piecewise linear con-
cave function F ′(t) that closely upper-bounds F(t). For
instance, the red, dashed line in Figure 6b shows a two-
segment F ′(t) we use for Bing.

The second observation is that nold
θ ,g(t) is monotoni-

cally decreasing and convex, e.g. Figure 5(b). The con-
vexity depends on both the shape of f (t) and the length
of epoch T we choose. We found the convexity of nold

θ ,g(t)
is valid for all the services in our infrastructure. So, in
this paper, we assume for simplicity that nold

θ ,g(t) is always
convex. 1

1Otherwise, we can also use a piecewise linear function to upper-
bound nold

θ ,g(t).

Therefore, when we use F ′(t) instead of F(t), from
Eqn. 10 we derive:

µα,e(t)≤ µ̄α,e(t) =
F ′(t− kT )ae,g +∑

k−1
j=0 G(t− jT )a j

e,g

Mα,e
(16)

where µ̄α,e(t) is upper-bounding µα,e(t) all the time, so
that we can limit µα,e(t) by limiting µ̄α,e(t).

Since ∑
k−1
j=0 G(t− jT ) is also convex with time t, and

let τ1, . . . ,τm, where τ1 = 0,τm = T , be the conjunc-
tion points of linear segments in F ′(t), µ̄α,e(t) becomes
a piecewise convex function and each convex piece i
(1 ≤ i ≤ m− 1) has boundary τi and τi+1. Because
the maximum value of a convex function must be on
the boundary, the maximum value of convex piece i in
µ̄α,e(t) happens on either t = τi or t = τi+1. Hence, over-
all, the maximum value of µ̄α,e(t) always happens at a
collection of particular moments which are τ1, . . . ,τm.
Formally, we have:

µ̄
max
α,e = max{µ̄α,e(τi)|i = 1, . . . ,m} (17)

Similarly, for link utilizations and number of sessions,
we also have:

µ̄
max
bw,l = max{µ̄bw,l(τi)|i = 1, . . . ,m} (18)

n̄max
θ ,g = max{n̄θ ,g(τi)|i = 1, . . . ,m} (19)

where µ̄bw,l(t) and n̄θ ,g(t), similar to µ̄α,e(t), is also de-
rived from replacing F(t) with F ′(t) in Eqn. 14 and 3.

Therefore, we can transfer our original objective func-
tion Eqn. 15 into following formulation:

min. ∑
∀α,e

P(µ̄max
α,e )×T + ∑

∀g,θ
hg,θ n̄max

g,θ ×T (20)

We can now obtain an efficiently-solvable LP com-
bining the new objective in Eqn 20 with constraints
Eqn. 1∼5 and 16∼19. Note that the linear wise penalty
function P(µ) can also be encoded with a group of linear
constraints [15].

5 Model Extentions
In this section, we extend the model presented in §4 to
handle several practical issues.

5.1 Supporting multiple services

Given n services {π1, . . . ,πn} which share the resources
in the infrastructure, we can first model the resource load
(µπ

α,e) from each of them with Eqn. 1∼19. Finally, we
modify the objective function which penalizes the overall
high resource utlization from all services:

min. ∑
∀π

∑
∀α,e

P(µ̄max,π
α,e )×T +∑

∀π
∑
∀g,θ

hπ
g,θ n̄max,π

g,θ ×T (21)
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Figure 9: Distribution of prediction errors.

5.2 Handling prediction errors

Before describing how we handle prediction errors, we
provide a brief background on second order cone pro-
gramming. SOCP is a convex optimization problem with
cone-shaped constraints besides linear ones. The gen-

eral format of conic constraints is
√

∑
n−1
i=0 x2

i ≤ xn, where
x0, . . . ,xn are variables. Figure 8 shows a concrete exam-
ple of a cone that results from

√
x2 + y2 ≤ z in 3D space.

Such constraints can be solved efficiently using the mod-
ern interior point method.

To translate our problem into a stochastic model and
then to an SOCP, our approach is to model the workload
as a random variable, which would make component uti-
lizations random as well. We can then obtain desirable
traffic distributions by bounding the random variables for
utilization. The challenge is to tractably capture the rela-
tionship between random variables that represent work-
load and those that represent utilization.

To do so, we assume that prediction errors (i.e., differ-
ences from actual values) are normally distributed with
zero mean. This assumption hold to a first order for our
EWMA-based predictor. Figure 9a shows the distribu-
tion of the arrival rate estimation errors for three repre-
sentative UGs. We also assume that the error distribu-
tions of different UGs are independent. Independence is
not required for actual rates of UGs, which may be cor-
related (e.g., diurnal patterns). Independence is also not
required for estimation errors for different resource (e.g.,
memory, bandwidth) needed by a UG (because different
resource types never co-occur in a cone).

Our formulation ensures that, even with prediction er-
rors, the utilization of resource α on a server or a link e
does not exceed µ ′α,e(t) with a high probability pα (de-
fault 99.9%). It computes µ ′α,e(t) based on the predicted
workload. The deterministic LP above does not offer this
guarantee if the workload is underestimated. Formally,
we want:

∀α,e : P[µα,e(t)≤ µ
′
α,e(t)]≥ pα (22)

Our key idea to find µ ′α,e(t) is to establish the relationship
between the variance of resource utilizaitons and predic-
tion errors in model inputs.

Let cα,e be the consumption of resource α on a server
e, the utilization of α on e is:

µα,e(t) =
ne(t)× cα,e

Mα,e
(23)

Both ne(t) and cα,e can have prediction errors in Eqn. 23.
The prediction errors of ne(t) is mainly from the estima-
tion of session arrival rates of UGs. Let ãk

g be the actual
arrival rate of g in epoch-k, the actually number of ses-
sions on server e is:

ñe(t) = F(t− kT )×∑∀g ãk
gwe,g +nold

e (t) (24)

where nold
e (t) is deterministic since we know the actual

arrival rates in previous epochs.
The errors lying in cα,e mainly from the heterogene-

ity of user requests. In each epoch, we predict cα,e but
the actual value c̃α,e could be different. Suppose c̃α,e is
also normally distributed with mean cα,e, the actual uti-
lization of resource α on server e is µ̃α,e = ñe× c̃α,e/Mα,e.
Let ∆ne and ∆cα,e be the estimation errors of ne and cα,e
respectively, we have:

µ̃α,e(t) =
(ne(t)+∆ne)× (cα,e +∆cα,e)

Mα,e
(25)

=
ne(t)cα +∆necα +ne(t)∆cα,e +∆ne∆cα,e

Mα,e

While ∆ne∆cα,e is not normally distributed, we make a
simplification to upper-bound it with a normal distribu-
tion. For instance, let Cα,e be the maximum value of ∆cα,e
in practice, we have:

µ̃α,e(t)≤ η̃α,e(t) =
ne(t)cα,e +∆ne(cα,e +Cα,e)+ne(t)∆cα,e

Mα,e
(26)

in which η̃α,e(t) is normally distributed. Therefore, we
realize Eqn. 22 with its sufficient condition as following:

∀α,e : P[η̃α,e(t)≤ µ
′
α,e(t)]≥ pα (27)

which is equivalent to:
∀α,e : E[η̃α,e(t)]+Φ

−1(pα )σ [η̃α,e(t)]≤ µ
′
α,e(t) (28)

where Φ−1 is the inverse normal cumulative distribution
function of N(0,1), and E[η̃α,e(t)] and σ [η̃α,e(t)] are the
mean and standard variance of η̃α,e(t) respectively. We
can compute E[µα,e(t)] as a function of the sessions that
e carries, using equations similar to those in the temporal
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model. We can compute σ [η̃α,e(t)] as follows. Because
ñe(t) is normally distributed, its standard variance is:

σ [ñe(t)] = σ [∆ne(t)] = F(t− kT )×
√

σ [ãg]2w2
e,g (29)

Thus, the standard variance of µ̄α,e(t):

σ [η̃α (t)] =

√
ne(t)2σ [c̃α,e]2 +(Cα,e + cα,e)2σ [ñe(t)]2

Mα,e
(30)

The quadratic formulations in Eqns. (28)-(30) are es-
sentially cone constraints. For example, if we merge
Eqn. (28), (29) and (30), we derive:
√

σ [c̃α,e]2ne(t)2 +[F(t− kT )(Cα,e + cα,e)]2 ∑
∀g

σ [ãg]2w2
e,g

∗Φ−1(pα )

Mα,e
+E[η̃α,e(t)]≤ µ

′
α,e(t) (31)

in which we,g, ne(t) and µ̄ ′α,e(t) are variables while oth-
ers are known. To make sure Eqn 33 is valid during the
whole epoch t ∈ [0,T ], we take advantage of the fact that
√

σ [c̃α,e]2ne(t)2 +[F(t− kT )(Cα,e + cα,e)]2 ∑
∀g

σ [ãg]2w2
e,g (32)

≤ σ [c̃α,e]ne(t)+F(t− kT )(Cα,e + cα,e)
√

∑
∀g

σ [ãg]2w2
e,g

so that we instead require:

Φ−1(pα )

Mα,e
[σ [c̃α,e]ne(t)+F(t− kT )(Cα,e + cα,e) (33)

∗
√

∑
∀g

σ [ãg]2w2
e,g]+E[η̃α,e(t)]≤ µ̄

′
α,e(t)

in which the maximum value of the left-hand-side term
also happen at t = 0,T or the turning points of F ′(t).

We solve these constraints along with the earlier ones
temporal model to obtain desired outputs. In the objec-
tive function (Eqn. 20), we use µ ′α,e(t) instead of µ̄max

α,e (t).
The same principles as before are used to remove the de-
pendence on time t.

6 Footprint Design
We now describe the design of Footprint in more detail.

Defining UGs We start with each /24 IP address prefix
as a UG because we find experimentally that such users
have similar performance. In the presence of eDNS,
where LDNS resolvers report users’ IP addresses when
querying our (authoritative) DNS servers, this definition
of UGs suffices. However, eDNS is not widely deployed
and our DNS servers tend to see only resolvers’ (not
users’) addresses. This lack of visibility means that we
cannot independently map to entry point(s) two /24 pre-
fixes that share LDNS resolvers. Thus, we merge non-
eDNS UGs that share LDNS resolvers.2 Our entry point

2We find that such grouping hurts a small minority of users. 90%
of the time, when two /24 prefixes have the same LDNS, their relative
performance to top-3 entry points is similar.

performance monitoring (described below) provides the
user IP-to-LDNS resolver mapping.

Entry point performance monitoring We leverage
client-side application code to monitor performance of
UGs to different entry points. Our measurement method
borrows ideas from prior work [22, 5]. After a query
finishes, the user requests a URL from current and alter-
native entry points. It then reports all response times to
a measurement server, which allows us to compare entry
points head-to-head, without worrying about differences
across users (e.g., home network performance).

However, because there can be O(100) entry points,
requesting that many URLs will take a long time
and place undue burden on users. We thus per-
form these measurements with a small probability
and limit each to three requests. Each URL is
of the form http://<guid>.try<k>.service.
footprint.com/monitor, where guid is a globally
unique identifier and k ∈ (1..3).

What sits behind monitor is service-specific trans-
action. For a browsing-type service (e.g., search, e-
commerce, or social networking) it may correspond to
downloading its typical Web page; and for a video
streaming service, large objects may be downloaded.
This way, the response time reflects what users of the
service experience.

The measurement mechanics are as follows. Because
of the GUID, the URL hostname does not exist in DNS
caches and each request triggers a lookup at our DNS
server. We resolve the name based on the user’s UG and
k. For k=1, we resolve to the current-best entry point;
for k=2, to a randomly selected entry point from the ten
next best; and for k=3, to a random selection from the
remaining entry points. Each response-time triplet yields
the relative performance of the best and two other entry
points. Aggregating across triplets and users provides a
view of each entry point’s performance for each UG.

This view is more up-to-date for better entry points
for a UG as they are sampled from a smaller set (of 10).
When a UG’s entry point is changed, it is likely mapped
to another nearby entry point; up-to-date view of such
entry points is important, which would be hard to obtain
with unbiased sampling of all entry points.

Finally, we learn the mapping from users’ IP addresses
to LDNS resolvers by using GUIDs to join the logs at
HTTP transaction servers (which see users’ addresses)
and DNS servers (which see resolver addresses).

Clustering UGs After LDNS-based grouping, we are
left with O(100K) UGs, which presents a scaling prob-
lem for our LP solver. To reduce the number of UGs,
we aggregate UGs at the start of each epoch. For each
UG, we first rank all entry points in decreasing order
of performance and then combine into virtual UGs that
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have the same entry points in the top-three positions in
the same order. We formulate the model in terms of
VUGs. The performance of a VUG to an entry point is
the average of the aggregate, weighted by UGs’ number
of sessions. For our infrastructure, this clustering creates
O(1K) VUGs, and we do not observe a decline efficiency
due to the loss in our ability to map individual UGs.

System workload The controller estimates the work-
load for the next epoch using workload information from
previous epochs. DNS servers report the arrival rates of
new sessions for each UG and each service; proxies re-
port on resource usage and departure rate of sessions; and
network switches that face the external world report on
non-edge traffic matrix (in bytes/second). Edge work-
load is captured in terms of all resource(s) that are rel-
evant for allocation (e.g., memory, CPU, traffic). We
use exponentially weighted moving average (EWMA)
to estimate workload for the next epoch. We also use
linear regression to infer per-session resource consump-
tion (e.g., CPU cycles) for each service, using overall re-
source usage and number of active sessions per service.

System health When failures occur, health monitor-
ing services at proxy sites and DCs inform the controller
how much total site capacity is lost (not which servers).
This information granularity suffices because the con-
troller does not allocate sessions to individual servers at
a site and relies on local load balancers for that. In con-
trast, network failures are exposed at link-level, so that
the controller can determine network paths.

Robustness to controller failures To make the sys-
tem robust to controller or hosting-DC failures, we run
multiple controllers in different DCs. All dynamic infor-
mation required for the optimization (e.g., system work-
load) is reported to all controllers in parallel. How-
ever, only one controller—the leader, elected using
ZooKeeper [31]—computes the new system configura-
tion. When the leader fails, a new leader is elected, who
can immediately start computing new system configura-
tions as it already has all the requisite inputs.

7 Footprint Prototype
We have implemented the Footprint design outlined
above. The client-side functionality for entry point per-
formance monitoring is a JavaScript library that can be
used with any Web service. This library is invoked af-
ter page load completes, so that it does not interfere with
user experience. When fetching a URL in JavaScript,
we cannot separate DNS lookup and object download
times. To circumvent this limitation, before fetching the
URL, we fetch a small object from the same hostname.
Then, because of DNS caching, the response time of the
URL does not include DNS lookup time. In cases where
the browser supports the W3C Resource Timing API, we

use the precise object fetch time. We implemented the
DNS server-side functionality by modifying BIND [3]
and proxy functionality using Application Request Rout-
ing [2], which works with unmodified Web servers. We
use Mosek [24] to solve the LP.

Timely processing of monitoring data is critical. A
particularly onerous task is the real-time join between
HTTP and DNS data, to know which endpoints our
JavaScript has measured and to attach detailed network
and geographic information to each measurement. To
help scale, we build our processing pipeline on top of
Microsoft Azure Event Hub and Stream Analytics.

To scale the computation of new configurations, we
limit the number of e2e-paths that a VUG (virtual UG)
can use. Specifically, we limit each VUG to its best three
entry points (the same ones that the VUG was clustered
on), each load balancer to three proxies, and each source-
destination switch pair to six paths (tunnels) in the WAN.
In our benchmarks, these limits speed computation by
multiple orders of magnitude, without noticeably impact-
ing system efficiency or performance.

We deployed a prototype of Footprint in a modest-
sized testbed. This environment emulates a WAN with
eight switches and 14 links, three proxy sites, and two
DCs. Proxy sites and DCs have one server each. We
have 32 PCs that act as UGs and repeatedly query a ser-
vice hosted in the DC. UG to entry point delays are con-
trolled using a network emulator.

The monitoring aspects Footprint (but not the control
functionality) are also deployed in Microsoft’s service
delivery infrastructure. This allow us to collect data from
O(100) routers, O(50) edge sites, and O(10) DCs world-
wide. JavaScript library is randomly included in 20% of
Bing user requests. We use the data collected from this
deployment to drive simulations to evaluate the perfor-
mance of Footprint.

8 Experimental Evaluation
We evaluate Footprint along several dimensions of in-
terest. First, we use the testbed to show the viability
and value of jointly controlling all types of infrastructure
components. However, this setting does not shed light on
its efficiency and performance in a real deployment. To
assess those aspects, we conduct large-scale simulations
based on data gathered using the monitoring deployment
of Footprint in our production environment.

8.1 Testbed results

We use a simple experiment on our testbed to demon-
strate the value of spatial traffic modulation. In this ex-
periment, we recreate the example in Figure 2. Recall
that in this example the WAN gets congested such that no
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Figure 10: Testbed experiment: WAN congestion.

path between the entry point P2 and DC2 is congestion-
free. We create such congestion by injecting non-edge
traffic that uses those paths.

Figure 10 shows the results. It plots the response
time for UGs that are originally mapped to P2 and DC2,
with Footprint and with WAN TE alone. WAN TE es-
timates the WAN traffic matrix based on recent history
and routes traffic to minimize link utilization while us-
ing short paths [18]. We see that soon after congestion
occurs, Footprint spatially modulates the traffic such that
UGs’ performance is restored. But WAN TE is unable to
resolve congestion and performance issues as it cannot
change UGs’ proxy and DC selections.

8.2 Efficiency and performance
To understanding the efficiency and performance of Foot-
print at scale, we conduct detailed simulations using data
from Microsoft’s service delivery infrastructure.

8.2.1 Data and methodology

We drive our simulations using the following data: i)
timestamps of new sessions obtained from system logs;
ii) distribution of session lifetimes; iii) UG to entry point
performance data from our monitoring deployment; iv)
propagation latencies and capacities of all WAN links in
WAN; v) server capacities at the edge proxies and data
centers; vi) non-edge traffic carried by the WAN; and vii)
per-session resource consumption (e.g., CPU) estimated
using linear regression over the number active sessions.

We develop a custom, fluid-level simulator that uses
this data to simulate the behavior of Footprint and other
systems that we study. The results in this paper are based
on one week’s worth of data from August 2015. Results
from other weeks are qualitatively similar.

To understand the benefit of Footprint’s joint optimiza-
tion, we compare it to Microsoft’s current approach,
where i) anycast routing is used to map UGs to their
best proxy; proxies are organized in multiple anycast
“rings,” and when a proxy gets overloaded, its DNS
server starts mapping UGs to the inner anycast ring; ii)
each edge proxy independently chooses the closest DC
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Figure 11: Efficiency of FastRoute and Footprint for
SLO1 (excess traffic on overloaded components).
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Figure 12: Efficiency of FastRoute and Footprint for
SLO2 (total traffic on overloaded components).

for its user sessions based on up-to-date delay measure-
ments; and iii) WAN TE periodically configures net-
work paths based on observed traffic, to minimize maxi-
mum link utilization [18]. In our simulations, the control
loops, for DC selection at each proxy and for WAN TE,
run independently every 5 minutes. To mimic anycast
routing, we use our monitoring data to map UGs to the
best proxy, which enables a fair comparison by factoring
out any anycast suboptimalities [5]. Abusing terminol-
ogy, we call this system FastRoute, even though the Fas-
tRoute paper [14] discusses only UG-to-proxy mapping
aspect of service delivery.

We quantify efficiency of a TE scheme using
congestion-free scale—maximum demand that it can
carry without causing unacceptable congestion that vi-
olates service-level objectives (SLOs). We consider two
definitions of unacceptable congestion: i) SLO1: across
all epochs, the amount of traffic in excess of compo-
nent capacities should be less than a threshold; ii) SLO2:
across all epochs, the total traffic traversing overloaded
(i.e., load greater than capacity) components should be
less than a threshold. The difference in the two SLOs
is that when traffic traverses an overloaded component,
SLO1 considers only the fraction in excess of the ca-
pacity, but SLO2 considers all traffic passing through
it. We study multiple congestion thresholds and compute
congestion-free scale by iterating over demands that are
proportionally scaled versions of the original demand.
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Figure 13: Delays in the two systems.

8.2.2 Efficiency

Figure 11 shows the congestion-free scale for FastRoute
and Footprint with SLO1 for two different congestion
thresholds. For confidentiality, we report all traffic scales
relative to the congestion-free scale of FastRoute with
SLO1 at 1% threshold. We see that Footprint can carry
93% more traffic when the congestion threshold is 1%
and 50% more traffic when the threshold is 5%.

These efficiency gains can be understood with respect
to the spatial modulation enabled by joint coordination in
Footprint. At different times of the day, different regions
are active and get congested. By making joint decisions,
Footprint can more easily divert traffic from currently ac-
tive regions to uncongested proxies and WAN paths.

Figure 12 shows that Footprint’s efficiency gains hold
for SLO2 as well, which considers total traffic travers-
ing overloaded components. For 1% and 5% congestion
thresholds, Footprint can carry, respectively, 170% and
99% more traffic than FastRoute.

To understand the impact of topology and workload
we restricted our analysis to different parts of the world
(e.g., USA), which have substantially different infras-
tructure topology, capacities, and workload. In each
case, we found that Footprint brings substantial efficiency
benefit over FastRoute.

8.2.3 Performance

We quantify performance of user sessions using end-to-
end path delays. We study its contributing factors: ex-
ternal (UG-to-proxy) delay, propagation delay inside the

WAN, and queuing-induced delays. Queuing delay is
quantified using utilization, per the curve in Figure 7.
Figure 13 shows the performance of the two system for
traffic scales that correspond to 35% and 70% of the
congestion-free scale of FastRoute for SLO1. Each bar
stacks from bottom three factors in the order listed above.

We see that even when the traffic demand is low
(35%), Footprint has 46% lower delay. At this scale, the
infrastructure is largely under-utilized. The delay reduc-
tion of Footprint stems from its end-to-end perspective.
In contrast, FastRoute picks the best proxy for a UG and
the best DC for the proxy. The combination of the two
might not represent the best e2e path. Such a path may be
composed of a suboptimal UG-to-proxy path but a much
shorter WAN path. This effect can be seen in the graph,
where the external delays are slightly higher but the sum
of external and WAN delay is lower.

When the traffic demand is high (70%), both systems
have higher delay. For FastRoute, most of the additional
delay stems from queuing as traffic experiences highly
utilized links and servers. Footprint is able to reduce
queuing delay by being better able to find uncongested
(albeit longer) longer paths. Overall, the end-to-end de-
lay of Footprint is 38% lower than FastRoute.

8.3 Impact of system model

To isolate the impact of the high-fidelity model sys-
tem model that Footprint uses, we compare its efficiency
against two alternatives.
• JointAverageCase is a system that, like Footprint,

jointly optimizes the infrastructure. It does not, however,
model the temporal dynamics of traffic. Based on the
session lifetimes, it uses Little’s law [21] to estimate the
number of active sessions as a function of session arrival
rate. So, if the session arrival rate at a proxy is A per
second and the average session lifetime is 10 seconds,
on average the proxy will have 10×A active sessions.
These estimates are then plugged into an LP that deter-
mines how new sessions are mapped to proxies and DC
and how traffic is forwarded in the WAN.
• JointWorstCase also jointly optimizes the infrastruc-

ture. But for session dynamics, it makes a conservative,
worst-case assumption about load on infrastructure com-
ponents. Specifically, it assumes that new sessions arrive
before any old sessions depart in an epoch. Since we do
not do admission control, it is not the case that traffic that
is estimated, per this model, to overload the infrastruc-
ture is rejected. Instead, the optimization spreads traffic
to minimize utilization that is predicted by this model.
This model will do well if it overestimates the traffic on
each component by a similar amount.

Figure 14 compares these two models with Footprint
for SLO1 with 5% congestion threshold (the configura-
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Figure 14: Efficiency of different system models: un-
scaled session lifetimes
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Figure 15: Fidelity of modeling. CDF of modeled and
observed link utilization.
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Figure 16: Efficiency of different system models: av-
erage session lifetime multiplied by 10

tion for which Footprint had least gain over FastRoute).
We see that Footprint is substantially more efficient. It
carries 56% and 96% more traffic than JointAverageCase
and JointWorstCase.

We find that the gains of Footprint actually stem from
its ability to better model load that will be placed on dif-
ferent infrastructure components. To demonstrate it, Fig-
ure 15 plots the distribution of estimated minus actual
utilization for WAN links for each model. We see that
JointAverageCase tends to underestimate utilization and
JointWorstCase tends to overestimate it. With respect to
appropriately spreading load through the infrastructure,
neither over- nor under-estimation is helpful.

We also find that, if sessions were much longer, Joint-
WorstCase becomes better because its conservative as-
sumption about existing sessions continuing to load the
infrastructure becomes truer. On the other hand, Join-
tAverageCase gets worse because it ignores the impact
of existing sessions altogether, which hurts more when
sessions are longer. This is illustrated in Figure 16,
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Figure 17: Churn in UG to proxy performance.

which shows the impact on efficiency with average ses-
sion lifetime multiplied by 10. Note that even for these
abnormally long sessions, Footprint offers some gains.

8.4 Computation time

We measured the time Footprint controller takes to com-
pute system configurations, which includes converting
inputs to an LP, solving it, and converting the output
to system variables. On an Intel Xeon CPU (E5-1620,
3.70GHz) with 16 GB RAM and using Mosek v7, this
time is 7 seconds. This level of performance is accept-
able given that epochs are much longer (5 minutes).

8.5 Preliminary experience

Before concluding our evaluation, we make two obser-
vations based on the deployment of Footprint’s monitor-
ing components in Microsoft’s infrastructure. First, we
quantify the fraction of UGs for which the best proxy
changes across epochs. If this fraction is substantial, op-
timal user-to-proxy mapping would move large amounts
of WAN traffic, which is better done in coordination with
WAN-TE, rather than independently.

Figure 17b shows the fraction of UGs, weighed by
their demand, for which the best proxy changes across
epochs. On average, this fraction is 5%. It means that a
user-to-proxy mapping control loop, operating indepen-
dently, could move this high a fraction of traffic on the
WAN. Joint coordination helps make such movements
safely. (In Footprint, since we consider WAN-internal
capacity and performance as well, the traffic moved is
lower, under 1% in our simulations.)

Second, an unexpected side-effect of Footprint’s con-
tinuous monitoring is that we can discover and circum-
vent issues in Internet routing that hurt user performance.
We have found several such events. For instance, in one
case users in the middle of the USA started experiencing
over 130 ms round trip delay to reach a proxy on the west
coast, while the historical delay was under 50 ms. In an-
other case, the difference in the delay to reach two nearby
proxies in Australia, was over 80 ms. While debugging
and fixing such issues requires manual effort, Footprint
can automatically restore user performance in the mean-
while. Anycast-based systems, such as FastRoute, can-
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not do that.

9 Related Work
Content distribution systems Content and service de-
livery has been an important problem in the Internet for
almost two decades. Akamai [23] developed the first
large-scale solution, and we borrow several of its con-
cepts such as using edge proxies to accelerate perfor-
mance and mapping users to proxies based on path per-
formance and proxy load. Since then, researchers have
developed sophisticated techniques to tackle this general
problem known as replica selection [13, 4, 11, 27]. So-
lutions tailored to specific workloads (e.g., video) have
also been developed [25, 17].

Most of these works target the traditional context in
which the WAN is operated separately from the proxy
infrastructure. We target the increasingly common inte-
grated infrastructure context, which provides a new op-
portunity to jointly coordinate routing and resource allo-
cation decisions.

Coordinating decisions Other researchers have noted
the downsides of independent decisions for network
routing and content distribution. Several works [16,
20, 26, 12] consider coordinating ISP routing and DC
selection—no proxies involved—through controlled in-
formation sharing (as ownership of infrastructures is not
necessarily unified); PECAN develops techniques to co-
ordinate proxy selection and external (not WAN) paths
between users and proxies [29]; ENTACT balances per-
formance and the cost of transit traffic for an OSP [30].
Our context is different; it includes the full complement
of jointly selecting proxies, DCs, and network paths.

More importantly, prior works quantify baseline gains
of coordination, which is equivalent to our Joint-
WorstCase scheme. We go further and develop new tech-
niques to improve performance and efficiency by effec-
tively modeling workload dynamics. To our knowledge,
such dynamics have not been modeled before, and we
show that they result in significant efficiency gain.

10 Conclusions
Our work exploits the opportunity to boost performance
and efficiency when online services are delivered over
integrated infrastructure. We show that exploitation re-
quires a faithful modeling of the complex dynamics of
such systems due to gradual load migrations. We ad-
dress this challenge using a time-based model that is also
computationally efficient to solve. We implemented our
approach in the Footprint system and partially deployed
it in Microsoft’s infrastructure. Data-driven simulations
show that, compared to the current method, it improves
system efficiency by at least 50% and user performance
by at least 38%.

Our approach can be applied to other systems where
load changes gradually with time in response to config-
uration changes (e.g., session-based load balancers). We
plan to explore its general applicability in the future.
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