
HomeMaestro: Distributed monitoring and diagnosis of performance anomalies
in home networks

Thomas Karagiannis, Christos Gkantsidis, Peter Key
Microsoft Research, Cambridge, UK

Elias Athanasopoulos, Elias Raftopoulos
Foundation for Research and Technology, Hellas

October 2008
Technical Report

MSR-TR-2008-161

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

Abstract
Home networks are comprised of applications running
over multiple wired and wireless devices competing for
shared network resources. Despite all the devices oper-
ating in a single administrative domain in such networks,
applications operate independently, and users cannot ex-
press or enforce policies. By studying multiple house-
holds’ network performance at the packet-level correlated
with diaries capturing user experiences, we show that the
lack of cooperation across applications leads to observ-
able performance problems and associated user frustra-
tion.

We describe HomeMaestro, a cooperative host-based
system that monitors local and global application per-
formance, and automatically detects contention for net-
work resources. HomeMaestro is designed to manage
home and small networks and requires no modification to
routers, access points, applications, or protocols. At each
host, it transparently monitors per-flow and per-process
network usage statistics, such as throughput, RTT, and
loss rates. We propose novel algorithms for detecting
performance anomalies and application contention using
time-series and cross-correlation analysis.

Through the collected household traces, we show that
HomeMaestro effectively identifies roughly 95% of the
user reported problems. In addition, we evaluate the pro-
cessing and communication overhead of HomeMaestro,
which typically are below 5% CPU utilization and 10kbps
signalling traffic per host respectively.

1 Introduction
Home networks connected to the Internet through wired
or wireless broadband are ubiquitous. These networks
are typically small in scale, with heterogeneous wired and
wireless devices supporting a rich variety of applications
with different characteristics and requirements such as
email, web, peer-to-peer file sharing, voice-over-IP, live
video streaming, on-line gaming, media sharing, and tele-
working applications. While all devices operate in a sin-
gle administrative domain, home networks lack the net-
work administrative entity who would clearly proscribe
policies. Indeed, each member of the household not only
has different requirements and performance expectations

from the network, but also conflicting priorities. Thus,
prioritizing applications or traffic may be highly subjec-
tive, or context and user dependent. For example, a fa-
ther may believe that running remote desktop is the most
important application, while his teenage son may believe
that playing online games on his game-console is the most
important application.

In order to understand this tension in home networks
and identify potential problems and their root causes, we
performed a study of typical households. A company
experienced in user studies and focus groups selected
three representative families, not including IT profession-
als. For these three households we collected packet-level
traces for a period of a week per household, and asked
home users to maintain a diary containing information
about application usage and potential perceived issues as-
sociated with their home network. Post-processing of the
packet-level traces allows us to correlate user reported
problems with actual measurable events observed in the
traces. In all the diaries, it is clear that users often experi-
ence periods of great frustration.

Closer examination of the household traces revealed
that user reported events coincide with periods when
bandwidth resources were insufficient to support every
application. Each household was connected to the Internet
using commodity broadband ADSL which appeared to be
the bottleneck. Problems were also reported during peri-
ods were the in-home wireless was highly utilized. Mo-
tivated by the type and magnitude of these performance
problems we have designed HomeMaestro, a distributed
system that allows real-time monitoring and identification
of application problems in home networks.

HomeMaestro is a host-based system that enables the
instrumentation and monitoring of home networks at the
application-level granularity. In particular, HomeMae-
stro monitors the performance of all network applications
at every host, and employs time-series analysis to infer
performance problems. Performance is defined using a
variety of metrics such as rate or latency. Tracking and
sharing this information across hosts allows HomeMae-
stro to detect whether network problems are related to
competing traffic flows across applications or hosts.

Our system is based on the idea that shared perfor-
mance problems are observable at each host competing
for network resources. HomeMaestro uses time-series
analysis to track short- and long-term application per-

1

formance; significant deviations between these two met-
rics flag performance anomalies. HomeMaestro hosts
exchange information about the performance anomalies,
and cross-correlate them in order to identify competing
flows. We found experimentally that competing flows di-
rectly influence each other’s performance, with the time-
series of the flow rate exhibiting significant negative cor-
relation. HomeMaestro exploits this negative correlation
to identify cases of competition. The proposed algorithms
are simple enough to allow for real-time identification
with minimal CPU and network overhead.

Our design is well-suited for and exploits the proper-
ties of home networks, where a small number of trusted
devices incur the majority of network usage. Home-
Maestro operates at the host and can be deployed with-
out modifying networking protocols, and applications, or
networking equipment, such as routers or access point.
Hosts are best-placed to identify application performance
problems; they have easy access to extensive information
about network usage, and to important context such as
user ids, process names, and network connections. Mod-
ern hosts have also significant processing power available,
and can both track performance and implement complex
traffic analysis algorithms.

We evaluate HomeMaestro by replaying the packet-
level traces collected at the household studies, and show
that HomeMaestro was able to identify approximately
95% of user-reported problems. Additionally, HomeMae-
stro identified cases of problems that were not reported
in the diaries, because they were difficult to spot by non-
expert users (for example, competition between peer-to-
peer applications and file transfers). We further evaluate
the system performance of HomeMaestro using micro-
bench marks, and show that it is able to successfully iden-
tify problems with low operating overhead even with a
large number active flows per host (e.g., typically 5%-
10% CPU, and a few Kbps signaling traffic for 50 con-
current high-volume flows).

Our contributions can be summarized as follows:

• We present a user study of three typical households in
§ 2. We collected packet-level traces of all intra- and inter-
network traffic and also household diaries reflecting the
users perceived experiences.

• We identify performance issues and detect whether
these are caused by competing traffic flows using novel

time-series and statistical analysis techniques (§ 3).

• We present the design of HomeMaestro, a distributed
system for the monitoring and instrumentation of home
networks in § 4. We evaluate its performance using the
traces collected and with synthetic workloads.

2 Users and the home network
In order to understand the problems and characteristics
of home networks, we studied three typical households.
In contrast to other types of networks such as Enterprise
networks or WANs, studies of real home networks have
been limited (e.g., Neti@home [12]). Besides capturing
networking data, our study further explores user experi-
ences and perceptions of home networks. In this section,
we provide a detailed description of this study and our
findings.

Current home networks are typically small, with many
having two or three devices linked together. At the other
end of the spectrum, in an informal survey of tech-savvy
users, we discovered one home network consisting of up-
wards of thirty connected devices! In view of this vari-
ety of home networking environments, we worked with
sociology researchers and a company that specializes in
user surveys and focus group studies in order to iden-
tify typical samples of home networks. The company se-
lected three households in the greater London area, none
of which included an IT professional. The first two con-
sisted of four professionals living together, while the third
comprised a family of four. All three homes were con-
nected through ADSL broadband to the Internet, and all
featured a single subnet, and a wireless AP which pro-
vided access to the majority of the devices in the homes
(laptops and desktops). In two of the homes, there were
also wired devices, such as game consoles and media cen-
ters.

The study was performed as follows. We instrumented
each of the households to capture all traffic within the net-
work, wireless or wireline. Specifically, our wired moni-
tors captured all intra- and inter-home wired traffic. Addi-
tionally, we placed two wireless monitors physically close
to the home AP in order to capture packets sourced at
or destined for the AP. We believe that this configuration
captured the vast majority of wireless packets in the net-
work. We possibly missed some packets due to interfer-

2

Table 1: Application usage according to the user diaries

Home 1 Home 2 Home 3
Application Instances Problems (%) Instances Problems (%) Instances Problems (%)
Streaming 63 18 (75) 37 18 (66.6) 32 8 (50)
Web 166 3 (12.5) 72 7 (26) 67 6 (27.5)
File Transfer 23 1 (4.2) 9 0 (0) 4 2 (12.5)
Email 55 2 (8.3) 35 2 (7.4) 25 0 (0)
P2P 1 0 (75) 12 0 (0) 3 0 (0)

Table 2: General workload characteristics as observed in the packet-level traces
Hosts Total flows Flows/day Total Bytes Rate (Kbps) Max Rate (Mbps) Daily Activity(hours)

Home 1

1 3,403 K 680 K 5,261 M 218.7 0.44 10.68
2 38 K 7 K 83 M 25.3 0.39 1.46
3 40 K 8 K 198 M 98.7 0.67 0.89
4 98 K 19 K 158 M 37.5 0.72 1.87
5 31 K 6 K 157 M 92.9 1.47 0.75

Home 2

1 177 K 35K 7,770 M 628.3 3.81 5.49
2 142 K 28K 2,878 M 338.9 2.52 3.77
3 183 K 36K 4,130 M 351.8 9.83 5.21
4 24 K 4K 237 M 160.0 0.62 0.65

Home 3
1 11 K 2.2 K 44 M 0.01 0.04 1.40
2 2 K 0.4 K 31 M 0.03 0.07 0.35
3 155 K 53 K 673 M 0.07 0.64 4.27

ence, e.g., packets transmitted by hosts but never received
by our monitors or the home AP due to wireless effects.
We captured the first 100 bytes of all packets crossing our
monitors.

At the same time, users were instructed to keep detailed
diaries of specific application usage throughout the study
period (a week per household). The users would further
comment on their experiences by reporting potential prob-
lems they faced, and also their assumed cause of the prob-
lem. This was crucial to our study since our goal was to
understand and correlate user perception with measurable
networking events.

Tables 1 and 2 present general workload characteris-
tics of the traces and the diaries collected at the three
households. Table 1 displays application-related informa-
tion from the diaries coupled with the number of reported
problems for each case. Table 2 highlights network-
related statistics per host from the packet-level traces.
Two characteristics stand out. First, application usage di-
versity is evident across hosts. For example, in home 1,
one heavy user accounted for the majority of the traffic
through peer-to-peer, streaming and gaming applications,
while the rest of the users mostly browsed the web. On

the contrary, traffic and daily activity was balanced across
three users in home 2. Second, a variety of streaming
applications (Internet radio, video-on-demand, YouTube,
etc.) were extremely popular in all homes. In some cases,
content was also streamed between two home devices.
This is consistent with trends showing growing demand
for media networking within the home to make the con-
tent accessible from a variety of devices. These streaming
applications seem to suffer the most according to user re-
ported problems (Table 1). Such latency sensitive appli-
cations suffer even with moderate load, since packet spac-
ing affects their performance, producing effects which are
easily observed by the user. Finally, home 3 users ob-
served only a small number of problems, probably due to
the limited amount of traffic in the network compared to
homes 1 and 2. Traffic in home 3 mostly involved a desk-
top that was operated by one home user.

Fig. 1 further highlights how reported problems corre-
lated with network usage. The three figures show the ag-
gregate traffic, as well as the “in-home” traffic, i.e., traffic
where both the source and destination IPs were part of the
home network. We further annotated the figure with labels
to denote the times when users reported problems, and

3

Figure 1: Aggregate traffic from two households. The labels highlight sample times that problems were reported across users
(subscripts) and applications (W:WEB, S:Streaming, G:Games, M:Media applications, e.g., image upload/searching, E:email).
The occasional dark lines denote “in-home” traffic between two local devices. In all cases, reported problems correlated with
increased traffic volumes.

the type of problem (W:WEB, S:Streaming, G:Games,
M:Media applications, e.g., media browsing or upload-
ing, E:email). For visualization purposes, only a sample
of the reported problems is displayed. Fig. 1 clearly shows
that user reported problems correlate with the traffic vol-
ume observed in the packet-level traces. Evenings and
weekends were particularly problematic, mostly because
all users were active simultaneously highlighting compe-
tition across hosts for network resources. This was also
evident from the diaries with several users reporting prob-
lems at the same time instances, or commenting that “In-
ternet is in general slow at weekends”.

We expected that users face network-related problems;
yet, their number highlights significantly poor user expe-
rience. To further relate these issues to networking events,
we examined properties such as TCP retransmissions and
flow RTTs. Specifically, we examined how the number
of TCP retransmissions and the value of RTT varies be-
tween “good” and “bad” periods (i.e, periods when no
complaints were reported, versus periods during which
problems were reported in the diaries). For the RTT com-
parison to be meaningful, we aggregated remote IPs (i.e.,
non-home IPs observed in the trace) in /16 prefixes. This
aggregation was essential in order to observe enough flow
samples for a particular destination IP space across both
periods. We then compared the mean RTT per prefix for
the prefixes that presented at least 20 samples both in the
“good” and the “bad” periods. Since we were only in-

Figure 2: CDFs of TCP retransmissions per minute (left) and
RTTs per /16 (right) for good and bad periods according to the
user diaries. During periods with reported problems, the number
of TCP retransmissions and the RTTs increase significantly.

terested in a rough RTT estimate, RTTs were estimated
through the SYN-SYN/ACK packets of the TCP flows.

Fig. 2 presents the Cumulative Distribution Function
(CDF) for the number of TCP retransmissions per minute
and RTTs per prefix comparing the two periods. Clearly,
problematic periods in the diaries correlate also with
problematic periods in the network, with TCP retransmis-
sions increasing by more than an order of magnitude (es-
pecially for the small values of the x axis). Large num-
ber of TCP-retransmissions are also observed for some
periods where no issues were reported in the diaries.

4

We found that these cases relate mostly to high-volume
streaming applications at times where only one user was
active, or large local file transfers where performance is-
sues may be harder for a non-expert user to spot. Simi-
larly, the RTTs significantly increase for problematic pe-
riods, especially for values larger than 200msec.

The vast majority of the traffic for homes 2 and 3 was
downstream (86% and 99% respectively), while all traf-
fic in home 2 involved at least one host connected over
wireless. Traffic was more balanced in home 1 due to the
continuous use of peer-to-peer applications with 50% of
the traffic being downstream, 48% upstream and 2% in-
home traffic. As shown in previous studies, the home is
not a clean environment for WiFi [10], with potential in-
terference from other neighborhood WiFi APs as well as
other devices operating in the unlicensed band. This im-
plies that the wireless medium is an additional potential
bottleneck with variable capacity, and applications com-
pete for bandwidth. Indeed, examination of wireless char-
acteristics showed high MAC-level retransmissions when
multiple hosts were active, implying contention for wire-
less access.

In-home network traffic is limited but when present cre-
ates significant spikes (occasional dark lines in Fig. 1).
Indeed, a number of problems were always reported dur-
ing local file transfers (typically from a wired to a wire-
less host). We believe that this effect will be further pro-
nounced in the future as communication and networking
between home devices increases.

Our study highlights that user awareness is substan-
tially limited. Assumed causes for the problems were typ-
ically “No idea” in the diaries. Similarly, OS events such
as “blue-screens” were attributed to networking. This em-
phasizes that management solutions have to be simple, in-
tuitive, and to some extent automatic.

The results presented over the previous paragraphs em-
phasize that application performance is a significant, daily
problem in today’s home networks related to a large ex-
tent to applications competing for bandwidth. We believe
that despite the small sample of three homes, our find-
ings are representative for a large fraction of today’s home
networks. We conjecture that even with increasing ac-
cess speeds, performance issues will persist in view of
the growing number of networked devices in the home,
and the proliferation of bandwidth-intensive applications.
Additionally, as home networks lack a well-defined man-

agement structure, prioritizing applications or traffic may
be highly subjective or time, context, and user dependent.
Dynamic policies imply that the effectiveness of central-
ized approaches, such as applying QoS (Quality of Ser-
vice) at home routers is questionable, since the necessary
context is not available in the network.

Motivated by these observations, we believe that home
management solutions should be host-centric with user-
centric information presentation and control based on
three key ingredients: (i) host monitoring of applications
to detect performance problems, (ii) traffic information
dissemination by host’s sharing information, (iii) semi-
automatic host traffic control, with a user interface de-
sign displaying information to enable users decide prior-
ities, which are then enforced automatically by the host.
The limited size and scope of home networks makes such
an approach feasible. In the following sections, we de-
scribe HomeMaestro which targets the first two of the
three points mentioned above. We leave traffic control
for future work.

3 Detecting competing flows
The overarching goal of HomeMaestro is the identifica-
tion of competing applications, which translates to traffic
flows competing for bandwidth in the home network. We
define a flow as a directed data transfer; a TCP connection
has two associated flows, one for each direction.

In this section, we describe in detail the process of de-
tecting the set of competing flows over time. We motivate
our algorithms and illustrate their functionality using ex-
amples of real experiments performed in our testbed de-
scribed in Fig. 3. We concretely describe the HomeMae-
stro system design and the implementation details in the
following section (§ 4).

The detection process tackles three main challenges:

1. Detect problematic flows. Since applications do not ex-
plicitly signal the OS when they experience performance
issues, our detection mechanism needs to identify such
applications and the corresponding flows. We call these
candidate flows, implying that these flows could be fac-
ing performance problems. The set of candidate flows is
a small subset of all active local host flows.

2. Identify “correlated” flows. Our detector attempts to
detect flows that affect each other’s performance.

5

Figure 3: Experimental setup within a home network. Two
HomeMaestro enabled laptops connected to the access point
with wireless. The nominal capacity of the Internet ADSL con-
nection is 3Mbps downstream and 800kbps upstream.

3. Determine competing flows locally or across hosts by
sampling the correlated flows.

In the following subsections, we describe in detail these
three processes.

3.1 Detecting candidate flows
HomeMaestro first detects local host flows that either ex-
perience or cause performance problems.

Candidate flows are identified by detecting Change-
Points (CPs), defined as points that reflect abrupt and
significant performance changes (anomalies), with per-
formance measured by some metric. We define three
CP types: DOWN, UP, and NEW, to signal the direction
in performance change (down or up), or the arrival of a
new flow. HomeMaestro considers as “active,” flows that
sustain a rate of at least 1kBps. CPs are identified using
time-series analysis applied to application specific met-
rics, such as bandwidth and latency. In Section 3.2, we
show that the instantaneous rate, where the observed rate
is measured over a predefined time interval typically set
to 1sec, is a particularly attractive metric. At this time
scale we can separate short-term bursts that reflect tran-
sient changes in network performance from changes in
application performance.

The CP detection algorithm as implemented in Home-
Maestro is described in Fig. 4. The essence of our al-
gorithm is to detect CPs that capture the divergence be-
tween long-term and short-term application performance
(basePerf and currentPerf in Fig. 4). Intuitively, diver-
gence should reflect changing network conditions.

We compute these two performance metrics by using
low-pass filters to filter out high frequency variation. This

Change Point Detector(flow, value)
input : flow to search for change points
input : the latest performance value for flow
output : TRUE if CP detected, else FALSE
constant : αf = 0.2 // fast moving average

constant : αs = 0.005 // slow moving average
constant : δ = 0.1 // relative perf change
constant : window = 5
flow related variables (input and output)

basePerf : long term performance of flow
curPerf : short term performance of flow
timeseries : time series of measurements for flow
anomalies : # consecutive anomalies for flow

begin
timeseries.Add(value);
N← # of samples in timeseries;
if N ≤ window then

basePerf← basePerf + value / window;
curPerf← basePerf;
return FALSE;

else
curPerf← αf · value + (1−αf)·curPerf;
Threshold← δ ·basePerf;
if Abs(curPerf − basePerf) > Threshold then
anomalies ++;
else

basePerf← αs · value + (1-αs)·basePerf;
anomalies← 0;

if anomalies ==window then
anomalies← 0;
return TRUE;

else
return FALSE;

end

Figure 4: Detection of Change Points.

is effectively performed through exponential moving av-
erages on the instantaneous measurements. The two met-
rics differ in the weights used to perform the averaging
(αf and αs in Fig. 4, with αs << αf). Divergence is
detected when the absolute difference of the two metrics
is above a threshold relative to the long-term performance
for at least a window of consecutive samples. The thresh-
old is set at 0.1 · basedPerf , and represents the smallest
acceptable magnitude of change to be detected. This value
provided satisfactory performance in our experiments.

If there is a level shift in the underlying process of
magnitude larger than the threshold, we trigger a CP.

6

Figure 5: CP detection in a real experiment where the detector
is applied to the incoming rate. CPs are signaled for as long
as the rate is far from the base performance. The vertical lines
highlighting the CPs are purely for visualization.

The threshold detector will trigger after time window +
O(1

| log(1−αf)|), where the second term is the reaction
time (under the assumption that αs << αf). The win-
dow suppresses short-term performance variations and
very transient bursts. Moreover, we generate at most one
CP per flow per window time intervals and hence limit the
network overhead, caused when CPs are communicated to
all other hosts (§ 3.3). The window is also used to initial-
ize the detector by averaging measurements over the first
samples of the flow (N ≤ window case in Fig. 4).

Note that the base performance variable offers context
for a flow’s long-term performance and does not act as a
predictor for the flow’s real requirements. Therefore, un-
derestimating or overestimating the base performance is
not critical, since we reset this long-term average depend-
ing on how the CP is handled (§ 3.3).

Fig. 5 visually demonstrates the operation of our detec-
tor during one of our experiments at the testbed shown in
Fig. 3. The time-series of interest here is the incoming rate
in KBytes per second. Fig. 5 shows that the detector does
not signal events caused by short-term peaks in the first
few seconds, and that CPs are fired once every window
(here equal to 5 seconds), while the rate is significantly
different from the base performance.

Flows with associated CPs are marked as candidate
competing flows. However, the detector offers no clues
as to the cause of the change in performance, which could
be the result of changing network conditions or even just
reflecting normal application behavior. The following

section describes how HomeMaestro identifies changes
caused by competition for network resources.

3.2 Identifying correlated flows
HomeMaestro detects competition for resources by exam-
ining the cross-correlation of performance metrics across
flows and across hosts. Intuitively, all flows competing
for a local resource, such as the access link or wireless,
should all observe performance problems during periods
of high contention. Problems that only affect individual
flows likely reflect changing application behavior or WAN
conditions.

Competition is detected in HomeMaestro by identi-
fying negative correlations across specific flow metrics.
These negative correlations will be especially strong for
two TCP flows sharing a bottleneck link before TCP sta-
bilizes, e.g., when the first flow is already active and a
second flow starts.

More specifically, consider the case of two TCP flows
sharing a bottleneck link of nominal capacity C, with
background traffic b, and rates per measurement interval
T of X1(t), X2(t) and Xb(t). If the bottleneck buffer size
is large, or if both TCP flows are limited by their receive
window, then no loss occurs and X1(t) and X2(t) will be
positively correlated. Congestion windows will increase
up to receive window sizes, RTTs will increase, hence
be positively correlated (caused by queuing delay), and
achieved rates Xi converge to constant values (see [8] for
steady state analysis).

Once losses occur, provided the bottleneck buffer does
not empty, we have X1(t)+X2(t)+Xb(t) = C (in expec-
tation). If the number of losses per measurement period
is small, and we assume Xb(t) is approximately constant
(compared to X1, X2) then

Cor(X1, X2) = −1 , (1)

where Cor is the correlation coefficient. This will hold
for small buffers. For large buffers, the loss processes
will become positively correlated over the order of time
T when TCP stabilizes; in this regime, the conditional
probability of a loss from stream 1 given loss from stream
2 is high, hence X1 and X2 show positive correlation. It
is possible to make these arguments rigorous using differ-
ential equations for TCP rate evolution [6] with a queu-
ing model for the loss process. However, even for the

7

Figure 6: Downstream rate of two competing TCP flows.

large-buffer case, negative correlations will occur should
the conditional probability of loss be small, a case which
often occurs in practice. Similarly, at the early stages of
the lifetimes of the flows, before TCP stabilizes, X1(t)
and X2(t) will be negatively correlated. This is especially
true if the two flows do not start at the same exact mo-
ment in time, as it is the case in practice (e.g., the active
flow will see its rate decreasing with time as the new flow
picks up bandwidth). This is indeed the case that Home-
Maestro exploits for the large buffer case.

By way of example, Fig. 6 exactly highlights this sce-
nario, by a sample of two TCP flows competing for the
access capacity during two concurrent downloads in the
testbed of Fig. 3. Fig. 6 depicts the upstream rate of the
two flows for roughly two minutes; one flow started a few
seconds before the other. As expected, not only does the
rate of one flow directly affect the other, but also their be-
havior appears to exhibit strong negative correlation, es-
pecially during the early seconds of the transfer.

To confirm the intuitive observation of this example, we
performed the following experiment: Once every hour for
two days, the laptops in our testbed (Fig. 3) initiated Web
downloads from two different locations simultaneously,
resulting in 48 different sessions (scenario 1). We also
experimented with upstream flows by configuring Web
servers on both laptops and repeating the same experiment
as above. In the latter case, clients outside the home net-
work would initiate Web downloads for files served by the
two hosts within our home network. We then artificially
limited the server capacity and repeated both experiments
(scenario 2). Our intention for scenario 2 was to emu-
late cases where the two flows would not compete for the
same resources, since each TCP flow would be restricted
by the server traffic cap.

During these experiments, we configured HomeMae-
stro to log four different metrics per second in the up-

stream case (rate, RTT, current congestion window, and
congestion avoidance counter1) in order to capture dif-
ferent properties of the connection. We also monitored
the packet interarrival times and rate for the downstream
scenarios. We then used several well-known correla-
tion algorithms to examine the cross-correlation between
the various time-series. Specifically, we tested the Pear-
son’s cross-correlation, Spearman’s rank correlation co-
efficient, Kendall’s tau coefficient, and Wilcoxon’s signed
rank test [4]. Overall, we observed that Spearman’s rho
coefficient produced the most robust set of results. The
coefficient operates on the ranks of the values in the time-
series (position of the value once the series is sorted), and
is defined as follows:

ρ = 1− 6
∑

d2
i

n(n2 − 1)

where n is the number of values, di is the difference be-
tween each corresponding rank, and ρ ∈ [−1, 1].

Fig. 7 presents the CDF for Spearman’s coefficient
across the four metrics, with respect to the 48 experi-
ments of the two upstream scenarios. The plot on the right
presents scenario 2, i.e., the case where TCP flows are rate
limited at the servers, and thus not competing for the local
resources. Since the TCP flows lasted for several minutes,
we applied a sliding window of 30 seconds, for which
the correlation was estimated using only data within the
window (effectively 30 values), and then averaged the re-
sults for each time-series. That is, if an experiment lasted
for 300 seconds, we would estimate 270 different coef-
ficients by sliding the 30-second window over the time-
series, and finally the end correlation result would be the
mean of these 270 values. Thus, the input distributions
for the CDFs in Fig. 7, correspond to 48 coefficients, each
of which reflects the mean that resulted from the previous
process.

We used this procedure for two reasons: Firstly, we
want to detect correlations as soon as possible by col-
lecting a small number of measurements. Secondly, we
wanted to see whether the two flows correlate at any point
in time, and not just at particular instances.

Fig. 7 clearly highlights the differences between the
cases where i) flows compete for the same resources, and

1Defined in [9] as the number of times the congestion window has
been increased by the Congestion Avoidance algorithm.

8

Figure 7: CDFs of the Spearman’s coefficient across four metrics for all experiments of the upstream scenario.

ii) flows do not compete for the resources but still share
part of the same path. In the former case, two of the met-
rics, the rate and the congestion avoidance counter2, dis-
play significant negative correlations, with the correlation
for rate in all experiments being less than -0.4. In scenario
2, most metrics are concentrated around zero as expected,
showing no significant correlations. Motivated by these
observations, we selected the rate as a distinguishing fea-
ture to identify flows competing for the same resource in
the home network.

RTT in both figures exhibits both positive and negative
correlation. We believe that this is caused by flows shar-
ing part of the path, where trends would affect both flows.
Such positive correlation effects for the WAN have been
observed before for RTT or packet loss [7, 11, 5]. There
are two main differences between the WAN and our case
(leaving aside the fact that different metrics are used): in
the WAN, apart from having large buffers, a large number
of flows compete, hence Xb(t) is not constant, which can
cause X1(t) to be positively correlated with X2(t). Sec-
ond, our monitors are very close to the bottleneck (typ-
ically one or two hops away in home networks); indeed
we assume here that the limiting bottleneck for the flows
is either at the edge or within of the home network. In
the WAN, measurements are smoothed by passing several
queues before being observed.

For the receiving scenarios, we also considered using
the distribution of packet interarrival times both in the
time or the frequency domain (e.g.,[1]). The intuition
behind such methodologies is that similar peaks in the
histograms of the packet interarrival times would reflect
common bottlenecks. We observed that these techniques

2This metric is monotonically increasing and thus correlation is ap-
plied to the differenced series.

indeed produce good results when using a large number of
packet arrivals, but constraining the histogram for packet
arrivals to small time windows introduces noise and bias.
Hence, we selected the rate to be the distinguishing fea-
ture for the receiving case as well.

Finally, we examined correlations when three flows
were active at the same time. We observed that overall the
negative correlation identification still held when examin-
ing flows per pair. However, occasionally flow-pairs could
also exhibit strong positive correlations (effectively two
flows correlated positively with each other and negatively
with the third). Note that our correlation algorithm might
also identify correlated flows that compete for a non-local
resource, i.e., correlations in the WAN, should these cor-
relations survive smoothing effects along the path.

Summarizing, our detector is based on identifying
strong negative correlations for candidate flows with the
rate as a distinguishing metric.

3.3 Determining competing flows
Fig. 8 outlines our algorithm for identifying competing
flows, which combines the ideas presented in the two pre-
vious sections. The detection algorithm monitors all flows
and identifies the candidate flows via CPs. These and a
small sample of the time-series after the CP are shared
across hosts. Correlation tests determine whether the can-
didate flows are really competing for a resource.

Once a CP for a flow is detected, HomeMaestro collects
statistics for a predetermined interval of T seconds. We
used thirty seconds in our experiments. Note that we can-
not use previously collected statistics for the flow, since
we are interested in the interval after the problem is de-
tected (i.e., during the anomaly). If the CP is still active
after T seconds, we examine whether other CPs exist ei-

9

Figure 9: Detection and correlation events in a real experiment where three flows compete for the upstream available bandwidth.

Figure 8: Competing flows detection flowchart

ther locally or remotely from other hosts, and the type
of these CPs. If no “DOWN” CP exists, then we sim-
ply reset the detector, so that its base performance is set
to the currently observed one. Since “DOWN” CPs are
the ones that really signal network problems, we ignore

cases where only other types of CPs exist. Finally, if such
a CP does exist, we correlate all current CPs, and if the
correlation score is less than a threshold (Fig. 7 suggests
−0.4), we regard these flows as competing.

This procedure (Fig. 8) effectively produces sets of
competing flows, e.g., flows {A,B,C} are correlated and
thus competing, while C is also competing with D in an-
other set of correlated flows {C,D}. This is attractive
since we can identify competition at different points in the
network. Hence, HomeMaestro can distinguish between
two flows competing for the wireless medium from others
that compete for the access capacity.

Fig. 9 demonstrates by example the functionality of the
detection and correlation modules. The figure shows re-
sults from an experiment using the testbed of Fig. 3, where
three upstream flows competed for the access capacity.
Two of the flows (the first and third rows in Fig. 9) were
initiated at host A, while the third at host B. The dashed
lines reflect times where CPs were first detected for a flow,
while solid lines show correlation events. The letters in
each line represent the chronological order of the events
as seen in the two hosts.

The arrival of the flow in Host B resulted in two CPs.

10

First, a NEW-type (point A) CP, and then a DOWN-type
one (point B) from host A. Notice that the DOWN event
is fired a few seconds later than the noticeable drop in
the flow performance, caused by the effect of the smooth-
ing and the window used in the detector. From this point,
the two hosts exchange messages with statistics for the
corresponding CPs, and once enough values have been
collected, each host separately evaluates the correlation
score, since there exists an active DOWN CP. The time
difference in the correlation evaluation reflects the dis-
tributed nature of HomeMaestro, where each host locally
evaluates correlations. At point E, the flow at Host B, ex-
periences further performance drops, and another CP is
fired which however is not handled since no other CPs
exist in that time interval. Once the third flow is initi-
ated, CPs are fired at points F (NEW), G (DOWN) and I
(DOWN) and correlation occurs once the sufficient num-
ber of statistics is collected.

Connection bundles. Certain applications operate us-
ing mostly short-lived flows. HomeMaestro heuristically
bundles related connections to deal with such cases. This
is possible since the HomeMaestro agent has access to
host knowledge, such as the process and user ids. For
example, we can bundle together and treat as one, all con-
nections that belong to the same process or to processes
with the same image name. This is practically infeasible
to do inside the network (e.g., at a home router).

Typically, connections related to peer-to-peer applica-
tions or Web browsers should be bundled as they refer to
the same application. However, care needs to be taken
when bundling web connections, since several different
applications could be incorrectly treated as one (e.g., web
email and YouTube streams). Evaluating the efficiency
of the bundling process is an open question. We would
like however to stress here that our detection algorithms
also perform well for bundles of flows since they oper-
ate at multi-second timescales (i.e., smoothing-out short-
term TCP bursts, such as short web flows). Overall, by
bundling connections, we significantly reduce the number
of active flows fed to the detection algorithms, and we can
capture the effect of small flows in the network.

In summary, the simplicity and local execution of the
detection and correlation algorithms allow us to correlate
events and identify competing flows across applications
and hosts with a small network overhead (§ 5.2).

Figure 10: Architecture of HomeMaestro

4 HomeMaestro architecture
The architecture of the HomeMaestro agent is depicted
in Fig.10. HomeMaestro uses standard OS interfaces to
periodically monitor the performance of all local connec-
tions. We use the Extended TCP statistics interface [9] to
collect metrics such as total number of bytes and packets
uploaded and downloaded per connection, the estimated
RTT, number of congestion events, and others. Simulta-
neously, we track the process that owns each connection
and the associated application (i.e., image name of the
process); this is useful not only for providing more mean-
ingful information about performance problems, but also
in the case of connection bundling. We have also used the
Event Tracing for Windows (ETW, [3]) infrastructure to
monitor UDP connections. However, due to the limited
UDP traffic in our traces, we shall skip the discussion of
this part of the system.

Additionally, we monitor other process characteristics,
such as the user-id of the owner of the process, or the li-
braries and peripherals used by the process, in order to
infer the purpose of the connection. For example, pro-
cesses using the microphone may have VoIP connections.
Observe that neither the bundling of connections per pro-
cess and application, nor application inference can be eas-
ily performed inside the network. Indeed, this limitation
was evident to us when trying to simulate the operation
of HomeMaestro in the household traces (e.g., we were
unable to bundle peer-to-peer connections together).

11

The collected measurements are then fed to the detec-
tion module that (a) identifies flows that experience per-
formance changes, and (b) infers competing flows. Even
though the detection of candidate flows and the genera-
tion of CPs uses local information only, the identification
of competing flows needs information from all hosts. In-
deed, as observed in § 2, flows typically compete across
hosts which emphasizes the need for a distributed design.

The correlation module assumes some type of weak
synchronization across hosts (because we operate at sec-
ond timescales) since correlations across hosts are esti-
mated through time-series analysis. We have found that
synchronization every 10-15 minutes using the Network
Time Protocol (NTP) was sufficient for our purposes.

The local communication module broadcasts the CPs
(step C of Fig.10) and other statistics (step B of Fig.10) for
the candidate flows to all other nodes. Further, it collects
statistics broadcasted by remote HomeMaestro agents and
forwards them to the detection engine (step D of Fig.10).
Hence, the detection engines operates as if all the required
statistics were locally available. As we shall see in § 5,
the network overhead is relatively small, since the CPs
are compact representations of the important characteris-
tics of a flow. Even though the amount of communica-
tion is small, it still needs to be communicated reliably
and timely to the other hosts in the network. To achieve
this, we use reliable multicasting (PGM [13]) in Home-
Maestro. Due to the low volume of traffic, we did not
experience any network performance problems, even in
the case of wireless networks, where multicast uses a very
low transmission rate (1Mbps).

We have implemented HomeMaestro in the Windows
Vista operating system. In principle, our design can be
easily adapted for other modern operating systems. A
straightforward implementation (of ≤5K lines of code in
C#) turned out to be reasonably efficient. The total mem-
ory consumption (both code and data) is typically less
than 50MB, and the CPU utilization (of our application)
was usually less than 5% on a Pentium 4 (3.20GHz with
3GB RAM). We evaluate in detail CPU requirements and
other overhead in the following section.

5 Evaluation
We evaluate HomeMaestro’s performance across two
main dimensions. First, we examine the ability of the pro-

posed algorithms to identify user reported problems by
applying HomeMaestro to the packet-level traces. Sec-
ond, we examine the processing and network overhead
incurred by HomeMaestro.

5.1 Household data
To evaluate the effectiveness of our detection algorithms,
we replayed the household packet-level traces and instru-
mented an “off-line” version of HomeMaestro. In this
version, all HomeMaestro system modules remain un-
changed with the exception of the monitoring module.
This was replaced with a pcap input module that allows
us to directly process the trace files. We then examined
whether the problems reported in the diaries were iden-
tified through negative correlation events (section 3.2).
Further, we examined whether the correlated flows in
the traces reflect the applications actually reported by the
users through whois lookups of the non-local IPs. From
the set of problems reported in the diaries, we removed is-
sues unrelated to performance, such as “blue-screens” or
“problem detecting wireless signal”.

HomeMaestro detects approximately 85% of the prob-
lems repoted by the users. Specifically, HomeMae-
stro identifies 29 out of the 34 reported problems for
the households shown in Fig. 1. Table 3 breaks down
user reported problems per applications for household 2,
and also displays competing applications as identified by
HomeMaestro. The first column describes the problem-
atic application according to the diaries, while the rows
display competitions according to HomeMaestro. Look-
ing at the individual correlated flows further reveals that
indeed they correspond to the applications and even web-
sites reported by the users (e.g., Hotmail, YouTube). For
the remaining 15% of problems that went undetected, we
discovered that these occurred with applications that were
the only ones active at that time in our traces (i.e., no com-
petition could occur). Hence these reports either relate
to users “over-reporting” ,which is common in such user
studies, or were related to the WAN. After manually ex-
amining all undetected reported problems, we were able
to identify only two occurrences of valid competition.
These involved competition between Hotmail and peer-
to-peer flows in household 1. Thus, HomeMaestro ap-
pears to identify the vast majority of competition-related
problems that were observable by the users.

12

Table 3: Problems detected by HomeMaestro and instances of
competitions across applications. The first column describes ap-
plications for which users reported problems. Rows represent
the competing applications as shown by HomeMaestro.

App. stream. web file email updates
stream. 14 1 1 - 2
web 1 - - - 2
file - - - 1 -
email - - 1 - 1

The vast majority of the problems detected were due
to application competition across hosts. Especially in
household 2 where most users were active simultaneously,
92% of the problems were between two or more hosts,
while the rest constituted application competition at the
same host (e.g., streaming and web applications). This
implies that purely local mechanisms, which for exam-
ple detect only local, per-host competition across applica-
tions, cannot detect the majority of the problems. Home-
Maestro further identified several instances where com-
petition existed between three or more flows at the same
time. Indeed, for home 1, at least three flows were nega-
tively correlated with each other at the same time for 70%
of the correlation instances due to the heavy usage of peer-
to-peer applications. For home 2, this is true for 13% of
the correlations.

HomeMaestro flagged several correlations at times
when no user reports existed in the diaries. This was
mostly true for household 1, where one heavy user was
running peer-to-peer applications and was performing
several remote and local file transfers during the period of
the study. Most correlations were thus related to competi-
tion between file transfer and peer-to-peer applications for
which the user did not report any issues. Examining all
such cases showed that they indeed correlated with high
utilization of the home network (e.g., last day of home 1
in Fig. 1), and appeared to be valid competing flows. Per-
formance issues in such applications are not as evident,
and perhaps this lead to no reported problems.

In household 2, HomeMaestro flagged correlations for
update services for a variety of applications. Such update
services typically run when the users were idle, thus no
problems were reported. As with file transfers, observing
performance issues for update services as a user is diffi-
cult. These update services competed with other applica-

tions across hosts resulting in only one of the users report-
ing issues. This is a particularly interesting scenario as
“cloud” back-up services are increasingly introduced for
home users. These services mostly operate during user
idle time at the specific host trying to be transparent to
the user. However, such services have no way of tracking
network usage across hosts in the home network, and be-
ing bandwidth intensive they could cause applications at
other hosts to under-perform.

Summarizing, HomeMaestro was able to identify all
but two user reported problems that related to applica-
tion competition for network resources. Additionally, we
were able to identify several cases where no user reports
existed, but applications indeed appeared to be competing
for bandwidth. Exploiting this information could be in-
valuable to the user, as HomeMaestro can readily provide
root-cause analysis for an issue (e.g., a specific applica-
tion at a remote host). This is feasible as our distributed
design exploits both the local host context and at the same
time has global knowledge of relevant information across
hosts.

Host vs. in-network monitoring. The evaluation pre-
sented in this section focused on traces collected inside
the home network, i.e., as if HomeMaestro was hosted in
the home gateway; our study was limited by the fact that
we were not allowed to install our agent on the hosts of
the study. It is natural, however, to question whether such
analysis should indeed take place inside the network, in-
stead of the hosts. A network-centric solution is definitely
possible, even advantageous in the presence of uncoop-
erative hosts; however, it has also several shortcomings.
First, bundling connections per process inside the net-
work is rather challenging. We suspect that this limitation
was the main reason of missing the two reported problems
mentioned above. Second, filtering low-rate connections
is rather challenging to perform in low-cost home net-
working equipment, since it requires per-connection state;
on the other hand, such information is readily available
at the hosts. Third, a centralized solution will miss any
host-to-host local traffic not crossing the specific network
equipment (e.g., in-home traffic).

5.2 System overhead

HomeMaestro runs as a background process at each host.
It collects statistics about all local network flows, de-

13

tects changes in the network performance per flow or ap-
plication, and communicates with the other HomeMae-
stro agents. Hence, our system incurs storage, process-
ing, and network overheads respectively, which we evalu-
ate below.

Processing overhead. The most expensive processing
overhead of HomeMaestro is due to the algorithms de-
scribed in § 3. In the worst case, those algorithms scale
as the square of the number of active flows, since we may
need to pairwise correlate every active flow.

To evaluate the processing overhead, we have used both
the data collected from the users, and a synthetic bench-
mark. To stress the detection algorithms, we disabled con-
nection bundling (§ 3) for the results reported henceforth.
Specifically, we isolated the busiest 20-minute time inter-
val in our traces (in terms of active flows) and recorded
the start and end times of all TCP connections. Then, we
started bulk file transfers from well-provisioned servers,
respecting the inter-arrival times of the connections in the
trace and their durations. As we do not follow the ac-
tual rates seen in the traces but rather all our transfers are
high-rate flows, the contention is significantly more se-
vere compared to the original trace. The goal is to study
the processing overhead using the connection arrival and
departure process seen in the busiest period of the trace.
We have used one host to perform this experiment; in the
original trace, there were three active hosts at the same
time, thus using a single host further stresses the detec-
tion algorithms.

According to this trace, the peak number of active con-
nections is 28 and typically, there are 15-25 active connec-
tions simultaneously. For this workload, we measured the
processing overhead as the CPU utilization of the Home-
Maestro process as reported by the operating system on a
Pentium 4 with 3.2GHz/3GB RAM. We measure the uti-
lization every 500ms, and the CDF of the entire distribu-
tion is given in Fig. 11. The average and median utiliza-
tion are 1.5% and 1% respectively.

To further study the scalability of the detection algo-
rithms, we examine the following scenarios. We simulate
a dynamic environment of N concurrent bulk file trans-
fers; for each, we assign a lifetime following an expo-
nential distribution with a mean of R seconds. We then
run 20-minute experiments with N=20, 50, and 100 and
R =10sec, 30sec, 1min, and 5min, collecting statistics
of CPU utilization every 500ms. We do not try to simu-

Figure 11: CPU overhead of HomeMaestrofor the busiest 20-
minute interval of the household traces, and for three synthetic
workloads. The overhead appears negligible for the real trace
workload, and acceptable for 20 or 50 concurrent flows.

late “realistic” workloads here, but rather stress-test our
detection engine.

As discussed, the choice of N has a significant impact
on the processing overhead. Fig. 11 shows the CDF of
CPU utilization for R=30sec for all values of N , as well
as the trace driven simulation. The average CPU utiliza-
tion is 4.8%, 8.2%, and 22% for N=20, 50, and 100, re-
spectively. The results for the other values of R are sim-
ilar, since in all experiments all flows were continuously
competing with each other (i.e., the flow arrival/departure
process is not as significant as the number of active flows).
For N=20 and 50, Fig. 11 suggests that the CPU overhead
is below 10% most of the time. Even though there are
many ways to reduce the overhead and our implementa-
tion is hardly optimized, we believe that the current per-
formance is quite acceptable. In practice, we expect that
each host rarely has more than 20 “active” connections, a
number which connection bundling significantly reduces.
The processing overhead is rather large for N=100. It is
an open question whether we can scale our detection al-
gorithms for larger networks, i.e., make it linear to the
number of active connections; however, we believe that
our approach performs well for a typical host of a home
network.

As a final note, we have found that the overhead of pe-
riodically polling (every second in HomeMaestro) the OS
for connection statistics is negligible. This is even with
hundreds of connections running in the system.

14

Network overhead. The network overhead is domi-
nated by the broadcasting of change points and associated
traffic information. When we broadcast a CP, the mes-
sage contains a short description of the flow (currently 16
bytes), and, more importantly the measurements of the
metric of interest collected in the last 30 seconds (in total
roughly 500 bytes). The latter are used to perform the cor-
relation of flows across hosts. While detecting CPs for a
connection, we also broadcast new measurement updates
for that connection. Each host collects these updates for
all flows of interest and broadcasts every second (e.g., 1-2
update messages when up to 30 connections are of inter-
est). In summary, the network overhead is determined by
the number of connections that generate CPs, plus some
additional update traffic. Hence, the network overhead
both in terms of messages and bytes is a function of the
number of CPs per second.

We used the traces to simulate the generation of CPs,
and to estimate the network overhead. Most of the time,
HomeMaestro did not generate CPs (89% for Home 1 and
95% of Home 2). We ignore these periods, and instead
study only intervals that generated at least one CP; this
gives an upper bound on the network overhead. The aver-
age number of CPs was 2-3 per second (conditioning on
observing at least one CP). In the busiest interval, Home-
Maestro signaled 41 CPs. Even in this extreme case, the
network overhead is rather small and can be easily han-
dled by home networks — less than 50 messages per sec-
ond and around 200kbps. In the typical case, the network
overhead is negligible.

We have also measured the network overhead in our
benchmark experiments. As expected, the network over-
head was typically much less than 50-100kbps, even with
100 concurrent bulk downloads.

Memory overhead. One concern in the design of our
system is the amount of memory required to store infor-
mation about the past performance of all connections. Re-
call that we collect those statistics every second for ac-
tive flows, information which is used by the correlation
algorithms. Our current implementation stores around 40
bytes per connection per second (timing information, total
bytes and packets incoming and outgoing) plus some extra
bytes for maintaining internal data structures. The amor-
tized memory overhead for storing connection statistics is
a few tens of KBytes per connection, or typically less than
a few tens of MBytes per host.

6 Discussion
HomeMaestro is a first step toward simplifying the de-
tection and reporting of performance problems. However,
HomeMaestro by no means addresses all such problems
in the home network. We discuss the most important of
these open issues here.

Non-compliant devices. The diversity of home de-
vices is one of the most important hurdles to overcome
when deploying home solutions. Can we monitor hosts
or devices that are part of the home network, but do not
participate in the HomeMaestro virtual network? Our de-
tection algorithm could still work independently in all
participating hosts. However, correlation across non-
participating devices would not be feasible. Our algo-
rithms could be enabled, if future home networking equip-
ment such as home routers expose APIs for hosts to query
for network statistics. Then, HomeMaestro-enabled de-
vices could infer competition with techniques similar to
the ones presented in the paper, although limitations still
exist (e.g., inferring application types).

UDP traffic. UDP typically amounts to only a small
fraction of the total traffic. This was also confirmed by
our household study. If a new UDP flow significantly af-
fects existing TCP traffic, CPs will detect the performance
degradation of TCP and the new UDP flow. The two
flows will be competing, however, our detector may fail to
spot the correlation, since UDP does not “fairly” compete
for bandwidth. However, most high-performance appli-
cations that run over UDP, such as gaming, do implement
some form of congestion control over UDP. Thus, corre-
lations may still exist.

Privacy. As HomeMaestro broadcasts signaling traffic,
every home user can easily discover the network activity
of every other user. This is especially true since we envis-
age a system that notifies a user that her applications are
not performing well due to excessive traffic from another
user. This assumes that users are willing to exchange or
broadcast such information. Such an assumption we be-
lieve is acceptable in home networks (actually, the parents
in our study found this feature very desirable!).

Prioritizing applications. Detecting performance
problems is the first step toward a home management so-
lution. As discussed in § 2, we envision that users will be
included in the loop by providing preferences over appli-
cations and then a distributed system will automatically

15

configure the allocation of network resources, typically
by rate limiting the least important flows during periods
of contention. We believe that rate limiting should take
place also at the end-hosts, possibly in cooperation with
network equipment for non-participating devices. Rate-
limiting at the host is feasible in modern operating sys-
tems, and allows for complex policies by exploiting the
rich context available at the host, e.g., per-application, or
per user policy enforcement.

Including the user in the loop implies that users would
be able to dynamically configure priorities. Presenting
such information to the user in an intuitive way is by itself
a challenging problem. During interview sessions, users
argued that priorities relate more to the task at hand (e.g.
a business call, web surfing for school homeworks) than
to the application itself. In such a system, the interaction
with the user could be fairly regular, but it should also be
meaningful and non-intrusive.

7 Related work
To the best of our knowledge, studies of home networks
have been extremely limited. Papagiannaki et. al [10] de-
scribe the complications that arise in wireless home net-
working environments. The authors explain in detail how
small changes in configurations can have dramatic im-
pact on the performance of the network. Neti@home[12]
monitors aggregate statistics of performance metrics at
the host similarly to HomeMaestro. However, the focus
of Neti@home is targeted more toward collecting data for
general research on Internet performance as seen from the
edge of the network. Dischinger et al. [2] examine the net-
working characteristics of various broadband technolo-
gies, describing how these technologies can exhibit high
delay variation (jitter), with large queues significantly af-
fecting expected performance. HomeMaestro takes such
problems into account by using smoothing in the evalua-
tion of the various metrics.

Inferring shared bottlenecks through correlation [11, 7]
has mostly been based on analysis of delay, or loss in-
volving active probing. In contrast, HomeMaestro eval-
uates shared congestion passively by exploiting its close
proximity and small hop-count to the bottleneck. Passive
evaluation of shared bottlenecks has also been examined
through clustering of inter-packet spacings by Katabi et
al. [5]. This methodology is based on minimizing the en-

tropy of packet spacings across pairs of flows from dif-
ferent sources as these are observed at the same receiver.
Instead as discussed in § 3.2, we attempt to identify shared
bottlenecks with only a few measurements across differ-
ent receiving hosts, whereas inter-packet timings show ac-
ceptable performance only after a significant number of
samples has been collected.

8 Concluding remarks
Home networks are ubiquitous and their complexity is
growing. Yet, there is a surprising lack of tools for au-
tomating their management, and providing an acceptable
user experience. We have introduced HomeMaestro, a
distributed system for monitoring and diagnosis of perfor-
mance anomalies in home networks. By collecting infor-
mation at the host and correlating data across hosts, we
detect performance problems, and identify whether they
are related to competition for network resources. This is
achieved by exploiting the rich context available at hosts
which allows for sophisticated inference and passive de-
tection of shared problems. We believe that HomeMae-
stro is a step toward providing transparent management
mechanisms in the evolving home network ecosystem.

References
[1] A. Broido, R. King, E. Nemeth, and k. claffy. Radon spec-

troscopy of inter-packet delay. In High Speed Networking
(HSN) 2003 Workshop, 2003.

[2] M. Dischinger, A. Haeberlen, K. P. Gummadi, and
S. Saroiu. Characterizing Residential Broadband Net-
works. In IMC, AM SIGCOMM Internet Measurement
Conference, 2007.

[3] Event Tracing for Windows. http://msdn2.
microsoft.com/en-us/library/aa468736.
aspx.

[4] R. Hogg and A. Craig. Introduction to Mathematical
Statistics. Prentice Hall, 1995.

[5] D. Katabi, I. Bazzi, and X. Yang. A Passive Approach for
Detecting Shared Bottlenecks. ICCCN, 2001.

[6] F. Kelly. Mathematical modelling of the Internet. In Math-
ematics Unlimited - 2001 and Beyond, pages 685–702.
Springer-Verlag, Berlin, 2001.

[7] M. Kim, T. Kim, . Shin, S. S. Lam, and E. J. Powers. A
wavelet-based approach to detect shared congestion. In
ACM SIGCOMM, pages 293–306, 2004.

16

http://msdn2.microsoft.com/en-us/library/aa468736.aspx
http://msdn2.microsoft.com/en-us/library/aa468736.aspx
http://msdn2.microsoft.com/en-us/library/aa468736.aspx

[8] L. Massoulié and J. Roberts. Bandwidth sharing: objec-
tives and algorithms. IEEE/ACM Trans. Netw., 10(3):320–
328, 2002.

[9] M. Mathis, J. Heffner, and R. Raghunarayan. RFC 4898 -
TCP Extended Statistics MIB.

[10] K. Papagiannaki, M. Yarvisand, and W. S. Conner. Exper-
imental Characterization of Home Wireless Networks and
Design Implications. In Infocom, 2006.

[11] D. Rubenstein, J. Kurose, and D. Towsley. Detecting
shared congestion of flows via end-to-end measurement.
IEEE/ACM Trans. Netw., 10(3):381–395, 2002.

[12] J. Simpson, C. Robert, and G. F. Riley. NETI@home: A
Distributed Approach to Collecting End-to-End Network
Performance Measurements. In PAM, 2004.

[13] T. Speakman et al. RFC 3208 - PGM Reliable Transport
Protocol Specification.

17

	Introduction
	Users and the home network
	Detecting competing flows
	Detecting candidate flows
	Identifying correlated flows
	Determining competing flows

	HomeMaestro architecture
	Evaluation
	Household data
	System overhead

	Discussion
	Related work
	Concluding remarks

