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ABSTRACT
Despite neglecting even basic security measures, close
to two billion people use the Internet, and only a small
fraction appear to be victimized each year. This paper
suggests that an explanation lies in the economics of at-
tacks. We distinguish between scalable attacks, where
costs are almost independent of the number of users at-
tacked, and non-scalable (or targeted) attacks, which
involve per-user effort. Scalable attacks reach orders of
magnitude more users. To compensate for her disad-
vantage in terms of reach the targeted attacker must
target users with higher than average value.

To accomplish this she needs that value be both vis-
ible and very concentrated, with few users having very
high value while most have little. In this she is for-
tunate: power-law longtail distributions that describe
the distributions of wealth, fame and other phenomena
are extremely concentrated. However, in these distribu-
tions only a tiny fraction of the population have above
average value. For example, fewer than 2% of people
have above average wealth in the US. Thus, when at-
tacking assets where value is concentrated, the targeted
attacker ignores the vast majority of users, since at-
tacking them hurts rather than helps her requirement
to extract greater than average value.

This helps explain why many users escape harm, even
when they neglect security precautions: most users never
experience most attacks. Attacks that involve per-user
effort will be seen by only a tiny fraction of users. No
matter how clever the exploit, unless the expected value
is high, there is little place for per-user effort in this
world of mass-produced attacks.

1. INTRODUCTION
An Internet user, Alice, must protect her resources

from an attacker Charles. A common threat model as-
sumes that Alice’s strategy is known to Charles, who
adapts in response to any changes she makes, or counter-
measures she adopts. Thus, Alice’s security is usually
regarded as being only as strong as the weakest link.
She must guard against every possible attack and patch
every possible hole. Charles has many attacks that ex-

ploit vulnerabilities in her applications or operating sys-
tem [44, 33, 10], her firewall [16], the network she uses
[38] or her susceptibility to social engineering [27]. He
even has techniques to spy on her using reflections from
her LCD screen [34] or audio or electromagnetic ema-
nations [29, 31]. He constantly adds new attacks. Un-
like enterprizes which may be able to make weakest-link
investment decisions [39, 30, 22] Alice may not even
have approximate estimates of attack costs. Further,
she may not know when a breach occurs (e.g., if her PC
is part of a botnet) or the link that caused the breach
(e.g., whether her credentials were stolen by keylogger,
phishing, or brute-froce etc).

For the outcome to be in doubt Alice must have un-
limited budget: she does whatever it takes to protect
her resources against Charles. However, if Alice has a
fixed budget, her situation appears hopeless. How can
she defend against an enormous and ever-growing, ever-
adapting set of attacks? In this threat model, failure to
do everything means that there is no point in doing
anything. This leads to the situation of all-or-nothing
investment: unless both A and B are done the invest-
ment in either is wasted. This is particularly problem-
atic for end-users who clearly have limited resources,
and yet are subject to an extraordinary array of inter-
net attacks. Alice’s correct strategy is “do everything.”
If that is not possible, she may as well purse the al-
ternative strategy “do nothing and hope for the best.”
In this threat model there is little point in any of the
strategies in between.

In the model where Charles exploits any vulnerabil-
ity, the worst-case is to be expected if any defence is
neglected. This leads to the following puzzling fact: the
idea that worst-case outcomes become actual is not sup-
ported by evidence [6]. In spite of the huge and growing
list of attacks, close to two billion people use the inter-
net regularly for email, banking, social networking and
a host of other activities. Bad things certainly hap-
pen, but apparently not often enough to outweigh the
benefit that people derive from using the internet and
working online. We need not look to user diligence for
an explanation of this contradiction. Not only do users

1



take no precautions against elaborate attacks, they ap-
pear to neglect even basic ones. For example, a grow-
ing body of measurement studies make clear that users
choose weak passwords and re-use them liberally [21],
choose easily guessed backup authentication questions
[43], are oblivious to security cues [41], ignore certificate
error warnings [26] and cannot tell legitimate web-sites
from phishing imitations [19]. How can this be? How
can it be that huge numbers of internet users ignore
most security advice, and yet do not suffer the worst-
case outcomes predicted by this threat model? Alice,
clearly presents no shortage of vulnerabilities, and yet
Charles somehow fails to exploit them.

The contribution of this paper is to suggest that an
explanation lies in basic economics. We do so by propos-
ing a new threat model. We split Charles’ attack ef-
forts into those of two attackers: Carl and Klara. Carl
mounts only scalable attacks (where the costs grow slower
than linearly in the number of users attacked) all other
attacks are carried out by Klara. Examples of scalable
attacks are those that are automated, e.g., phishing and
spam. Examples of non-scalable attacks are those that
involve per-user effort, e.g., spear phishing.

We show that this very simple cost restriction has
profound implications for the nature and range of Carl’s
attacks, and how Carl and Klara divide the attack op-
portunities between them. In summary, Carl’s attacks
are large, broadcast internet-scale attacks. For the same
cost, Carl attacks orders of magnitude more users than
Klara. Carl’s economies of scale force Klara to be ex-
tremely selective. She must target resources where value
is very concentrated, so that she can extract maximum
value from very few users. This means that while every-
one is attacked by Carl, very few are targeted by Klara,
even when they are vulnerable. Just as misaligned in-
centives for defenders can produce unexpected results
[37], the lack of clear return on effort for Klara can cause
real vulnerabilities to go unexploited. This also has im-
plications for Alice’s resource allocation decisions. Al-
ice must protect first against all scalable attacks. Since
these are large, visible, predictable and non-adaptive
she has some hope of accomplishing this with a limited
budget.

2. SCALABLE ATTACKS

2.1 Threat Model: Carl and Klara
In a refinement of the Threat Model where Alice faces

a single attacker, we propose one where she faces two:
Carl and Klara. Rather than restrict his technical ca-
pabilities Carl is constrained in that he can mount only
scalable attacks (defined below), everything else is the
province of Klara. There is no loss of generality here:
no attacks are ruled out of scope, we merely label those
that are scalable as belonging to Carl and all others

Carl

Alice

Klara

Figure 1: Threat model b: the attacks on Alice
are scalable (from Carl) and non-scalable (from
Klara).

as belonging to Klara. Carl can collude with Klara so
long as it doesn’t violate the constraint of keeping costs
scaleable. One obvious form of collusion is a flow of in-
formation between them: e.g., Carl passes prospects for
non-scalable attacks to Klara if he can identify them us-
ing a scalable attack (as in Section 4.4). We will see that
their different cost structures have major implications
for the types of attacks that Carl and Klara mount and
how they divide attack opportunities between them.

We address the case where Alice is an end-user. This
simplifies the analysis, since there is a single decision
maker and the assets she protects are her own. Alice
has several assets that are of interest to attackers. She
has bank, email, social networking accounts; she has a
computer which provide bandwidth, computation and
hosting.

2.2 Scalable Attacks: Carl
The term scalable is used without a standard defi-

nition in networking, economics and business planning.
For the purposes of this paper an attack is scalable if the
cost, Cs(N), grows slower than linearly in the number
of attacked users, N :

Cs(2N) < 2Cs(N). (1)

This means that the attack achieves economy of scale
(i.e., costs decrease with increasing “customers”) once
the startup costs have been recouped.

This cost model constrains Carl. Attacks that in-
volve individual per-user effort or cost are ruled out.
Equally, requiring physical proximity to, or knowledge
of, the user is not possible with a scalable cost struc-
ture. It might appear that Carl can mount only a small
range of very constrained attacks. However, these are
some of the most widely deployed web and internet ex-
ploits. Examples of scalable attacks are spam, phish-
ing, viruses, drive-by downloads, self-replicating botnet
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code etc. Costs for each of these clearly satisfy (1).

2.3 Non-Scalable Attacks: Klara
Non-scalable attacks are everything else. So the cost

grows linearly, or worse:

Cn(2N) ≈ 2Cn(N). (2)

Each additional attacked user costs as much as the last.
Cost structures of this kind clearly occur if dedicated

effort has to be expended on each attacked user, if phys-
ical proximity to the user is required, or if particular
knowledge of the attacked user is needed. An exam-
ple of a non-scalable attacks is spear phishing, where
a personalized phishing email is sent to each recipient
[32]. Attacks that seek to spy using reflected light, elec-
tromagnetic emissions, or sound [29, 31, 34] clearly re-
quire proximity and are non-scalable. Session-hijacking
attacks that involve real-time Man-In-The-Middle ac-
tivity on a live session clearly involve per-user effort.
Certain attacks on the back-up authentication questions
[43] clearly involve both dedicated knowledge of the user
and per-user effort. Most social engineering attacks
involve dedicated time-consuming effort and are non-
scalable. Almost all of the exploits described by Mitnick
[27] involve dedicated effort and are non-scalable.

2.4 Mathematical Model
It is clear from experience that many internet attacks

are run at such large scale, and are so wasteful, that
costs don’t merely grow slower than linearly, they barely
grow at all: Cs(2N) ≈ Cs(N). It would be an under-
statement to say, for example, that spammers’ costs do
not have a dependence on N (forcing such a dependence
has been suggested as a solution to automated attacks
such as spam [12]). In fact, many scaleable attacks re-
semble information goods or software businesses in the
sense that the first-copy costs dominate, and subsequent
copies are almost free [15]. For example, consider the
spam campaign documented by Kanich et al.[28], were
a spammer made $2800 from 350 million emails sent. If
we assume that the spammer (Carl) at least broke even,
then Cs(350e6) = $2800 for this attack. By contrast, if
Klara devoted even $0.10 of effort per-user, her cost to
reach the same population would be $35 million. Alter-
natively, for the same cost, Klara could instead attack
28k users (i.e., four orders of magnitude fewer). If she
spends $1 per user it grow to five. If Klara spends an
hour of US minimum wage effort per user she gets to at-
tack 2800/7.25 = 386 users for the same cost that Carl
attacks 350 million, a six orders of magnitude difference.

We’ve stated the costs, what of the rewards? We’ll
assume that, for both Car and Klara, the rewards are
R(N) = NY V , where N is the number of attacked
users, Y is the yield, and V is the average extracted
value per successfully attacked user. Thus N are at-

Scalable Non-scalable
Cost Cs(2N) < 2Cs(N) Cn(2N) = 2Cn(N)
Reward Rs(2N) = 2Rs(N) Rn(2N) = 2Rn(N)
Profit Ps(2N) > 2Ps(N) Pn(2N) ≤ 2Pn(N)

Table 1: Dependence of Cost, Reward and Profit
on number of attacked users N. We merely con-
strain that the costs of scalable attacks grow
slower than linearly; i.e., the second derivative is
negative. We call all other attacks non-scalable.

tacked, NY are successfully attacked and NY V is the
value extracted.

3. ANALYSIS AND IMPLICATIONS

3.1 Scalable Attacks Run at the Largest Pos-
sible Scale

A consequence of the slower than linear cost growth
is that there is a powerful incentive is to run scalable at-
tacks at the largest possible scale. For Carl, profitabil-
ity increases monotonically with the number of attacked
users:

Ps(2N) = Rs(2N)− Cs(2N)
> 2Rs(N)− 2Cs(N)
> 2Ps(N).

It’s more profitable to attack 2N users than N, and
better to attack 4N than 2N and so on. Scalable attacks
should be limited only when no more possible victims
can be identified. Hence Carl has the incentive to attack
everyone as often as possible. This correlates well with
experience that nobody is immune from spam, phishing
and other large scale scriptable attacks.

By contrast for Klara the profit picture is very differ-
ent:

Pn(2N) = Rn(2N)− Cn(2N)
= 2Rn(N)− 2Cn(N)
= 2Pn(N).

She certainly sees no improvement in profitability with
scale. At best, she makes as much from attacking her
million-and-first user as she did from her first. Since
Carl attacks everyone Klara always competes with him.
Unless she can find an asset class that is not subject to
scaleable attack everyone she targets is also attacked by
Carl. However, Carl has far greater reach. In Section
2.4 we saw that a $0.10 per-user cost would cause Klara
to reach Nn/Ns = 104 fewer potential victims than her
spamming rival for the same cost.

3.2 Scalable Attacks are Automated
Consider a conventional spam campaign, with cost C.

The expected value of a victim is V s, and Ns, Ys are the
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number of contacted recipients and yield respectively. If
the campaign is profitable then:

Cs(N) < NsYsV s.

Now consider personalizing the campaign: the sender
makes the effort to include some information identifying
the recipient in the mail. For example, instead of begin-
ning “Dear Respected Sir” it begins “Dear Mr. Brown”
or “Dear Julie Smith” or has other customization that
cannot be performed automatically and involves an ad-
ditional cost of β per user. For example, an Internet
search per user to add some personalizing information
would add such a cost. The yield presumably increases
because of the personalization, Y

′

s > Ys, so the return
also increases to NsY

′

sV s. This is an improvement over
the un-targeted attack, so long as the improvement in
reward per user is greater than the additional cost:

β < (Y
′

s − Ys) · V s.

Let’s suppose that targeting increased the yield by 4.5,
i.e., Y

′

s = 4.5 × Ys (this is the factor improvement
that Jagatic et al. [46] found in a customized phish-
ing attack over a generic one). Using the numbers from
the spam campaign documented by Kanich et al. [28]:
Ns = 350e6, Ys = 28/N, V s = $100. This gives that, to
be an improvement, the targeted campaign must have
β < $0.00002. Using the US minimum wage of $7.25 an
hour this translates to 0.01 seconds effort per-user.

This arithmetic is orders of magnitude away from
making economic sense. While personalization would
certainly improve yield, the economies of scale of Carl’s
scalable attack model overwhelm any advantage this
might bring. Thus, scalable attacks must be entirely au-
tomated with no per-user intervention whatever. This
matches the experience that we have from spam, phish-
ing etc. The majority of spam and phishing emails con-
tains no personalization whatever; Nigerian 419 scams
seldom contain identifying information.

3.3 Scalable Attacks don’t Adapt to Individ-
ual User Actions

Carl cannot personalize his attacks for Alice. Equally,
he cannot adapt to her actions and counter-measures:
anything that involves effort customized to an individ-
ual violates his scalable cost structure. This forms a
key point of contrast between the attacks of Carl and
Klara. For example, Carl and Klara both want Alice’s
bank password, and both have a range of attacks to try
to get it. Carl, for example, will try phishing, will send
spam with keylogging Trojans, he will probe Alice’s fire-
wall for un-patched vulnerabilities, and perhaps check
if her router still has the default password. These are
all scalable attacks that fall within Carl’s range. Klara
may try guessing the backup authentication questions,
she may try more elaborate social engineering based on
what she can learn of Alice [27, 46], she may physically

instal a keylogger on Alice’s machine, or even snoop
using the audible [29], visible [34] or electromagnetic
spectrum [31].

A key difference is the non-adaptive nature of Carl’s
attacks. If Alice evades the phishing and emailed Tro-
jan, Carl doesn’t step up other attacks. There is no
increase in his attacks on the router if he is defeated at
the firewall. By contrast Klara adapts: if attempts on
the backup authentication questions fail, she may try
harder at more advanced social engineering. If these
again fail she may endeavor to get a keylogger installed.
If Klara is truly determined and possesses unlimited re-
sources, Alice faces a daunting challenge. If Klara is
a family member or coworker, physical access to Al-
ice’s computer may not be a problem, and installing a
keylogger may be perfectly feasible. If Klara works for
a state agency breaking and entering may be possible.
We assume that both Carl and Klara are rational. Since
Carl looks at all users indiscriminately his spending is
constrained by Cs(N) < NsYsV s. He won’t spend more
on Alice (or any other user) than the average expected
return. Klara, on the other hand, may persist, espe-
cially if she believes that she can extract more than V s

from Alice. We explore this in Section 4.2.
In fact, not only does Carl not adapt when he fails, he

doesn’t adapt when he succeeds. If he phishes Alice’s
PayPal account he continues to try to phish her; even if
she has no money left, even if she closes the account. It
is also for this reason that Carl attempts to instal botnet
code, even if several other Trojans are already running.
This is an consequence of the automated nature of the
attacks. Carl doesn’t know his potential victims; he
doesn’t even know how many of those he attacks are real
people. This is one reason for the success of honeypot
techniques against scaleable attacks [36].

3.4 Scalable Attacks Produce Commodity Goods
The cost structure of scalable attacks is both their

strength and their weakness. Since these attacks are
automated they can be replicated without much skill.
A single clever exploit, once scripted, can be used by
many. These “script kiddie” attackers need not neces-
sarily understand in detail how the attack works or have
very much skill.

Once an attack is automated it is difficult to preserve
profit. The script or kit can be passed to many: since
it is automated anyone can do it. Any insight or intel-
lectual property involved is diffused to many. If anyone
can do it, more and more people are attracted to the
opportunity so long as it is profitable.

As in other industries the effect of automation is com-
moditization of the product. For Carl the product may
be spam delivered into inboxes, bank passwords stolen,
or computers enlisted to serve in botnets. Automa-
tion greatly increases supply and drives the price down.
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Zombie PC’s, for example, become less valuable if large
botnets are common. If bank credentials are monetized
through a mule, and mules are in short supply then
increasing supply of credentials drives the value down.
This appears to be the case with phishing where, de-
spite very visible effort there is slender evidence of re-
turn [24]. A similar effect is visible in spam, where enor-
mous campaigns appear to generate minuscule returns
[28]. A consequence of the Tragedy of the Commons
is that returns drop with increasing effort. That is to
say, V s decreases. For example, the value of getting
into a user’s email inbox has probably decreased with
time. Since so many attackers attempt to phish, there
is evidence of greater supply of credentials than can be
successfully be harvested [25]. There is evidence that
the value of zombie PC’s has been falling with time [4].

This is in line with history of industrialization. Mass
production greatly increases supply and turns the prod-
uct into a commodity, which trades primarily on price
[35]. There is little opportunity for producers to add
value, and the advantage goes to the lowest cost produc-
ers. Again the situation resembles an information good
where there is no barrier to entry; according to Shapiro
and Varian “competition among sellers of commodity
information pushes prices to zero” [15]. The existence
of a scaleable attack on a particular asset turns it into
an economies of scale business.

4. SCALABLE VERSUS NON-SCALABLE
We now explore the question of how Klara and Carl

divide the attack opportunities between them. For the
same cost, C, Carl and Klara attack different numbers
of users. Thus, Klara reaches only a small subset of
Carl’s population. That is, when Cs(Ns) = Cn(Nn) =
C, Carl’s audience, Ns, exceeds Klara’s, Nn, by orders
of magnitude. Now, if she is is to match Carl’s rewards
Klara needs:

NnYnV n ≥ NsYsV s.

This implies the following inequality between the ratios
of their yields, reaches and extracted values:

Yn

Ys
≥ Ns

Nn

V s

V n

. (3)

So she requires:

log10

Yn

Ys
≥ log10

Ns

Nn
− log10

V n

V s

. (4)

This constraint is shown pictorially in Figure 2. This
shows the region where Klara beats Carl for several
different values of Ns/Nn. When Carl outreaches her
by Ns/Nn then Klara beats his return above and to
the right of the Yield-Value frontier shown in Figure
2. Since Ns � Nn, she has two directions she can ex-
plore to offset his advantage in numbers: she can try to

log10 Vn/Vs

lo
g 1

0
Y n
/Y

s

Ns/Nn=10
5

Ns/Nn=10
4

Ns/Nn=10
3

Ns/Nn=10
2

Figure 2: The profit frontier at which Klara’s
targeted attacks beat Carl’s scalable attacks.
When she is outreached Ns/Nn she needs the ra-
tio of her yield, Yn/Ys, and average extracted
values, V n/V s, to exceed Carl’s by at least the
amount shown. For example, if Ns/Nn = 104, if
she can achieve V n/V s = 103 then she beats Carl
so long as Yn/Ys > 10. Above and to the right
of the profit frontier she does better than Carl,
below it she does worse.

achieve yield that exceeds his, or target subsets of the
population where she can extract far greater value than
his average V s, or some combination of the two.

4.1 Competing on Yield Alone Makes No Sense
If she competes on yield alone Klara effectively com-

petes with Carl on price. That is, if she extracts the
same value per victim (i.e., V n = V s) then she must
have a lower cost per successfully attacked user. There
are a few circumstances where V n = V s. First, this
happens if the distribution of extractable value is uni-
form; i.e., all user’s yield equal value when successfully
attacked. Second, the distribution of extractable value
is unobservable; i.e., some users have higher value than
others, but there is no way of determining which. In
each of these cases Klara cannot hope for higher ex-
tractable value and must compete on yield alone.

When V n = V s Klara’s constraint (3) simplifies to:

Yn

Ys
≥ Ns

Nn
. (5)

Thus, to match Carl’s return, Klara’s yield must be
a factor Ns/Nn greater than Carl’s. She must exceed
his yield, by as large a factor as he exceeds her reach.
This may be possible, depending on Klara’s skill. In
part because of the competition discussed in Section 3.4,
yield on scalable attacks seems to be low in general. For
example, Kanich et al. [28], reported a yield of 3.8×10−6
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for infections from greeting card spam, and 8×10−8 for
pharma spam. Yields this low for Carl do hold open the
possibility that, while hard, Klara may be able to make
up with yield what she loses with reach (of course if Ys >
Nn/Ns then even perfect yield, Yn = 1, wouldn’t allow
Klara to match Carl). On the other hand, Jagatic et
al. [46] report 16% success with generic phishing emails
and a 72% success rate with targeted spear phishing
emails. The 4.5× improvement with personalization is
of little help to Klara if she has a 105 deficit in reach to
make up.

Recall, from Section 3.4, that (for those assets that
Carl attacks) V s decreases with time. Thus, when V n =
V s, both Carl and Klara see their returns decrease. This
is an effect of the competition that exists when an attack
is automated as Carl’s are. Since he does not have a
fixed cost per user, Carl can respond by increasing Ns

or launching increasing numbers of attacks. Since Klara
does have a per-user cost she cannot respond in this way.
Thus her cost per user is fixed, while the extractable
value per user is driven down by the commoditization
that Carl causes.

To summarize, competing on yield alone is the same
thing as competing on price for Klara. This is unpromis-
ing for a number of reasons. First, there is little evi-
dence that personalization can make up for the orders
of magnitude deficit she suffers in reach. Second, Carl
turns the assets he attacks into commodities, and drives
their prices down over time. Even if she competes suc-
cessfully her situation gets worse with time. Her values
decline, while her costs are constant. Finally, history
suggests that competing with a mass-production com-
petitor requires mass-production. Just as corner stores
get driven out by chains, and chains get driven out by
larger chains, an economies of scale business is unkind
to participants who can’t scale. History also suggests
that the way out is to seek higher value niche oppor-
tunities. This has been the pattern in scores of indus-
tries: those who have a linear cost model must seek
the highest value part of the market and differentiate
their product from the commodity version. Thus Klara
must seek users with higher extractable value. Ideally
V (k)/V s is large, but at the very least, she must seek
users with higher than average value: V (k) > V s. Only
in this way can she avoid competing in a commodity
space.

4.2 Seeking Higher Value Targets
Let’s sort all users by extractable value V (k) giving

a decreasing function as shown in Figure 3. Since she
can reach only a fraction of the population, it is clear
that Klara’s return is best when she targets the users
with highest extractable wealth. At the very least, we
have seen that she needs users with higher than average
value.

V(k)

k

Nn
Ns

Vs

Vn

Figure 3: Instead of attacking the whole popu-
lation Klara concentrates on the most valuable
segment. She targets those with highest value,
leaving the remainder to Carl. The average
value of her targeted users is V n. For concen-
trated distributions the average is higher than
the median; so far fewer than half of users have
greater than average value.

4.2.1 Klara Needs Longtail Distributions
To avoid competing with Carl on cost, Klara needs to

target users with higher than average value: V (k) > V s.
This is easiest when extractable value is concentrated
among as few users as possible. To profit from this con-
centration she also requires that it be observable which
users have highest value. Thus she needs:

• Concentration of extractable value

• Visibility of extractable value.

If she can attack only Nn users, she wants V n =
1/Nn

∑Nn−1
k=0 V (k) to be maximum. That is, she needs

as big a fraction as possible of the total value to be con-
centrated among as few users as possible. This ensures
that V n/V s will be as big as possible (which assists with
the goal of being on the right side of the profit frontier
in Figure 2). A distribution of extractable value V (k)
that is uniform is the worst case for Klara: she can do no
better than attack indiscriminately. A distribution that
is unobservable is no better: there may be high value
users, but she can’t figure out which ones they are. Best
for her are skewed distributions with long tails such as
exponential, and power-law distributions such as Zipf,
Pareto etc. These distributions (an example is shown
in Figure 3) generally have considerable concentration:
some users have value much higher than others, which
is precisely what Klara needs. The greater the concen-
tration the higher V n/V s, and the better the chance
of lying beyond the profit frontier of Figure 2. In this
she is fortunate: power-law distributions are common in
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many naturally occurring phenomena. The distribution
of wealth [20], income, fame [14], size of human set-
tlements, word frequencies, web-site populatrities and
many other phenomena are well modeled by very con-
centrated power-law distributions.

4.2.2 In Longtail Distributions Most Users Have Be-
low Average Value

One might imagine that to find users with V (k) ≥ V s

Klara need merely target the top half of the population.
However, monotonic distributions with positive skew,
such as exponential, Zipf, Pareto etc, have the property
that the mean is greater than the median. For example,
the average wealth (or income or house price) is gener-
ally higher than the median, since a few very large sam-
ples pull the average upward. This means that far fewer
than half the people have the average wealth. Thus,
if value is concentrated (as Klara requires) fewer than
50% of users have V (k) ≥ V s. The more concentrated
the distribution the greater the difference between the
mean and the median, and the fewer people who exceed
the average.

For many naturally occurring power-law distributions
the concentration is dramatic. Using the US wealth
distribution example [20]: only 1.8% of people exceed
the average wealth. In this instance more than 98% of
people have below average value V (k) < V s. Attack-
ing these people would hurt rather than help Klara’s
returns. In a study of literary fame Martindale [14]
discovered that half of the scholarly attention was de-
voted to a mere 2% of the English poets considered. In
a study of scientific productivity Price [18] suggested
that in a discipline with N scientists half of the papers
are produced by

√
N of the scientists (and thus con-

centration increases with the size of the discipline). In
each of these cases a very few percent at the top ac-
count for half of the value. Now, to satisfy (4), and
beat Carl, Klara needs V n � V s. It certainly doesn’t
help to include in her target population users for whom
V (k) < V s. So the number of users who exceed average
value is a loose upper bound on the number that Klara
wishes to attack.

Table 2 shows the number of users with above average
value for a number of distributions. They do make clear
that in the concentrated distributions only very small
fractions of the population have greater than average
value. Thus, the vast majority of the population is not
of interest to Klara. For example, if V (k) follows the
same distribution as fame then the least valuable 98%
of the population is worthless to her: attacking them
merely reduces her return.

One might imagine that the fact that Klara reaches
orders of magnitude fewer users than Carl establishes
than most users experience no targeted attacks. Indeed,
if she had the field to herself, Klara should attack only

Distribution V (k) > V s

Wealth US [20] 1.8%
Fame [14] 2.0%

Table 2: Percent of users with above average
value for various distributions. This is a loose
upper bound on the fraction of users that Klara
targets. Attacking those with below average
value reduces her return.

the top Ns/Ns fraction of the population. When Klara
is outreached by 104 this suggests that Klara focusses
on the top 0.01% of the user population. However, this
is only the case when a single scalable and a single non-
scalable attacker make equal investments. When there
are many different targeted attackers the attacks may
spread to more and more of the population. However,
no matter how many targeted attackers there are, no
matter what the investment in non-scalable attacks, in
no case does attacking those with below average value
make sense. Thus, when extractable value is concen-
trated, most users are not profitable targets for non-
scalable attacks.

4.3 What Assets Does Klara Target?
The best strategy for Klara involves going after re-

sources where the distribution of value is both con-
centrated and observable. This is far from a simple.
Extractable value is not necessarily related to actual
wealth: a user who has net worth of $1 million doesn’t
necessarily have extractable value 100× greater than
one with $10k. It’s unclear, for example, that Klara
would extract much if she set about attacking Bill Gates
or Warren Buffet.

Which types of assets offer the visible value concen-
tration that Klara requires? First, an example of an
asset that is probably bad for Klara is attacking PC’s
to enlist in a botnet. If we set aside the question of any
credentials on a machine, computers probably have too
close to uniform value when enlisted in a botnet. That
is, while there will be variation in value (e.g., some com-
puters are faster, with higher bandwidth and good IP
reputation etc) it is unlikely that a small segment with
higher than average value can be identified. Taking
the credentials into account alters the picture: a PC
that is used frequently for online banking might have
value much greater than one that is not, as the creden-
tials add value. But it is not observable to an attacker
which PC’s contain credentials until after an attack has
succeeded. So the observable part of the value appears
close to uniform, while the concentrated part is unob-
servable.

Second, email and social networking accounts may be
very good targets for Klara. The average email account
has little extractable value, i.e., V s ≈ 0. For example,
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a hotmail account might be used to send spam and har-
vest contacts, but only in rare cases will it yield large
value. However when it belongs to someone famous an
email account is worth a great deal, i.e., V (k) → ∞.
Sarah Palin’s Yahoo! email account clearly had value
many times greater than the average. Equally, the email
records of the University of East Anglia climate scien-
tists had great value to climate change skeptics who
wished to discredit their findings. A similar factor was
probably at work when security researcher Dan Kamin-
sky’s email and server data were compromised shortly
before the Blackhat conference in 2009. Famous people
are ideal targets, since fame is both very concentrated
and very observable. Further, value extraction is not a
problem. Leaking Palin’s emails was the sought-after
prize, so no error-prone monetization strategy was re-
quired. These are precisely the circumstances that favor
Klara: very visible concentration of value. A further
advantage, is that when V s ≈ 0 she faces very little
competition from Carl.

Third, what of bank credentials? Since phishing is
one of Carl’s favorite exploits there may be little point
for Klara in seeking bank credentials indiscriminately.
Carl is already achieving a high enough yield with a
scalable attack. In fact, there have been numerous ac-
counts that Carl harvests more accounts than can be
successfully drained: bank credentials are offered for
fractions of a penny on the dollar [3, 40, 25]. There is
little point using a non-scalable attack and dedicated
effort per-user to steal credentials, when there’s already
a surfeit of them with asking price $2 on the under-
ground economy [3]. However, concentration of wealth
creates favorable conditions for Klara if she can iden-
tify cases where extractable value is highest. Krebs [1]
has reported a number of high value attacks on small
businesses. Small businesses are an excellent avenue for
Klara. Checking accounts with far larger amounts than
consumers would possess but with relatively weak pro-
tections may produce the happy combination of Yn/Ys

and V n/V s that lies above the profit frontier of Figure
2.

There are cases where value may be concentrated,
but is unobservable. This is often the case if the higher
value of an asset is related to bad security practices. For
example, some users have the same password at hot-
mail as at their bank. The passwords of these hotmail
users are far more valuable than the average. However,
the higher value appears to be unobservable: there’s no
simple way to identify which users follow this practice.
Equally, computers that are used for online banking, or
that have lots of stored credentials have higher value,
but this is not observable.

Finally, a special case of particular importance is when
Klara values the resources of some users much higher
than any other attacker would. This is the case when

she knows her targets. Control of the email account
of a randomly chosen internet user, Alice, is of almost
no value to a randomly chosen attacker. However, to
those who know and are close to Alice it may have great
value. A suspicious husband, jealous ex-boyfriend, cu-
rious sister or ill-intentioned roommate might value ac-
cess to her email a great deal. For an attacker who cares
greatly about Alice’s resources and very little about
anyone else’s: V (Alice)/V s →∞. In this case the con-
centration of value is almost infinite and visibility is
perfect; so, it is worthwhile attacking no matter what
the effort. Closeness increases the value, proximity and
access improve the yield.

4.4 Scalable Recruitment for non-scalable At-
tacks

Some attacks have an an scalable recruitment phase
and then non-scalable follow-up. The Nigerian 419 scam
recruits prospects using a spam campaign; those who
respond receive individual attention. Mule recruitment
also follows this pattern: an advertising campaign for
a “work at home” opportunity, is followed by individ-
ual attention for those who respond. The attacker casts
as wide a net as possible in the scalable phase before
following up with the expensive linear-cost phase. One
way of viewing these attacks is that those who are sus-
ceptible to Nigerian scams or mule schemes have higher,
but unobservable, extractable value. A scalable attack
from Carl serves merely to reveal those who are worth
targeting. Klara follows up with a non-scalable attack
on the newly-revealed high value targets.

4.5 On the Internet Nobody Knows You’re Not
a Dog

The resolution of the paradox we posed in the intro-
duction appears very simple. To avoid competing with
Carl on price, Klara needs users with above average ex-
tractable value. She also needs value to be concentrated
among as few users as possible. For the distributions
that give the kind of concentration that she needs very
few users have above average value. For the power-law,
longtail and 80-20 type distributions that model many
natural phenomena fewer than 1% of users will have
above average value. Thus 99% of users are not tar-
geted by Klara; attacking them would hurt rather than
help her overall return.

Thus, the reason users escape disaster, even when
they flout security advice, is that the vast majority of
the online population is attacked constantly by Carl,
but never targeted by Klara. Their bank accounts may
be hack-able with a few hours of effort. But Carl won’t
spend the time, since it violates his cost model. Klara
won’t spend the time, unless she knows that Alice’s ac-
count has extractable value higher than the average.

For example, consider the case where the backup au-
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thentication questions to Alice’s bank account can be
determined with one hour of effort from publicly avail-
able information (e.g., her facebook page etc). Further
suppose that the account has $200 extractable value.
We might regard this an opportunity to make $200 for
an hour’s work. But to do so ignores the survivor para-
dox. Klara must know that the effort yields this return
for this effort. If Klara succeeds only one time in a hun-
dred with this approach her average return drops to $2
an hour, if one time in a thousand it drops to $0.2.
Thus, the fact that the profitability of the target (i.e.,
$200 for an hour’s work), is obscure to Klara, saves
Alice. Alice doesn’t get security from this obscurity,
but the fact that the cost of removing the obscurity
is greater than the expected return, helps her escape
harm. In this case Alice’s avoidance of harm is deter-
mined not primarily by her security measures, but by
the relative worthlessness of the average facebook page,
and the fact that her higher value is unobservable. On
the Internet nobody knows you’re not a dog.

4.6 Allocating Resources: Most Users can Ig-
nore Most Attacks

This analysis also suggests a resource allocation strat-
egy for Alice. In common with Bart et al.[7] and Boehme
and Moore [39] our conclusions suggest that under in-
vestment in security can be rational. Our analysis sug-
gests that most people will not experience any of the
non-scalable attacks that involve per-user effort. If the
distributions of value are as concentrated as those of
wealth and fame then fewer than 2% of users will ever
see such attacks. If the distributions are not concen-
trated then it is almost impossible for Klara to make
up for the orders of magnitude greater reach that Carl
enjoys.

Thus, all users should protect against scalable attacks
first. Compromise is almost certain if Alice fails to ad-
dress the scalable attacks that reach everyone. After
this, Alice’s strategy depends on which, if any, of her
assets are valuable enough and visible enough to place
her in the top few percent of available targets. Only a
small fraction of users can expect to see high cost at-
tacks. At one extreme attacks that involve light [34],
sound [29] or electromagnetic [31] emanations proba-
bly affect a minuscule number of users, and can safely
be ignored by most. Less extreme are attacks that in-
volve passwords that are written down or re-used, or
answers to backup authentication questions that can be
determined from public information. These attacks are
largely non-scalable. While each opens a security vul-
nerability of some form, the vulnerability is unlikely to
be exploited unless Alice offers high extractable value
that is visible to an attacker. Even using her dog’s
name as password, while hardly advisable, increases risk
only from an attacker who is already targeting Alice. It

makes sense that Alice not spend more on defense than
an asset is worth. However, our analysis suggests that
in addition she can neglect defending against attacks
where the cost is greater than the expected value (to
the attacker) of the asset.

While new attacks are discovered regularly, new scal-
able attack vectors are comparatively rare. Phishing
persists even though it is a relatively old attack and
many users must be familiar with it. In spite of its age
spam is still one of the most common methods for de-
livery of malware. The very special cost structure of
scalable attacks guarantee that most new attacks are
non-scalable.

5. RELATED WORK
The question of tradeoffs in security is not a new one.

Numerous authors have pointed out that, even though
security is often looked at as binary, it cannot escape
the budgeting, tradeoffs and compromises that are in-
evitable in the real world. The scalable nature of many
web attacks has been noted by many authors, and in-
deed this has often been invoked as a possible source of
weakness. Dwork and Naor [12] first suggest address-
ing spam (and other resource-abuse attacks) by forcing
a linear dependence between use of the resource and
cost. The importance of the difference between linear
and sub-linear costs for an attacker has been recognized
by others who have attempted to prove or disprove the
feasibility of this approach [9, 17].

There have been numerous studies documenting the
enormous range of internet attacks. Sariou et al.[42]
perform an interesting measurement study of internet
attacks. Kanich et al.[28] document the result of observ-
ing a spamming botnet for a number of weeks. Their
findings provide interesting insight into the scale and
yield of scalable attacks. Prior to their work, we have
had surprisingly little data on the cost and scale of spam
campaigns. Stone et al.[11] also managed to take over a
botnet for a period of weeks. Phishing has been the fo-
cus of a few measurement studies. Florêncio and Herley
[21], using password entry data from toolbar users, es-
timate the annual phishing victimization rate at 0.4%.
Using the entirely independent method of counting cre-
dentials at compromised phishing servers Moore and
Clayton [45] estimate it at 0.34%.

Since 2002 the Symposium on Usable Privacy and Se-
curity has investigated tradeoffs between security and
usability, especially where end-users are concerned. Sev-
eral authors in the Usable Security literature have drawn
attention to the difficulty of the resource allocation sit-
uation that end-users find themselves in. Adams and
Sasse [8] demonstrate that users have difficulty with
simple security policies and have poor understanding of
the risks. Herley [23] argues that users are correct to ig-
nore most of the security advice they receive: faced with
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costs which exceed their budgets and benefits that are
not evidence-based they have little alternative but to
capitulate and hope for the best. Beautement et al.[5]
introduce the idea of a compliance budget for users, sug-
gesting that once the burden of security policies reaches
a certain point further complexity becomes intolerable.
The resource allocation we suggest in Section 4.6 can
be seen as a way of prioritizing when the budget is
fixed. Anderson [37] shows that incentives greatly in-
fluence security outcomes. Our work suggests that the
lack of clear return for non-scalable attacker can ex-
plain the failure to exploit many weak links. Since 2000
the Workshop on the Economics of Information Secu-
rity (WEIS) has focussed on incentives and economic
tradeoffs in security.

Jackson [13] suggests that the web attacker needs
three things: bad code, a means to get it running, and
an introduction to the user. It is often the last of these
three, the introduction to the user, that forms the scal-
able part of Carl’s effort. He spams as many email ad-
dresses as he can find or guess. He port-knocks entire
ranges of IP addresses. He tries to lure as many users
as possible to his vulnerability-exploiting web-site.

Barth et al.[7] examine the question of reactive se-
curity, and show that it can be effective in settings
where the defender does not myopically over-react to
the most recent attacks. While the theoretical frame-
work is rather different, our finding for Alice does echo
this result. We suggest that a reactive approach to
Carl’s attacks and proactive to those of Klara only when
necessary is the best use of defender effort.

Odlyzko [6] addresses the question of achieving secu-
rity with insecure systems, and also confront the para-
dox that “there simply have not been any big cyberse-
curity disasters, in spite of all the dire warnings.” His
observation that attacks thrive in cyberspace because
they are “less expensive, much more widespread, and
faster” is similar to our segmentation of scalable at-
tacks. Schneier [2] argues that “one of the important
things to consider in threat modeling is whether the
attacker is looking for any victim, or is specifically tar-
geting you.” This is one of the conclusions we draw:
everyone is attacked, but very few are targeted. Those
who are valuable enough to be targeted face a very dif-
ferent climate from the majority who are not.

Varian suggests that many systems are structured so
that overall security depends on the weakest link [22].
Gordon and Loeb [30] describe a deferred investment
approach to security. They suggest that, owing to the
defender’s uncertainty over which attacks are most cost
effective, it makes sense to “wait and see” before com-
mitting to investment decisions. Boehme and Moore
[39] examine an adaptive model of security investment,
where a defender invests most in the attack with the
least expected cost. Interestingly, in an iterative frame-

work, where there are multiple rounds, they find that
security under-investment can be rational until threats
are realized. Unlike much of the weakest-link work, our
analysis focusses on the attacker’s difficulty in selecting
profitable targets rather than the defender’s difficulty
in making investments. However, investment strategies
that echo the findings of Gordon and Loeb [30] and
Boehme and Moore [39] spring from our findings.

6. CONCLUSION
The important distinction between attacks that are

scalable and those that are not has long been recog-
nized. Dwork and Naor [12] suggest that forcing a lin-
ear cost dependence makes certain attacks unattractive.
The scalable attacker lives in a “costs nothing to try”
world. He attacks everyone indiscriminately, whether
they have high value or low, and achieves the average
value per user. By contrast, every attacked user is a real
expense to the non-scalable attacker. Since she reaches
orders of magnitude fewer users she must choose her
targets with care as low value users hurt her return.

If her returns are to match the scalable approach she
needs value to be both concentrated and observable.
Favorable circumstances for her are longtail and power
law distributions of value, where a small number of users
have very high value. This value must also be visi-
ble. However, in these distributions only a tiny fraction
of users have above average value. Thus, the circum-
stances that favor Klara are exactly those that ensure
that she attacks very few users. Extreme concentration
of value, such as is the case with wealth and fame, will
ensure that she attacks only a percent or two of users.

This helps explain the fact that worst-case outcomes
fail to materialize: the cost of non-scalable attacks is
such that very few users are targeted. It further sug-
gests a security investment strategy for Internet users:
all scaleable attacks should be addressed first. Con-
sider the case where Alice’s email account can be har-
vested for value $200 by a non-scalable attacker. Al-
ice’s avoidance of harm depends not so much on her
security investments, but on the relative worthlessness
of other email accounts, from which hers cannot be dis-
tinguished.
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[25] C. Herley and D. Florêncio. Nobody Sells Gold for
the Price of Silver: Dishonesty, Uncertainty and
the Underground Economy. WEIS 2009, London.

[26] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri
and L. F. Cranor. Crying Wolf: An Empirical
Study of SSL Warning Effectiveness. Usenix
Security, 2009.

[27] K. Mitnick and W.L. Simon. The Art of
Deception: Controlling the Human Element of
Security. Wiley, 2003.

[28] C. Kanich, C. Kreibich, K. Levchenko,
B. Enright, G. M. Voelker, V. Paxson, and
S. Savage. Spamalytics: An empirical analysis of
spam marketing conversion. In Proceedings of the
15th ACM Conference on Computer and
Communications Security, pages 3–14,
Alexandria, Virginia, USA, October 2008.

[29] L. Zhuang, F. Zhou, and J.D.Tygar. Keyboard
acoustic emanations revisited. CCS, 2005.

[30] L.A. Gordon and M.P. Loeb. The Economics of
Information Security Investment. ACM Trans. on
Information and System Security, 2002.

[31] M. G. Kuhn. Electromagnetic eavesdropping risks
of flat-panel displays. Proc. PETS, pages 88–107.

[32] M. Jakobsson and S. Myers. Phishing and
Countermeasures: Understanding the Increasing
Problem of Electronic Identity Theft.

[33] S. McClure, J. Scambray, and G. Kurtz. Hacking
Exposed. McAfee, fifth edition, 2005.

[34] Michael Backes, Markus Duermuth, and
Dominique Unruh. Compromising Reflections - or
- How to Read LCD Monitors Around the Corner.
IEEE Symposium on Security and Privacy, 2008.

[35] N.G. Mankiw. Principles of Economics. 4-th ed.,
2007.

[36] N. Provos and T. Holz. Virtual Honeypots.
Addison Wesley, 2007.

[37] R. Anderson. Why Information Security is Hard.
In Proc. ACSAC, 2001.

[38] R. Anderson. Security Engineering. In Second ed.,
2008.

[39] R. Boehme and T. Moore. The Iterated Weakest
Link: A Model of Adaptive Security Investment.
WEIS, 2009.

[40] R. Thomas and J. Martin. The Underground
Economy: Priceless. Usenix ;login:, 2006.

[41] S. Schechter, R. Dhamija, A. Ozment, I. Fischer.
The Emperor’s New Security Indicators: An
evaluation of website authentication and the effect
of role playing on usability studies. IEEE Security
& Privacy, 2007.

[42] S. Saroiu, S. D. Gribble, and H. M. Levy.

11



Measurement and Analysis of Spyware in a
University Environment. Proc. NSDI, 2004.

[43] S. E. Schechter, A. J. B. Brush, and S. Egelman.
It’s No Secret: Measuring the Security and
Reliability of Authentication via ”Secret”
Questions. In IEEE Symposium on Security and
Privacy, pages 375–390, 2009.

[44] E. Skoudis and L. Zeltser. Malware: Fighting
Malicious Code. Prentice Hall, 2004.

[45] T. Moore and R. Clayton. Examining the Impact
of Website Take-down on Phishing. Proc. APWG
eCrime Summit, 2007.

[46] T.N. Jagatic, N.A. Johnson, M. Jakobsson and F.
Menczer. Social Phishing. Commun. ACM, 2007.

12


