
Improving Meetings with
Microphone Array Algorithms

Ivan Tashev
Microsoft Research

Why microphone arrays?
They ensure better sound quality: less noises and
reverberation
Provide speaker position using sound source
localization algorithms
These technologies are used in the upper levels of
meeting recording and broadcasting systems:

Speaker position awareness for better UI
Assisting speaker clustering and segmentation
Better speech recognition for meeting annotation and
transcribing
Provide input data for machine learning enabled applications

Better audio quality and user
experience with MicArrays

Meeting attendees look awkward wearing microphones,
nobody likes to be tethered
Capturing sound from single point is difficult

A single microphone captures ambient noises and reverberation
Due to interference with reflected sound waves we can have some
frequencies enhanced and some completely suppressed

A microphone array is set of microphones positioned
closely

The signals are captured synchronously and processed together
Beamforming is ability to make the microphone array to
listen to given location, suppressing the signals coming
from other locations. Electronically steerable.
Another name for this type of processing is spatial filtering

Delay and sum beamformer
The most straightforward approach

As the sound from the desired direction reaches the
microphones with different delay just delay properly the
signals from the microphones and sum them
Supposedly the mismatched shifts (phases) for signals
coming from other directions will reduce their amplitude
Fast and easy to implement

Major problems
The shape of the beam is different for different frequencies
Almost no directivity in the lower part of the frequency band
Side lobes (one or more) appear in the upper part of the
frequency band

Used for comparison as a base line

Delay and sum beamformer
Delay and sum beamformer gain vs. frequency and angle

Time vs. Frequency domain

Time domain processing
More “natural”, used in most of the common
beamforming algorithms (GSC etc.)
No time spent for conversion
Requires long filters (200 – 2000 taps), very slow!

Frequency domain processing
CPU time for conversion
Long filters are vector multiplications, much
faster!
Many other types of audio signal processing are
faster as well

Generalized beamformer
All time domain algorithms for beamforming can be
converted to processing in frequency domain
Canonical form of the beamformer:

M – number of microphones
Xi(f) – spectrum of i-th channel
W(f,i) – weight coefficients matrix
Y(f) – output signal

Fast processing: M multiplications and M-1 additions
per frequency bin
For each weight matrix we have corresponding shape
of the beam - the array gain as function of
direction

∑
−

=
=

1

0
)(),()(

M

i
i fXifWfY

),,(fB θϕ

Calculation of the weights matrix

The goal of the calculation is for given
geometry and beam direction to find
the optimal weights matrix
For each frequency bin find weights to
minimize the total noise in the output
Constrains: equalized gain and zero
phase shift for signals coming from the
beam direction

Known approaches
Using multidimensional optimization

The multidimensional surface is multimodal, i.e.
have multiple extremes
Non-predictable number of iterations, i.e. slow
Multiple computations lead to losing precision

Using the approach above with different
optimization criterion:

Minimax, i.e. minimization of the max difference
Minimal beamwidth, etc.

In all cases the starting point of the
multidimensional optimization is critical

Array noise suppression

Noise = ambient + non-correlated + correlated
(jammers and reverberation)
Ambient noise suppression

Non-correlated noise:

Correlated (from given direction):

∫ ∫ ∫
+

−

2

0

2

0

2

2

),,()(log20

Sf

dfddfBfN
π

π

π
ϕθθϕ

∫

∫

2

0

2

0

),,()(

),,()(
log20

S

S

f

JJ

f

SS

dffBfJ

dffBfS

θϕ

θϕ

∫ ∑
−

=

2

0

1

0

2),(log20

Sf
M

i
dfifW

Microphone Array for meetings
Number of microphones: 8
Noise suppression, ambient: 12-16 dB
Sound source suppression (up to 4000 Hz):

At 900: better than 12 dB
At 1800: better than 15 dB

Beam width at -3 dB: 400

Work band: 80 – 7500 Hz.
Principle of work: points a capturing beam to
the speaker location

Microphone Array for meetings

MicArray gain vs. frequency and angle

Additional goodies
Linear processing
Beamforming doesn’t introduce non-linear distortions making the output signal

suitable not only for recording/broadcasting, but for speech recognition as
well

Integration with Acoustic Echo cancellation
Requirement for real-time communication purposes

Better noise suppression
The initial noise reduction from the beamformer allows using better noise

suppression algorithms after it without introducing significant non-linear
distortions and musical noises

Partial de-reverberation
The narrow beam suppresses reflected from the walls sound waves making the

sound more “dry” and better accepted from live listeners and speech
recognition engines, it makes the job of potential de-reverberation
processor easier

Beamshapes

525 Hz 1025 Hz

2025 Hz 4025 Hz

The beam shape in 3D proves frequency independent beamforming

Sound source localization

Provides the direction to the sound source
In most of the cases works in real-time
Goes trough three phases:

Pre-processing:
Actual sound source localization

Provides a single SSL measurement (time, position,
weight)

Post-processing of the results:
Final result: position, confidence level

SSL pre-processing

Pre-processing
Packaging the audio signals in frames
Conversion to frequency domain
Noise suppression
Classification signal/pause
Rejection of non-signal frames

SSL pre-processing (example)

SSL measurements vs. time

0 5 10 15 20 25 30 35
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

A
m

pl
itu

de

One channel Signal

Actual SSL - known algorithms
Two step time delay estimates (TDOA) based

Calculate the delay for each microphone pair
Convert it to direction
Combine the delays from all pairs for the final estimation

One step time delay estimates (Yong Rui and Dinei
Florencio, MS Research)

Calculates the correlation function for each pair
For each hypothetical angle of arrival, accumulate corresponding
correlation strength from all pairs, and search for the best angle

Steered beam based algorithms
Calculate the energy of beams pointing to various directions
Find the maximum
Interpolate with neighbors for increased resolution

Others: ICA based, blind source separation, etc.
Most of them non real-time

Beamsteering SSL (example)

Energy vs. angle and time, single sound source

Major factors harming the
precision

Ambient noise
Smoothes the maximums
Hides low-level sound sources

Reverberations
Create additional peaks
Lift the noise floor
Suppress/enhance some frequencies

Reflections
Create distinct fake peaks with constant location

All above justify the post-processing phase

SSL with reflections and
reverberation – raw data

Speakers in conference room (SSL results histogram)

-200 -150 -100 -50 0 50 100 150 200
0

50

100

150

200

250

300

-200 -150 -100 -50 0 50 100 150 200
0

20

40

60

80

100

120

Speaker 1 at -8O: louder voice,
less reflections

Speaker 2 at 52O: quieter voice, strong
reflections from the white boards

SSL post-processing
The goals are:

To remove results from reflections and reverberation
To increase the SSL precision (standard deviation)
To track the sound source movement/change dynamics
Eventually to provide tracking of multiple sound sources

Approaches for post-processing of the SSL results
Statistical processing
Real-time clustering
Kalman filtering
Particle filtering

Provides the final result: time, position, confidence
level

Real-time clustering of SSL data

Put each new SSL measurement (time, direction,
weight) into a queue
Remove all measurements older than given life time
(~4 sec)
Place all measurements into a spatially spread 50%
overlapping buckets
Find the bucket with largest sum of weights
Weighted average the measurements in this bucket
Calculate the confidence level based on last time,
number of measurements, standard deviation

Post-processing results

3830.8766-5.1692-43Conf. Room

2712.4308-4.2070Conf. Room

2260.96993.465735Conf. Room

4050.75114.7209-29Office

3910.96871.61810Office

4071.3155-4.753938Office

2922.47885.6932-21Sound Room

3192.0871.87220Sound Room

3340.3857-1.605436Sound Room

#resultsStDev, degBias, degSpeaker, degConditions

Single speaker in various positions
Recording conditions:

Sound room (no noise and reverberation)
Office (high noise, shorter reverberation, reflections)
Conference room (less noise, longer reverberation, reflections)

All records done with
8 element circular
microphone array
for meetings recording

Post-processing results (2)
Two speakers in fixed positions
Recording conditions: conference room, speakers at -8 and 52 deg

Two persons SSL data

-200

-150

-100

-50

0

50

100

150

200

0 10 20 30 40 50 60 70 80 90

Time, s

A
ng

le
, d

eg

RawSSL
Post SSL

Post-processing results (3)
Two speakers in fixed positions
Recording conditions: conference room, speakers at -8 and 52 deg

Two persons SSL (detail)

-20

-10

0

10

20

30

40

50

60

70

80

90

57.5 58 58.5 59 59.5 60 60.5 61 61.5 62 62.5

Time, s

A
ng

le
, d

eg

RawSSL
PostSSL

Speaker switching
at second 59

Post-processing
delay: ~400 ms

Applications for MicArrays and
Sound Source Localization

Sound capturing during meetings
Provides direction to point the capturing beam
Assists the Virtual director for speaker view (real-time)

Meeting post-processing
Assists speaker clustering
Meeting annotation using rough ASR (requires good sound quality)
Meeting transcription with precise ASR

Recorded meetings viewing/browsing
Audio timeline: suppress some audio tracks, navigation by speaker
(based on the speaker clustering)
Good sound quality - better user experience
Good sound quality – search by phrases or keywords with ASR
SSL data assisted virtual director for speaker view (play-time)

Meetings browser (example)

Meetings browser (detail)

Audio timeline

