
A

A Framework of Traveling Companion Discovery on Trajectory Data
Streams

Lu-An Tang1,2, Yu Zheng2, Jing Yuan2, Jiawei Han1

Alice Leung3, Wen-Chih Peng4, Thomas La Porta5

1University of Illinois at Urbana-Champaign; 2Microsoft Research Asia; 3BBN
Technologies; 4National Chiao Tung University; 5Pennsylvania State University

The advance of mobile technologies leads to huge volumes of spatio-temporal data collected in the form
of trajectory data stream. In this study, we investigate the problem of discovering object groups that travel
together (i.e., traveling companions) from trajectory data streams. Such technique has broad applications
in the areas of scientific study, transportation management and military surveillance. To discover traveling
companions, the monitoring system should cluster the objects of each snapshot and intersect the clustering
results to retrieve moving-together objects. Since both clustering and intersection steps involve high com-
putational overhead, the key issue of companion discovery is to improve the efficiency of algorithms. We
propose the models of closed companion candidates and smart intersection to accelerate data processing. A
data structure termed traveling buddy is designed to facilitate scalable and flexible companion discovery
from trajectory streams. The traveling buddies are micro-groups of objects that are tightly bound together.
By only storing the object relationships rather than their spatial coordinates, the buddies can be dynami-
cally maintained along trajectory stream with low cost. Based on traveling buddies, the system can discover
companions without accessing the object details. In addition, we extend the proposed framework to discover
companions on more complicated scenarios with spatial and temporal constraints, such as on the road net-
work and battlefield. The proposed methods are evaluated with extensive experiments on both real and
synthetic datasets. Experimental results show that our proposed buddy-based approach is an order of mag-
nitude faster than the baselines and achieves higher accuracy in companion discovery.

1. INTRODUCTION
The technical advances in mobile devices and tracking technologies have generated
huge amount of trajectory data recording the movement of people, vehicle, animal and
natural phenomena in a variety of applications, such as social network, transporta-
tion management, scientific studies and military surveillance [Zheng and Zhou 2011]:
(1) In Foursquare1 , the users check in the sequence of visited restaurants and
shopping malls as trajectories. In many GPS-trajectory-sharing websites like Geolife
[Zheng et al. 2010], people upload their travel or sports routes to share with friends.
(2) Many taxis in major cities have been embedded with GPS sensors. Their loca-
tions are reported to the transportation system in the format of streaming trajecto-
ries [Yuan et al. 2010; Tang et al. 2011]. (3) Biologists solicit the moving trajectories
of animals like migratory birds for their research2. (4) The battlefield sensor net-
work watches the designated area and collects the movement of possible intruders
[Tang et al. 2010]. Their trajectories are watched by military satellites all the time.

In the above-mentioned applications, people usually expect to discover the object
groups that move together, i.e., traveling companions. For example, commuters want
to discover people with the same route to share car pools. Scientists would like to study
the pathways of species migration. Information about traveling companions can also
be used for resource allocation, security management, infectious disease control and
so on.

Despite of the wide applications, the discovery of traveling companion is not effi-
ciently supported in existing systems, partly due to the following challenges:

1http://foursquare.com
2http://www.movebank.org

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

• Co-location: Companions are objects that travel together. Here “travel to-
gether” means the objects are spatially close at the same time. Many
state-of-the-art trajectory clustering methods, retrieving the object’s major
moving direction from their trajectories, ignore the temporal information
of objects [Lee et al. 2007; Har-Peled 2003; Li et al. 2004; Yang et al. 2009;
Zhang and Lin 2004; Jensen et al. 2007]. Hence they cannot be directly used
for companion discovery.

• Incremental discovery: In several applications like military surveillance, the system
needs to monitor objects for a long time and discover companions as soon as possible.
Hence the algorithm should report the companions in an incremental manner, i.e.,
output the results simultaneously while receiving and processing the trajectory data
stream.

• Efficiency: Most trajectories are generated in a format of data stream. Huge amounts
of data arrive rapidly in a short period of time. The monitoring system has to cluster
the data and intersect the clusters for companions. These steps involve high compu-
tational overhead. The algorithm should develop efficient data structures to process
large scale data.

• Effectiveness: The number of companions is usually large. The system should re-
port the large and long-lasting companions rather than small and short-time ones.
The companion-discovery algorithm should be effective to select the most important
results.

• Spatio-temporal constraints: In the real applications, the objects move with several
spatial and temporal constraints, e.g., the vehicles travel along the road network, the
military objects need to follow certain orders to leave the team for short time. The
algorithm should be adapted for such constraints to improve the system feasibility
and applicability.
We are aware that several studies have retrieved object groups similar to

the traveling companions, such as flock [Gudmundsson and Kreveld 2006], convoy
[Jeung et al. 2008] and swarm [Li et al. 2010]. However, most of them are designed
to work on static datasets on 2D Euclidean space, some methods need multiple scans
of the data, or cannot output results in an incremental manner. Hence it is still de-
sirable to provide high-quality but less costly techniques for companion discovery on
trajectory stream with spatio-temporal constraints.

In this study, we investigate the models, principles and methodologies to discover
traveling companions from trajectory streams. Since the objects keep on moving in the
trajectory streams, it is hard to maintain an index for their spatial positions. However,
the relationships among most objects are gradual evolutions rather than fierce muta-
tions. The traveling buddy is proposed to store the relationship. Such model can be eas-
ily maintained along the data streams. Thus, in this paper, we explore the traveling-
buddy-based companion discovery, which is able to discover companions without ac-
cessing the object details and significantly improve the system’s efficiency. The main
contributions of this study include: (1) introducing the companion models to define the
problem; (2) proposing the concepts of smart intersection and closed companions to
accelerate data processing; (3) analyzing the bottleneck of the problem and proposing
a traveling-buddy-based approach; (4) extending the proposed methods to complicated
scenarios with spatio-temporal constraints, developing the methods to discover the
road companions and loose companions; and (5) demonstrating the scalability and fea-
sibility of the proposed methods by experiments on both real and synthetic datasets.

This paper substantially extends the version on ICDE 2012 conference
[Tang et al. 2012], in the following ways: (1) introducing the concepts of road compan-
ion and loose companion to model the companion discovery problems on more compli-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

cated scenarios; (2) analyzing the main bottleneck of road companion discovery and
proposing a filtering-and-refinement-based framework; (3) designing new algorithms
with the road buddy for efficient companion discovery on road network; (4) proposing
the leaving time threshold and introducing the concept of loose companion to release
the time constraints for more effective companion discovery; (5) carrying out the time
complexity analysis for proposed algorithms; (6) providing complete formal proofs for
lemmas and propositions; (7) covering the related work in more details and including
recent ones; and (8) expanding our performance studies on datasets on road network
and battlefield. The experimental results show that the new proposed methods are an
order of magnitude faster than the old ones in [Tang et al. 2012].

The rest of the paper is organized as follows. Section 2 defines the problem; Sec-
tion 3 introduces the general framework of companion discovery; Section 4 proposes
the traveling-buddy-based method; Section 5 extends the proposed methods to dis-
cover companions on road networks; Section 6 discusses the techniques to discover
companions with released temporal constraints; Section 7 evaluates the algorithms’
performances; Section 8 gives a survey of the related work and finally in Section 9 we
conclude the paper.

2. PROBLEM DEFINITION
In the various applications of traveling companion, there are some common principles
shared in different scenarios. We illustrate the characteristics of companion discovery
by the following example.

Example 1: Ten objects are tracked by a monitoring system. Fig.1 shows their positions
in four snapshots. There are three key issues to discover the companions:
• Cluster: The companions are the objects that travel together, i.e., in the same cluster.

Since the people, vehicles and animals often move and organize in arbitrary ways,
the companion shape is not fixed. In Fig.1, the objects are grouped in round shape
in snapshots s1 and s2, while in s3, they are moving in a queue and the companions
are formed as thin and long ellipses.

• Consistency: The companions should be consistent enough to last for a few snap-
shots. This feature makes it possible to find the companions by intersecting the clus-
ters of different snapshots.

• Size: Most users are only interested in the object groups that are big enough. They
may have requirements on the companion’s size. For example, if the user sets the
size threshold as four and requires the companion to last for at least four snapshots,
then {o1, o2, o3, o4} is the result companion.
To discover the traveling companions with various shapes, we employ the concepts

of density-based clustering [Ester et al. 1996] in this study.

Definition 1 (Direct Density Connection): Let O be the object set in a snapshot, ε
be the distance threshold, µ be the density threshold and Nε(oi) = {oj ∈ O | dist(oi, oj) ≤
ε}. Object oj is directly density connected from object oi if oj ⊂ Nε(oi) and |Nε (oi) | ≥ µ.

Definition 2 (Density Connection): Let O be the object set in a snapshot, object oi

is density connected to object oj , if there is a chain of objects {o1, . . . , on} ∈ O where o1

= oj , on = oi such that oi+1 is directly density connected from oi.
With the concepts of density connection, we formally define the traveling companion

as follows.

Definition 3 (Traveling Companion): Let δs be the size threshold and δt be the
duration threshold, a group of objects q is called traveling companion if:
(1) The members of q are density connected by themselves for a period t where t > δt;
(2) q’s size size(q) > δs.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

s1 s2 s3 s4

o5

o6

o7
o9

o10

o2

o3

o4

o5o1

o8

o3

o1

o2

o4

o6

o7

o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6
o5

Fig. 1. Example: Discover Traveling Companions

Problem Definition: Let trajectory data stream S be denoted
by a sequence of snapshots {s1, s2, . . . , si, . . .}. Each snapshot si =
{(o1, x1,i, y1,i), (o2, x2,i, y2,i), . . . , (on, xn,i, yn,i)}, where xj,i, yj,i are the spatial coor-
dinates of object oj at snapshot si. When the data of snapshot si arrives, the task is to
discover companion set Q that contains all the traveling companions so far.

We will introduce the framework and techniques for companion discovery in the next
few sections. Fig. 2 lists the notations used throughout this paper.

Notation

S

C

R

B

O

Explanation

the trajectory stream

the cluster set

the candidate set

the buddy set

the object set

Notation

s, si, sj

ci, cj

q

bi, bj

o1, o2, oi

Explanation

the snapshots in stream

the clusters

the traveling companion

the traveling buddies

the objects

ri, rj the companion candidates

Q the companion set

the distance threshold the density threshold

s the size threshold t the duration threshold

the buddy radius threshold i, j the buddy radius

M the road network l the leaving time threshold

Fig. 2. List of Notations

3. COMPANION DISCOVERY FRAMEWORK
3.1. The Clustering-and-Intersection Method
A general framework of clustering-and-intersection is proposed in
[Gudmundsson and Kreveld 2006; Jeung et al. 2008] to retrieve the convoy pat-
terns. This framework can also be adapted to discover companions on trajectory
stream: The idea is to retrieve companion candidates by counting common objects
in the clusters from different snapshots. The system keeps clustering the objects in
coming snapshots and intersecting them with the stored candidates. In this way the
candidates are gradually refined to become resulting companions.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

Definition 4 (Companion Candidate): Let δs be the size threshold and δt be the
duration threshold, a group of objects r is a companion candidate if:
(1) The members of r are density connected by themselves for a period t where t < δt ;
(2) size(r) > δs.

Intuitively, the companion candidates are the object groups with enough size but
shorter duration. The candidate’s size reduces when intersecting with the clusters from
other snapshots, but its lasting time increases. Once a candidate’s time grows longer
than threshold, it will be reported as a traveling companion. Meanwhile, as soon as
the candidate is not large enough, it is no longer qualified and should be removed from
memory. Fig. 3 lists the steps of clustering-and-intersection algorithm.

Algorithm 1. Clustering-and-Intersection

Input: size threshold s, duration threshold t, distance threshold , density

threshold µ, candidate set R and the trajectory data stream S

Output: every qualified companion q

1. for each coming snapshot s of S

2. initialize new candidate set R';

3. cluster the objects in s w.r.t to and µ;

4. for each candidate ri R, do

5. for each cluster cj s, do

6. new candidate ri' ri cj;

7. duration (ri') = duration (ri)+duration (s);

8. if size(ri') s then

9. add ri' to R';

10. if duration (ri') t then

11. output ri' as a qualified companion q;

12. add all the new clusters to R';

13. R R';

Fig. 3. Algorithm: The Clustering-and-intersection Method

Algorithm 1 first performs density-based clustering for all the objects in coming
snapshot (Lines 1 – 3). Then the system refines companion candidates by intersect-
ing them with new clusters (Lines 4 – 7). The intersection results with enough size are
stored as new candidates (Lines 8 – 9). The ones with enough duration are reported as
traveling companion (Lines 10 – 11). The new clusters are added to the candidate set
(Line 12). At last the candidate set R is updated to process following snapshots (Line
13).

Proposition 1: Let n1 be the size of objects and n2 be the total size of candidate set R.
The time complexity of Algorithm 1 is O(n2

1+n1 ∗ n2).

Proof: In the clustering step, the algorithm needs O(n2
1) time to generate density-

based clusters 3. In the intersection step, suppose there are average m1 clusters and
m2 candidates, the system carries out m1 ∗m2 intersections, and the intersection takes
l1∗l2 time, where l1 is the average cluster size and l2 is the average candidate size. Since
m1∗l1 = n1, m2∗l2 = n2, thus the time complexity of intersection step is O(m1∗m2∗l1∗l2)
= O(n1 ∗ n2) and the total time complexity is O(n2

1+n1 ∗ n2).

3The clustering process can be improved to O(n1∗logn1) with a spatial index, however it is costly to maintain
such spatial index in each time snapshot [Lee et al. 2003].

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Example 2: Fig. 4 shows the running process of clustering-and-intersection algorithm.
Suppose each snapshot lasts for 10 minutes, the size threshold is 3 and the time thresh-
old is 40 minutes. The objects are first clustered in each snapshot. Two clusters in s1

are taken as the candidates, namely r1 and r2. Then they are intersected with the
clusters in s2, meanwhile, the cluster of s2 is also added as a new candidate r3. The
clustering and intersection steps are carried out in each snapshot. Finally, the algo-
rithm reports {o1, o2, o3, o4} as a traveling companion in s4. The total intersection
times are 29, and the largest candidate set R appears in s3 with 23 objects involved.

s1= 10m s2= 10m s3= 10m s4= 10m

r1 ={o1, o2, o3,

o4 }, 10 m

r2 ={o6, o7, o8,

o9, o10}, 10 m

r1 ={o1, o2, o3,

o4 }, 20 m

r2 ={o6, o7, o8,

o9, o10}, 20 m

r3 ={o1, o2, o3,

o4, o5, o6, o7, o8,

o9, o10}, 10 m

r1 ={o1, o2, o3,

o4}, 30 m
r2 ={o8, o9, o10},

30 m

r4 ={o8, o9,

o10}, 20 m

r3 ={o1, o2, o3,

o4 , o5}, 20 m

r5 ={o1, o2, o3,

o4, o5}, 10 m

r1 ={o1, o2, o3,

o4 }, 40 m

r2 ={o1, o2, o3,

o4, o5}, 30 m

r3 ={o1, o2, o3,

o4 , o5}, 20 m

R's size: 9

Intersect: 0

R's size: 19

Intersect: 2

R's size: 23

Intersect: 11

R's size: 14

Intersect: 29

r6 ={o8, o9,

o10}, 10 m

o5

o6

o7
o9

o10

o2

o3

o4

o5o1

o8

o3

o1

o2

o4

o6

o7
o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6
o5

Fig. 4. Example: The Clustering-and-intersection Method

3.2. The Smart-and-Closed Algorithm
The computational overhead of clustering-and-intersection method is high in both time
and space. In each snapshot, the intersection is carried out in every pair of candidate
and cluster. However, most intersections cannot generate qualified results with enough
size. In this subsection we introduce the methods to improve the efficiency: (1) the
smart algorithm stops the intersection step early once it is impossible to generate
qualified candidates, and (2) the closed candidate are used to help reduce the memory
cost.

Lemma 1: Let r be a companion candidate and δs be the size threshold, if there are
more than size(r) − δs objects of r already appearing in intersected clusters, continu-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

ously intersecting r with remaining clusters will not generate any meaningful results
with size larger than δs.

Proof: Since each object only appears once in a single snapshot and only belongs to
one cluster4, if there are more than size(r)−δs objects appearing in already intersected
clusters, even in the best case (all the remaining objects are in a single cluster), the
intersection result will still be smaller than size(r)− (size(r)− δs) = δs.

Lemma 1 can be used to improve the candidate refining process with smart in-
tersection. Once an object is found in the cluster, the algorithm removes it from the
candidate. The intersection process will stop earlier if there are less than δs objects
remaining in the candidate.

Another problem of clustering-and-intersection method is the space efficiency, if all
new clusters are added as candidates, the size of the candidate set will increase rapidly
as trajectory stream passes-by, such a huge candidate set is a burden for system mem-
ory. In the worst case, all the clusters stay constant in the series of snapshots, the
intersection process cannot prune any existing candidates and all the new clusters are
added to the candidate set. After m snapshots, the system needs to maintain a m ∗ n
size candidate set, where n is the number of objects.

In Fig. 4, candidates r3 and r5 in s3 contain the same objects with different lasting
time. In such cases, the system only needs to store the one with longer time (e.g., r3).
Such candidates like r3 are called closed candidates.

Definition 5 (Closed Candidate): For a companion candidate ri, if there does not
exist another candidate rj such that ri ⊆ rj , and ri’s duration is less than rj ’s duration,
then ri is a closed candidate.

Armed with Lemma 1 and Definition 5, we propose the smart-and-closed algorithm.
The modifications are underlined in Fig. 5, the algorithm removes intersected objects
from the candidate set and checks its remaining size before next intersection (Lines 5
and 9); when adding the new clusters to the candidate set, the algorithm always checks
if there is already a candidate containing the same objects but with longer duration,
only the ones passing the closeness check are added as new candidates (Lines 14 – 15).

In the worst case, Algorithm 2 cannot prune any candidates and the time complexity
is the same as Algorithm 1. However, we find out that the smart-and-closed algorithm
can save about 50% time and space in the experiments.

Example 3: Fig. 6 shows the running process of smart-and-closed algorithm. In snap-
shot s3, when making intersections for candidate r1 with three clusters, the process
ends early after the first round. Since the system only stores closed candidates, the
largest candidate set size is only 19 in s2, and the total intersection time is 12, less
than half of the cost in clustering-and-intersection.
4. TRAVELING BUDDY BASED DISCOVERY
Smart-and-closed algorithm improves the efficiency of intersection step to generate
companions, but the system still has to cluster the objects in each snapshot. The
density-based clustering costs O(n2) time without spatial index, where n is the num-
ber of the objects [Han and Kamber 2006]. Due to the dynamic nature of streaming
trajectories (i.e., the objects’ positions are always changing), maintaining traditional
spatial indexes (such as R-tree or quad-tree) at each time snapshot incurs high cost
[Lee et al. 2003]. In this section, we introduce a new structure, called traveling buddy,
to maintain the relationship among objects and help discover companions.

4The clustering methods used in this study are all “hard-clustering”, i.e., an object can only belong to one
cluster.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

Algorithm 2. Smart-and-Closed Algorithm

Input: size threshold s, duration threshold t, distance threshold , density

threshold µ, candidate set R and the trajectory data stream S

Output: every qualified companion q

1. for each coming snapshot s of S

2. initialize new candidate set R';

3. cluster the objects in s w.r.t to and µ;

4. for each candidate ri R, do

5. for each cluster cj s, do

6. if ri size is less than s then break;

7. new candidate ri' ri cj;

8. duration (ri') = duration (ri)+duration (s);

9. remove intersected objects from ri;

10. if size(ri') s then

11. add ri' to R';

12. if duration (ri') t then

13. output ri' as a qualified companion q;

14. for each cluster cj do

15. if cj is closed then add to R';

16. R R';

Fig. 5. Algorithm: The Smart-and-closed Discovery

s1= 10m s2= 10m s3= 10m s4= 10m

r1 ={o1, o2,

o3, o4 }, 10 m

r2 ={o6, o7,

o8, o9, o10},

10 m

r1 ={o1, o2,

o3, o4 }, 20 m
r2 ={o6, o7, o8,

o9, o10}, 20 m
r3 ={o1, o2,

o3, o4, o5, o6,

o7, o8, o9,

o10}, 10 m

r1 ={o1, o2,

o3, o4}, 30 m

r2 ={o8, o9,

o10}, 30 m

r3 ={o1, o2,

o3, o4 , o5},

20 m

r1 ={o1, o2,

o3, o4 }, 40 m

r2 ={o1, o2,

o3, o4 , o5},

30 m

R's size: 19

Intersect: 2

R's size: 15

Intersect: 9

R's size: 9

Intersect: 12

o5

o6
o7

o9

o10

o2

o3

o4

o5o1

o8

o3

o1

o2

o4

o6

o7
o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6
o5

R's size: 9

Intersect: 0

Fig. 6. Example: Smart-and-closed Algorithm

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

4.1. The Traveling Buddy
In streaming trajectories, the objects keep on moving and updating their positions,
however, the changes of object relationships are gradual evolutions rather than fierce
mutations. The object relationships are possible to be retained in a few snapshots, i.e.,
the objects are likely to stay together with several members of the current cluster.
It is attractive to reuse such information to speed up the clustering tasks. However,
the system cannot reuse it directly. The major issue is about the intrinsic feature of
density-based clustering. Unlike other types of clusters, the results of density-based
clustering may be quite different due to minor position change of an individual object.
This phenomenon is called individual sensitivity as illustrated in Example 4.

Example 4: Fig. 7 shows two consecutive snapshots of the trajectory stream. Suppose
the density threshold µ is set to three. In snapshot s1, two clusters c1 and c2 are inde-
pendent. However in s2, object o1 moves a little to the south, and this movement makes
the two clusters density connected and merged as one cluster c3. Such case may impose
important meanings in real applications, for instance, in the scenario of infected dis-
ease monitoring, the people in the two clusters should then be watched together since
the disease may spread among them.

s1 s2

c1 c2

o1

c3

o1

Fig. 7. Example: Individual Sensitivity Problem

The time cost of checking individual sensitivity is quadratic to the cluster size, and
in many cases the system has to generate large clusters to produce meaningful com-
panions. Hence high computational overhead is still involved in the clustering stage.

Then is it possible to explore a smaller and more flexible structure? In real world,
there are some kinds of micro-groups in trajectory stream. For examples, couples would
like to stay together on trips, military units operate in teams, families of birds, deer
and other animals often move together in species migration. Such objects stay closer
to each other than outside members. Even though they might not be as big as the com-
panion, their information can be used to help clustering. Since they are way smaller
than the cluster, their maintenance cost is much lower.

Definition 6 (Traveling Buddy): Let O be the object set and δγ be the buddy radius
threshold, traveling buddy b is defined as a set of objects satisfying: (1) b ⊆ O; (2) for
∀oi ∈ b, dist(oi, cen(b)) 6 δγ , where cen(b) is the geometry center of b. The buddy’s
radius γ is defined as the distance from cen(b) to b’s farthest member.

The traveling buddies can be initialized by incrementally merging the objects in two
steps: (1) treating all objects as individual buddies; and (2) merging them with their
nearest neighbors. This process stops if the buddy’s radius is larger than γ. The initial-
ization step costs O(n2) time for n objects. However, this step only needs to be carried
out once and the traveling buddies are dynamically maintained along the stream.

There are two kinds of operations to maintain buddies on the data stream: namely
split and merge, as shown in the following example.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

Example 5: Fig. 8 shows the traveling buddies in two snapshots. Traveling buddy b1

is split into three parts in snapshot s2. At the same time, b2, b3 and a part of b1 are
merged as a new buddy in s2.

s1 s2

b1

b2

b3

b1'

b2'

b3'

Fig. 8. Example: Merge and Split Buddies

When the data of a new snapshot st+1 arrive, the maintenance algorithm first up-
dates the center of each buddy b. For object oi ∈ b, the system calculates the shift (∆xi,
∆yi) between st+1 and st. And the new center is updated as:

cent+1(b) = cent(b) +
∑

oi∈b

(∆xi,∆yi)

Then every object oi ∈ b checks its distance to the buddy center; if the distance
is larger than δγ , oi will be split out as a new buddy. The cen(b) is also updated by
subtracting the shift of oi.

The second operation is to merge the buddies that are close to each other. If two
buddies bi and bj satisfy the following equation, they should be merged as a new buddy.

dist(cen(bi), cen(bj)) + γi + γj 6 2δγ

Suppose bi has mi objects and bj has mj objects, the new buddy bk ’s center is com-
puted as cen(bk) = (mi ∗ cen(bi) + mj ∗ cen(bj))/(mi + mj). Therefore, the system does
not need to access the detailed coordinates of each object to merge buddies, the compu-
tation can be done with the information from the old buddy’s center and size.

The detailed steps of buddy maintenance are shown in Fig. 9. When the data of a
new snapshot arrives; the algorithm first updates the center of each buddy (Line 2).
Then each buddy member is checked to see whether a split operation is needed (Lines
3 – 7). At last, the system scans the buddy set and merges the buddies that are close
to each other (Lines 10 – 13).

Proposition 2: Let m be the average number of traveling buddies and n be the number
of objects. The time cost of Algorithm 3 is O(n + m2).

Proof: The split operation needs to check each object and the time cost is O(n). The
merge operation has to check the buddies pairs with time complexity O(m2). Therefore
the total maintenance cost is O(n + m2).

In the worst case, if the objects are sparse and each of them is an individual buddy,
where m = n. The maintenance cost is still O(n2). However the number of m is usually
much smaller than n and the algorithm is likely to strike a relatively high efficiency.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

Algorithm 3. Traveling Buddy Maintenance

Input: the radius threshold , the traveling buddy set B a n d the coming

snapshot s

Output: updated buddy set B'

1. for each bi in B do

2. update cen(bi);

3. for oj in bi, do

4. if dist(oj, cen(bi)) > then // Split Operation

5. split oj out as a new buddy bj;

6. add bj to B';

7. update cen(bi);

8. add bi to B';

9. //Merge Operation

10. for each bi, bj in B', bi bj do

11. if dist(cen(bi), cen(bj)) + i+ j 2 then

12. merge bi, bj as bk;
13. remove bi, bj and add bk to B';

14. return B';

Fig. 9. Algorithm: Buddy Maintenance

4.2. Buddy-based Clustering
In the clustering step, the system has to check the density connectivity for each ob-
ject. The traveling buddies can help the clustering process avoid accessing those object
details. To bring down computational overhead, we introduce following lemmas.

Lemma 2: Let b be a traveling buddy, ε be the distance threshold and µ be the density
threshold. If b’s size is larger than µ + 1 and the buddy radius γ 6 ε/2, then all the
objects in b are directly density reachable to each other. Such a traveling buddy is
called a density-connected buddy.

Proof: Note that γ 6 ε/2, thus for ∀oi, oj ∈ b, dist(oi, oj) 6 2γ 6 ε. Then all the
members of b are included in Nε(oi). If b’s size is larger than µ + 1, then |Nε(oi)| > µ.
By Definition 1, oi and oj are directly density reachable.

Lemma 2 shows that, if a traveling buddy is tight and large by itself, then all its
members can be considered as density connected. Lemma 2 also gives the directions
that the radius threshold δγ should not be set larger than ε/2.

Lemma 3: Let bi and bj be two traveling buddies with radius γi and γj , and ε be the
distance threshold. If dist(cen(bi), cen(bj))−γi−γj > ε, then the objects in bi and bj are
not directly density reachable.

Proof: As shown in Fig. 10(a):
if dist(cen(bi), cen(bj))− γi − γj > ε, then for ∀oi ∈ bi, oj ∈ bj , dist(oi, oj) > ε. Therefore,
oj does not belong to Nε(oi) and they are not directly density reachable.

Lemma 3 tells us that, when searching for the directly density reachable objects for
a traveling buddy, if another buddy is too far away, then the system can prune all its
members without further computation. This lemma is very helpful. In the experiments
it helps prune more than 80% of the objects.

For the traveling buddies that are close to each other, the detailed distance compu-
tation still needs to be carried out. But with the following lemmas, the system does not
need to compute distances between all the pairs. Lemma 4 provides heuristics to speed
up the computation.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

Lemma 4: Let bi, bj be two density-connected buddies and ε be the distance threshold.
If ∃oi ∈ bi, oj ∈ bj such that dist(oi, oj) 6 ε, then all the objects of bi and bj are density
connected.
Proof: As Fig. 10 (b) shows, since bi is a density-connected traveling buddy and
|Nε(oi)| > µ, if dist(oi, oj) 6 ε, then oi and oj are directly density reachable. Since
all the objects in bi and bj are directly density reachable from oi and oj , respectively.
Therefore, all the objects in the two traveling buddies are density connected.

dist (cen(bi), cen(bj))

dist (bi, bj)

i
j

dist (oi, oj)

bi bj

dist (oi, oj)

bi bj

(a) (b)

Fig. 10. Proof of Lemma 3 and 4

Based on Lemma 4, once the system finds a pair of objects close to each other, it
ends the computation and considers the corresponding buddies density-connected. The
detailed algorithm is listed in Fig. 11. The algorithm first updates the buddy set in a
new snapshot (Line 1). Then it randomly picks a buddy and initializes it as a new
cluster (Line 2 – 4). For each buddy in the cluster, the algorithm checks its density
connectivity to others (Lines 5 – 18). The far-away buddies are filtered out (Lines 8 –
9). With the help of Lemma 4, the algorithm searches density reachable buddies and
objects and adds them to the cluster (Lines 10 – 18). Finally, the algorithm outputs
clustering results when all the buddies are processed (Line 20).

In the worst case, Algorithm 4 is still with O(n2) time complexity, where n is the
number of objects. But in most cases, Lemmas 3 and 4 can prune majority buddies and
save time for distance computation. The experiment results show that buddy-based
clustering is an order of magnitude faster than the original clustering algorithm.

4.3. Companion Discovery with Buddies
The buddies are not only useful in clustering step, they are also helpful for the inter-
section process to generate companions. When intersecting a candidate with a cluster,
the system needs to check whether each candidate’s objects appear in the cluster or
not. The information of traveling buddies can provide a shortcut to this process: If a
buddy stays unchanged during the period, and it appears both in the candidate and the
cluster, then the system can put all its members into the intersection result without
accessing the detailed objects.

To efficiently utilize the buddy information, a buddy index is designed to keep the
candidates dynamically updated with the buddies.
Definition 7 (Buddy Index): The buddy index is a triple {BID, ObjSet, CanIDs},
where BID is the buddy’s ID, ObjSet is the object members of the buddy, CanIDs
records the IDs of candidates containing the buddy.

As long as the buddy stays unchanged, the candidates only store the BID instead
of detailed objects. While making intersections, the buddy is treated as a single ob-
ject. When the buddy changes, the system updates all the candidates in CanIDs and

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

Algorithm 4. Buddy-based Clustering

Input: the distance threshold , the density threshold µ, the coming snapshot s and

the buddy set B.

Output: the cluster set C.

1. update buddy set B; //Algorithm 3

2. randomly pick a buddy b;

3. initialize cluster c b, add c to C;

4. remove b from B;

5. for each unvisited buddy bi in c

6. mark bi as visited;

7. for each buddy bj in B, do

8. if dist(cen(bi), cen(bj)) - i - j > , then

9. continue; // Lemma 3

10. for each oi in bi, oj in bj, do

11. if dist(oi, oj) , then

12. if bi , bj are density connected then

13. add bj to c; //Lemma 4

14. remove bj from B;

15. break;

16. else if oj is density connected from oi then

17. split bj to objects;

18. add oj to c;
19. repeat steps 2 - 18 until all buddies are processed;

20. return the cluster set C;

Fig. 11. Algorithm: Buddy-based Clustering

replaces BID with the corresponding objects in ObjSet. The buddy-based companion
discovery algorithm is listed in Fig. 12.

When a new snapshot arrives, the algorithm performs buddy-based clustering and
updates the buddy index (Lines 2 – 4), then selects out the candidates with enough size
(Lines 5 – 6). The candidates are interested with the generated clusters with the help
of the buddy index (Lines 7 – 10). The candidate’s duration and size are checked again
after the intersection, and the qualified ones are output as the companions (Lines 11
– 14). Finally, the closed candidates are added to the memory for further processing
(Lines 15 – 17).

Example 6: Fig. 13 shows the running process for buddy-based companion discovery.
There are four buddies initialized in snapshot s1. In the candidates, the buddy ID is
stored instead of detailed objects. In snapshot s2, the four buddies stay the same and
the algorithm makes intersections by only checking their BIDs. Although the total
intersection time is not reduced, the time cost for each intersection operation has been
brought down. It is common that different candidates contain the same objects, such
as r1 and r3 in s2. The buddy index helps to keep only one copy of the objects and add
only pointers (the BIDs) to candidates. Therefore, the space cost is further reduced.
In s3, the buddy b3 is no longer valid, then the system updates candidate r2, using the
objects to replace the buddy’s ID. In s4, traveling companion r1 is discovered as {b1,
b2}. With the help of buddy index, the system can easily look up detailed objects and
output the companion as {o1, o2, o3, o4}.
5. ROAD COMPANION DISCOVERY
In the previous sections, we have investigated the problem of companion discovery
on 2D Euclidean space. However, many objects move on the road networks in real

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

Algorithm 5. Buddy-based Companion Discovery

Input: Size threshold s, duration threshold t, candidate set R, buddy index BI and the

trajectory data stream S

Output: every qualified companion q

1. for each coming snapshot s of S;

2. initialize new candidate set R';

3. buddy based clustering; // Algorithm 4

4. update BI and corresponding candidates;

5. for each candidate ri in R, do

6. if size(ri) < s then break;

7. for each cluster cj in s, do

8. ri' buddy-based-intersection(ri, cj);

9. duration (ri') = duration (ri)+duration (s);

10. remove intersected objects and buddies from ri;

11. if size(ri') s then

12. add ri' to R';

13. if duration (ri') t then

14. output ri' as a qualified companion q;

15. for each cluster cj do

16. if cj is closed then add to R';

17. R R';

Fig. 12. Algorithm: Buddy-based Companion Discovery

applications. There are several unique difficulties for companion discovery on the road
network. In this section we explore the problem of discovering road companions.

5.1. Problem Formulation

Example 7: Fig. 14 shows the example of moving vehicles on the road network. There
are several issues different from the companion discovery in 2D Euclidean space.
• Distance computation: In the road network, the distance between two objects should

be the length of the shortest path connecting them, rather than a straight line be-
tween them. As shown in the figure, o1 and o2 are close to each other in the Euclidean
space, but they are on different directions. The road network distance between them
is actually much larger.

• Moving Direction: In most cases, the road companion move in the shape of a line. The
moving direction of the object is an important factor in determining the companion.
For example, o7, o8 and o9 in Fig.14 have neighboring vehicles o10 and o11 moving
in opposite direction, such vehicles should not be count as the companion members.
Therefore, the traditional density-based-clustering should be modified to model the
vehicle’s moving directions.
Since the road companion discovery is a new type of problem, it is necessary to

modify some basic concepts of the traveling companion and redefine the task with new
constraints.

Definition 8 (Direct Road Connection): Let O be the object set in a snapshot, M be
the road network, and ε be the distance threshold. Object oj is directly road connected
from object oi on M if netd(oi, oj) ≤ ε, where netd(oi, oj) is the road network distance
between oi and oj on M .

Note that, we remove the requirements about density and replace the Euclidean
distance with the road network distance in Definition 8.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

s1= 10m s2= 10m s3= 10m s4= 10m

r1 ={b1, b2},

10 m

r2 ={b3, b4},

10 m

r1 ={b1, b2 },

20 m
r2 ={b3, b4},

20 m
r3 ={b1, b2,

b3, b4, o5}, 10

m

r1 ={b1, b2},

30m
r2 ={o8, b4},

30 m

r3 ={b1, b2,

o5}, 20 m

r1 ={b1, b2 },

40 m
r2 ={b1, b2 ,

o5}, 30 m

o5

o6
o7

o9

o10

o2

o3

o4

o5

o1

o8

o5

o3

o1

o2

o4

o6

o7
o8

o9

o10

o1 o2 o3 o4 o5

o6 o7

o8 o9 o10

o1 o2

o3

o4

o7

o8
o9

o10

o6

b1 ={o1, o2 }
b2 ={o3, o4 }
b3 ={o6, o7,

o8}
b4 ={o9, o10 }

b1

b2

b3

b4

b1

b2

b3

b4

b1 ={o1, o2 }
b2 ={o3, o4 }
b3 ={o6, o7,

o8}
b4 ={o9, o10 }

b1 ={o1, o2 }

b2 ={o3, o4 }

b4 ={o9, o10 }

b1 ={o1, o2 }
b2 ={o3, o4 }

b1 b2

b4

b1 b2

R's size: 9

Intersect: 0

R's size: 10

Intersect: 2

R's size: 8

Intersect: 9

R's size: 5

Intersect: 12

Fig. 13. Example: Buddy-based Discovery

o1

o3

o2

o4
o5
o6

o7

o8
o9

o10

o11

Fig. 14. Example: Traveling Companions on Road Network

Definition 9 (Road Connection): Let O be the object set in a snapshot, M be the
road network, object oi is road connected to object oj on M , if there is a chain of objects

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

{o1, . . . , on} ∈ O where o1 = oj , on = oi such that oi+1 is directly road connected from oi

on M .
Based on the above definitions, we can formally define the task of road companion

discovery as follows.

Definition 10 (Road Companion): Let M be the road network, δs be the size thresh-
old and δt be the duration threshold, a group of objects q is called road companion
if:
(1) The members of q are road connected on M for a period t where t ≥ δt;
(2) q’s size size(q) ≥ δs.
Problem Definition: Let trajectory data stream S be denoted
by a sequence of snapshots {s1, s2, . . . , si, . . .}. Each snapshot si =
{(o1, x1,i, y1,i), (o2, x2,i, y2,i), . . . , (on, xn,i, yn,i)}, where xj,i, yj,i are the spatial coor-
dinates of object oj at snapshot si, and all the objects move on a road network M .
When the data of snapshot si arrives, the task is to discover the road companion set Q
that contains all the road companions so far.

Note that, we assume the system can match the spatial coordinates of the mov-
ing objects to the road network efficiently. There are many state-of-the-art stud-
ies on this map-matching problem. In our previous studies, we have developed sev-
eral methods for map-matching, the details can be found in [Yuan et al. 2010] and
[Zheng et al. 2012].

5.2. The Discovery Framework
The general framework of clustering-and-intersection can be adapted to discover road
companions. In each snapshot, the system first generates the road-connected clusters
and intersects them with the road companion candidates. The candidates are gradu-
ally refined to be the road companions.

Definition 11 (Road Companion Candidate): Let M be the road network, δs be
the size threshold and δt be the duration threshold, a group of objects q is called road
companion candidate if:
(1) The members of q are road connected on M for a period t where t < δt ;
(2) size(q) ≥ δs.

Similarly, the ideas of smart-and-closed algorithm also works for this framework.
To apply those algorithms on road network, the only difference is to replace the pro-
cess of density-based clustering with the following algorithm of road-connection-based
clustering.

Algorithm 6 first picks a random object as the seed to initialize an cluster (Lines 1
– 4), then expands the cluster (Lines 5 – 10). In the expansion process, the algorithm
starts from the seed, adds in any objects that are directly road connected to the clus-
ter member (Lines 7 – 10). Once a cluster is generated, the system compares its size
with the threshold, only the ones with enough size are included in the final clustering
results (Lines 11 – 13).

Proposition 3: Let n be the size of object set O and N be the total node number of
road network M . The time complexity of Algorithm 6 is O(n2 ∗N).

Proof: There are three loops in Algorithm 6 (Lines 1, 5 and 7). In the worst case,
no objects are road connected. Hence the algorithm has to run n times for the loops in
Lines 1 and 7, and 1 time for the loop in Line 5 (each cluster only contains one object in
such case). The total running number is O(n2). In each run, the system has to find the
shortest path between objects oi and oj to compute their road network distance. The
time cost of the shortest path searching step is determined to the detailed algorithm
and heuristics [Pearl 1984]. In the worst case, the algorithm has to visit all the nodes of
M to find out the shortest path, hence the time complexity of Algorithm 6 is O(n2∗N).

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

Algorithm 6. Road-connection-based Clustering

Input: the distance threshold , the size threshold s, the object set O in a

snapshot

Output: the road-connected cluster set C

1. for each unvisited object o of O, do

2. mark o as visited;

3. initialize a new cluster c;

4. add o to c;

5. for each unexpanded object oi in c, do

6. mark oi as expanded;

7. for each unvisited object oj of O, do

8. if netd(oi, oj) < , then

9. mark oj as visited;

10. add oj to c;

11. if size(c) s then

12. add c to C;

13. return C;

Fig. 15. Algorithm: Road-connection-based Clustering

In many applications, the road network M contains millions of nodes, i.e., N is a
quite large number. To make things worse, the system may not have enough memory
to load in M in one time. Therefore the shortest path computation involves huge I/O
overhead. The time cost of Algorithm 6 is much larger than the density-based cluster-
ing, and it is not feasible for efficient road companion discovery on trajectory streams.

The bottleneck in Algorithm 6 is searching for the directly road-connected objects
(Line 7 – 10). For a particular object oi, the system has to find the shortest paths
between oi and all unvisited objects. This computation process is the most costly step
of the algorithm. However, it is actually not necessary to compute all those shortest
paths, the algorithm’s time cost can be reduced significantly with the following lemma.

Lemma 5: In the road network M , if the Euclidean distance between two objects oi

and oj is larger than the distance threshold ε, oi and oj are not directly road connected.

Proof: In the Euclidean space, the shortest path between oi and oj is a straight line
connection them. Since the road network M is also in the same Euclidean space, the
Euclidean distance must be less than or equal to the road network distance: dist(oi, oj)
≤ netd(oi, oj). If dist(oi, oj) > ε, then netd(oi, oj) > ε. According to Definition 8, oi and
oj are not directly road connected.

Lemma 5 can help accelerate the road-connection clustering process. We develop a
new clustering algorithm with the filtering-and-refinement strategy, as listed in Fig.16.

The main step of Algorithm 7 is at Line 8. Since the main workload of the road-
connection-based clustering is on the shortest path computation, Algorithm 7 is de-
signed to reduce such computation and avoid the huge I/O cost of accessing the road
network data. When searching for the directly road-connected objects for object oi, the
system first computes the Euclidean distance dist(oi, oj), the measure whose compu-
tation only needs the coordinates of oi and oj and involves no I/O cost. If dist(oi, oj)
is already larger than the threshold ε, according to Lemma 5, oj is not possible to be
road-connected with oj , the system can filter it without any further computation. In
such way, about 80% of the objects are pruned and the algorithm is nearly an order of
magnitude faster in our experiments.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18

Algorithm 7. Clustering with Filtering-and-refinement

Input: the distance threshold , the size threshold s, the object set O in a

snapshot

Output: the road-connected cluster set C

1. for each unvisited object o of O, do

2. mark o as visited;

3. initialize a new cluster c;

4. add o to c;

5. for each unexpanded object oi in c, do

6. mark oi as expanded;

7. for each unvisited object oj of O, do

8. if dist(oi, oj) > , then continue;

9. if netd(oi, oj) < , then

10. mark oj as visited;

11. add oj to c;

12. if size(c) s then

13. add c to C;

14. return C;

Fig. 16. Algorithm: Clustering with Filtering-and-Refinement

Proposition 4: Let n be the size of object set O, N be the total node number of road
network M and m be the number of objects that pass the filtering process. The time
complexity of Algorithm 7 is O(n2 + mN).

Proof: With the filtering-and-refinement strategy, the algorithm only needs to com-
pute road network distances for the m objects which pass the filtering process. There-
fore the total time complexity is O(n2 + mN).

Note that, m is much smaller than n with a reasonable distance threshold ε. And
the Euclidean distance computation does not need to access the road network M . The
computation time and I/O overhead are reduced dramatically.

5.3. The Road-buddy-based Approach
The road-connection-based clustering algorithm also has the problem of individual sen-
sitivity. The similar idea of traveling buddy can be applied to improve the algorithm’s
efficiency. The road buddy is thus proposed to maintain the small groups of objects
moving together along the roads.

Definition 12 (Road Buddy): Let M be the road network, O be the object set and δγ

be the buddy radius threshold, the road buddy b is defined as a set of objects satisfying:
(1) b ⊆ O; (2) for ∀oi ∈ b, netd(oi, netcen(b)) ≤ δγ , where netcen(b) is the projection of
the geometry center of b on the road network M . The buddy’s radius γ is defined as the
road network distance from netcen(b) to b’s farthest member.

To obtain netcen(b), the system needs to first compute the geometry center of b, then
employ a map matching algorithm to project the geometry center to the nearest road.
In this study, we use the map-matching algorithm developed in our previous works
[Yuan et al. 2010].

The road buddy has the same operations of split and merge as the traveling buddy.
The initialization of them are also similar. Their major difference is at the maintenance
process. Because it is costly to compute the road network distance from netcen(b) to
each member, the maintenance algorithm employs the filtering-and-refinement strat-
egy to reduce time cost, as listed in Fig. 17.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:19

Algorithm 8. Road Buddy Maintenance

Input: the road network M, the radius threshold , the road buddy set B and

the coming snapshot s

Output: updated buddy set B'

1. for each bi in B do

2. update cen(bi);

3. match cen(bi) to M and compute netcen(bi);

4. for oj in bi, do

5. if dist(oj, cen(bi)) > then isSplit true;

6. else if netd(oj, cen(bi)) > then isSplit true;

7. if isSplit = true, then //Split Operation

8. split oj out as a new buddy bj;

9. add bj to B';

10. update netcen(bi);

11. add bi to B';

12. //Merge Operation

13. for each bi, bj in B', bi bj do

14. if dist(netcen(bi), netcen(bj)) + i+ j 2 then

15. if netd(netcen(bi), netcen(bj)) + i+ j 2 then

16. merge bi, bj as bk;
17. remove bi, bj and add bk to B';

18. return B';

Fig. 17. Algorithm: Road Buddy Maintenance

When the data of a new snapshot arrives; Algorithm 8 first computes the network
center of each buddy (Lines 2–3), then checks each road buddy to see whether a split
operation is needed (Lines 4 – 11), finally scans the buddy set and merges the ones
that are close to each other (Lines 12 – 17). The key steps of filtering-and-refinement
are at Lines 5, 6, 14 and 15. Before computing the road network distance between two
points, the algorithm checks whether their Euclidean distance passing the threshold
and only carries out further computation on the qualified pairs.

The road buddy can be used to improve the efficiency of road-connection-based clus-
tering and companion generation by avoiding accessing the object details. Similar to
the traveling buddy, we propose several lemmas that are helpful for road companion
discovery.

Lemma 6: Let b be a road buddy, ε be the distance threshold. If the buddy radius
γ ≤ ε/2, then all the objects in b are directly road connected to each other. Such a road
buddy is called a road-connected buddy.

Proof: Note that γ ≤ ε/2, thus for ∀oi, oj ∈ b, netd(oi, netcen(b)) ≤ γ and
netd(oj , netcen(b)) ≤ γ. Hence there exists a path ζ by-passing netcen(b) that connects
oi and oj , and length(ζ) ≤ 2γ ≤ ε. Therefore netd(oi, oj) ≤ length(ζ) ≤ ε. According to
Definition 8, oi and oj are directly road connected.

Lemma 7: Let bi, bj be two road-connected buddies and ε be the distance threshold. If
∃oi ∈ bi, oj ∈ bj such that netd(oi, oj) ≤ ε, then all the objects of bi and bj are network
connected.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20

Proof: If netd(oi, oj) ≤ ε, then oi and oj are directly road connected. Since all the
objects in bi and bj are directly road connected from oi and oj , respectively. Therefore,
all the objects in the two traveling buddies are road connected.

Lemma 6 and 7 can be used to speed up the road-connection-based clustering. The
lemmas show that if two buddies are tight by themselves and close to each other, the
system can consider all their members as road connected without further computation.

Lemma 8: Let bi and bj be two road buddies with radius γi and γj , and ε be the distance
threshold. If dist(netcen(bi), netcen(bj)) ≥ γi + γj + ε, then the objects in bi and bj are
not directly road connected.

Proof: As Lemma 5 shows, the Euclidean distance is the lower-bound of road network
distance, netd(netcen(bi), netcen(bj)) ≥ dist(netcen(bi), netcen(bj)) ≥ γi + γj + ε, then
for ∀oi ∈ bi, oj ∈ bj , netdist(oi, oj) ≥ ε. Therefore, oi and oj are not directly network
connected.

Lemma 8 is helpful to prune most of the unconnected buddies in road-connection-
based clustering. Especially the lemma does not require the system to compute any
road network distance on M . The system only needs the network center of buddies
and their radius as input (which are already computed), the huge I/O cost could be
saved.

The detailed algorithm is listed in Fig.18. Algorithm 9 first calls Algorithm 8 to
update the road buddies with new data (Line 1), then randomly picks a road buddy as
the seed to form a cluster (Lines 2 – 4). The algorithm searches for the buddies that
are road connected and adds them to the cluster (Lines 2 – 18). The buddies that are
distant from the seed are filtered out directly without detailed distance computation
(Lines 8 – 9). The algorithm searches road-connected buddies with Lemmas 6 and 7
(Lines 10 – 18). Finally, the algorithm outputs the clustering results when all road
buddies are processed (Line 20).

The buddy index can be retrieved from road buddies and help companion genera-
tion. Because this technique is actually independent from the metrics and distance
computation, Algorithm 5 can be applied directly on road buddies.
6. LOOSE COMPANION DISCOVERY
In many applications such as military object monitoring, several members may tem-
porarily leave the group and go back in short time. The companion discovery algorithm
will miss such companions if strictly following the time constraints.

Example 8: Fig.19 shows the trajectory streams of a small team of military troops. At
snapshot s1, the team members move together. They send out a member o1 to scout
around at s2 and o1 returns to the team at s3. The team then splits to two parts at s4 to
conduct a “pincer attack” against enemies. Finally they reunion at s5. Suppose the size
threshold is 6 and the duration threshold δt is set as 30 minutes. The system cannot
discover any companion from the data if strictly following the constraints.

In most cases, the rigid time constraints may lead to no result or not the best results
of discovered traveling companion. It is necessary to release the constraints for more
effective discovery. To this end, we introduce the concept of loose companion as follows.

Definition 13 (Loose Companion): Let δs be the size threshold, δt be the duration
threshold and δl be the leaving time threshold, a group of objects q is called loose
companion if:
(1) Let T be the total time that the members of q are density connected, T ≥ δt;
(2) q’s size size(q) ≥ δs;
(3) For each member o of q, let t be the maximum period that o is not density-connected
with other members of q, t ≤ δl.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:21

Algorithm 9. Road-Buddy-based Clustering

Input: the distance threshold , the coming snapshot s and the buddy set B.

Output: the cluster set C

1. update buddy set B; //Algorithm 3

2. randomly pick a buddy b;

3. initialize cluster c b, add c to C;

4. remove b from B;

5. for each unvisited buddy bi in c

6. mark bi as visited;

7. for each buddy bj in B, do

8. if dist(netcen(bi), netcen(bj)) - i - j > , then

9. continue; // Lemma 3

10. for each oi in bi, oj in bj, do

11. if netd(oi, oj) , then

12. if bi , bj are road connected then

13. add bj to c; //Lemma 4

14. remove bj from B;

15. break;

16. else if oj is road connected from oi then

17. split bj to objects;

18. add oj to c;
19. repeat steps 2 - 18 until all buddies are processed;

20. return the cluster set C;

Fig. 18. Algorithm: Road-buddy-based Clustering

o3

o1

o2

o4

o6

o7

o8

o9

o10

o5

o3

o1

o2

o4

o6

o7

o8

o9

o10

o5

o1
o2

o3
o4

o5

o6
o7
o8
o9

o10

o3

o2

o4

o6

o7

o8

o9

o10

o5

o1

o1
o2

o3
o4

o6
o7
o8
o9
o10

o5

s1= 10m s2= 3m s3= 10m s4= 4m s5= 10m

Fig. 19. Example: Movement of Military Troops

The loose companion allows the member objects temporarily leaving the companion,
as long as the leaving time is less than the threshold δl. In Fig.19, if we set δl as 5
minutes, the military team could be discovered as a companion.

Similarly we propose the definition of loose buddy.

Definition 14 (Loose Buddy): Let s be a snapshot of the trajectory stream, δγ be the
buddy radius threshold and δl be the leaving time threshold, loose buddy b is defined
as a set of objects, for ∀oi ∈ b,
(1) dist(oi, cen(b)) ≤ δγ , where cen(b) is the geometry center of b;
or (2) dist(oi, cen(b)) > δγ , but the total time of dist(oi, cen(b)) > δγ is less than δl.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22

To discover the loose companions and maintain the loose buddies, the system can
follow the same frameworks proposed in previous sections. Only minor modifications
need to be carried out in the intersection and split operations. When an object leaves
the companion candidate or buddy, the system does not remove that object or split the
buddy immediately, instead puts the object/buddy in a buffer to be removed/split after a
time period of δl. If the object returns in δl, the remove/split command will be canceled.
Such modification does not influence the general frameworks of companion discovery.
The other steps of the clustering-and-intersection algorithm, smart-and-closed method
and the buddy-based approach remains the same for loose companion discovery, hence
we omit the details here due to space limitation.

7. PERFORMANCE EVALUATION
7.1. Experiment Setup
Datasets: We evaluate the proposed methods on both real and synthetic trajectory
datasets. The taxi dataset (D1) is retrieved from the Microsoft GeoLife and T-Drive
projects [Yuan et al. 2010; Zheng et al. 2010] with the road network of Beijing. The tra-
jectories are generated from GPS devices installed on 500 taxis in the city of Beijing.
The dataset is available to public5. The military trajectory dataset (D2) is retrieved
from the CBMANET project [Krout 2007], in which an infantry battalion of 780 units,
divided as 30 teams, moves from Fort Dix to Lakehurst for a mission on two routes in 3
hours. Meanwhile, to test the algorithm’s performance in large datasets, we also gen-
erate two synthetic datasets (D3 and D4), being comprised of 1,000 to 10,000 objects,
with more than 10 million data records.
Baselines: The proposed Smart-and-Closed algorithm (SC) and Buddy-based discov-
ery algorithm (BU) are compared with Clustering-and-Intersection method (CI), which
is used as the framework to find convoy patterns [Jeung et al. 2008]; and two state-
of-the-art algorithms: (1) The Swarm pattern (SW) [Li et al. 2010] that captures the
objects moving within arbitrary shape of clusters for certain snapshots that are possi-
bly non-consecutive; (2) The TraClu algorithm (TC) [Lee et al. 2007] that discovers the
common sub-trajectories with a density-based line-segment clustering algorithm.
Environments: The experiments are conducted on a PC with Intel 6400 Dual CPU
2.13G Hz and 2.00 GB RAM. The operating system is Windows 7 Enterprise. All the
algorithms are implemented in Java on Eclipse 3.3.1 platform with JDK 1.6.0. The
parameter settings are listed in Fig. 20.

Dataset Obj. # Duration Sample Freq. Snapshot# Record#

Taxi (D1) 500 4.2 hours 5 minutes 50 25,000

Military (D2) 780 3 hours 1 minute 180 140,400

Syn 1 (D3) 1,000 24 hours 1 minute 1,440 1.44 M

Syn 2 (D4) 10,000 24 hours 1 minute 1,440 14.4 M

The companion size threshold s: 5 40, default 10

The companion duration threshold t: 3 15, default 10

The clustering parameter and are set according to different datasets.

The buddy radius threshold : /2 /10, default /2.

The leaving time threshold l: 0 6, default 0

Fig. 20. Experiment Settings

5GeoLife GPS Trajectories Datasets. Released at: http://research.microsoft.com/en-us/downloads/b16d359d-
d164-469e-9fd4-daa38f2b2e13/default.aspx

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:23

7.2. Comparisons in Discovery Efficiency
In this subsection we conduct experiments to evaluate the efficiency of companion dis-
covery algorithms in Euclidean space. Since both SW and TC cannot output the results
incrementally, we take the running time of entire dataset as the measure for time cost.
The size of candidate set (# of objects) is used to measure the space cost of companion
computation. The only exception is TC, since the algorithm only carries out the sub-
trajectory clustering task and does not store any companion candidates, TC’s space
cost is not included in the experiment.

We first evaluate the algorithm’s time and space costs on different datasets with
default settings. Fig. 21 shows the experiment results. Note that the y-axes are in
logarithmic scale. BU achieves the best performances on all the datasets. In the largest
dataset D4, BU is an order of magnitude faster than CI and SW. BU’s space cost is only
20% of SW and less than 5% of CI.

100

1000

10000

100000

1000000

D1 D2 D3 D4

BU SC CI SW

1

10

100

1000

10000

D1 D2 D3 D4

BU SC CI SW TC

10
3

10
4

10
5

10
6

Time (second) Candidate size (#)10
7

(a) (b)

Fig. 21. Efficiency: (a) time, (b) space on diff. datasets

Figure 22 illustrates the influences of companion size threshold δs in the experi-
ments. The experiment is carried on dataset D3. Based on default settings, we evaluate
the algorithms with different values of δs. Generally speaking, when the size threshold
grows larger, the filtering mechanism is more effective to prune more companion can-
didates in each snapshot. The space costs reduce significantly, and the running times
also decreases for fewer intersections.

100

1000

10000

100000

1000000

10 20 30 40

BU SC CI SW

1

10

100

1000

10000

10 20 30 40

BU SC CI

SW TC

10
3

10
4

10
5

10
6

s s

Time (second)
Candidate size (#)

(a) (b)

Fig. 22. Efficiency: (a) time, (b) space vs. δs

We also study the influence of duration threshold δt. Based on default settings, the
experiments are conducted on dataset D3. The value of δt is changed from 3 to 15, the
algorithm’s performances are shown in Fig. 23. BU, SC and CI are all faster when δt

grows larger, because many companion candidates are not consistent enough to last

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24

for a long time. When setting δt as 15 snapshots, BU can process the dataset in less
than 20 seconds (Fig. 23 (a)). It is almost an order of magnitude faster than SC and
CI. TC is not influenced by δs and δt, since it is only a clustering algorithm and does
not generate any companion candidates. Beside TC, SW also could not improve the
performance when δt increases, the reason is SW utilizes the object-growth strategy
to prune candidates. Such heuristics could only work with the size threshold δs, but
cannot benefit from larger δt.

1000

10000

100000

1000000

3 7 11 15

BU SC CI SW

1

10

100

1000

10000

3 7 11 15

BU SC CI

SW TC

10
3

10
4

10
5

10
6

t t

Time (second) Candidate size (#)

(a) (b)

Fig. 23. Efficiency: (a) time, (b) space vs. δt

In summary, δs and δt are two important factors that influence the efficiency of com-
panion discovery algorithms. When increasing the threshold, more company candi-
dates are pruned and the time and space costs are reduced. BU outperforms other
methods in the efficiency evaluations, especially in the scenarios of long lasting stream
with large number of objects.

7.3. Efficiency Analysis for Buddy-based Discovery
Why is the buddy-based discovery algorithm more efficient? In this subsection we
carry out the experimental analysis to reveal the advantages of buddy-based discovery
method.

In the beginning, we tune the parameters of BU to study the factors that influence its
efficiency. With δs and δt set as default values, we test BU with different buddy radius
threshold δγ from ε/10 to ε/2, and record the average buddy size |b|, buddy number
and algorithm’s running time. Their relationships are demonstrated in Fig. 24. One
can clearly learn from Fig. 24 (a) that the total buddy number is inversely proportional
to the average buddy size |b|. In addition, the number of unchanged buddies decreases
rapidly as |b| grows larger. However, as shown in Fig. 24 (b), the running time of both
buddy-based clustering (B-Cluster) and BU decreases with larger |b|. This phenomenon
can be explained by Proposition 2, the cost of buddy’s maintenance algorithm is O(n +
m2), where n is the number of objects and m is the number of buddies. If n is fixed, then
m is inversely proportional to |b|. Hence BU costs less time if |b| is larger. Based on the
efficiency analysis, we recommend setting the buddy radius as a relatively large value
(such as ε/2). Fig. 24 (b) also records the time cost of DBSCAN clustering algorithm as
a reference. Even if less than 20% buddies stay unchanged (which is rare for real-world
objects), as long as the average size of the buddies is larger than 3, the buddy-based
clustering algorithm can still outperform DBSCAN. The experiment results show that
BU is especially feasible for processing a trajectory stream with dense object clusters.

BU has three steps, namely the maintenance step (M-step, Algorithm 3), clustering
step (C-step, Algorithm 4) and intersection step (I-step, Algorithm 5). To study the
time cost of each step, the system carries out BU on the four datasets and record the
time costs of each step, as well as their proportions in the total running time, as shown

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:25

0

100

200

300

400

1.26 2.22 4.31 9.17

B-Cluster BU

DBSCAN

0

300

600

900

1.26 2.22 4.31 9.17

Total# Split#

Merge# Same#

|b|

Buddy # Time (second)

|b|

(a) (b)

Fig. 24. Efficiency Analysis: (a) buddy number, (b) time vs. buddy size

in Fig. 25. The results denote that the clustering step is actually the most efficient in
the three, it costs less than 5% of the total running time, compared to the DBSCAN
clustering which usually takes 40-50% of the total running time of SC. BU spends
an extra 10% to 15% time in maintaining the buddies to save more time from the
clustering task.

0%

20%

40%

60%

80%

100%

D1 D2 D3 D4

M% C% I%

1

10

100

1000

D1 D2 D3 D4

M-step C-Step I-Step Total

Time (second)

(a) (b)

Fig. 25. Efficiency Analysis: (a) running time, (b) percentage of BU steps on diff. datasets

From the above experiments, one can clearly see the two key advantages of BU:
(1) Utilizing the buddy information to filter out most objects without accessing their
details. (2) Employing the buddy index to reduce the size of the candidate set, and so
decrease the intersection times of companion discovery.

7.4. Evaluations on Algorithm’s Effectiveness
The third part of the experiment is to evaluate the quality of the retrieved companions.
In dataset D2, an infantry battalion of 780 units moves from Fort Dix to Lakehurst for
a mission on two routes in 3 hours. The objects are organized in 30 teams, each team
has 25 to 30 units. The information of team partitioning is retrieved as the ground
truth. The algorithm’s outputs are matched to the ground truth and the measures of
precision and recall are calculated as follows.
Precision: The proportion of true companions over all the retrieved results of the algo-
rithm. It represents the algorithm’s selectivity in finding out meaningful companions.
Recall: The proportion of detected true companions over the ground truth. This crite-
ria shows the algorithm’s sensitivity for detecting traveling companions.

We conduct experiments with different values of the size threshold δs. The results
of effectiveness evaluation are shown in Fig. 26. BU and SC have same precision and

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26

recall since they output identical companions. They have about 20% precision improve-
ment over SW, and near 40% precision improvement over CI. SW generates the swarm
patterns of frequently meeting objects, which is actually a super set of the companions.
The swarm pattern is highly sensitive to help find out all the companions (i.e., 100%
recall), but SW also generates more false positives that bring down the algorithm’s
selectivity. CI has the same problem with even lower precision. Since there are many
redundant and non-closed companions in the results, more than half of CI’s results are
not useful.

Again, TC is not affected by the parameters of δs and δt. TC takes the movement
direction as an important measure to compute sub-trajectory clusters; its results re-
flect the major directions of the object movements. However, such clusters may not
capture the information of companions, because the companion member’s moving di-
rection might be different. As an illustration, please go back to Fig. 1. From snapshot
s2 to s3, the moving directions of o8 and o9 are different, hence they may be put in
different sub-trajectory clusters.

Another interesting observation is that, in Fig. 26, BU, SC, CI and SW’s precisions
all increase when δs becomes larger, since fewer companions can pass a higher size
threshold. However, if δs is set too high (more than 25), several true companions will
also be filtered out and the algorithm cannot achieve 100% recall.

0%

20%

40%

60%

80%

100%

10 15 20 25

BU SC CI

SW TC

0%

20%

40%

60%

80%

100%

10 15 20 25

BU SC CI

SW TC

s s

Precision Recall

(a) (b)

Fig. 26. Effectiveness: (a) precision, (b) recall vs. δs

In the next experiment, we study the influence of time threshold δt. Fig. 27 shows the
precision and recall of the five algorithms with different δt on D2. BU and SC achieve
better performance than SW and CI. When increasing δt, the algorithm’s precision
increases, but they can still keep a high recall. Since all the true companions last
for a long period in D2. If we set δt greater than 11, both BU and SC can achieve
100% precision and recall. However, if δt is set too high, e.g., 15, no companion can be
discovered since there exist no object groups moving together for such a long time.

In general, BU and SC can guarantee 100% recall (i.e., not missing any real com-
panion), we suggest that in real applications, the user should set a relatively high
time threshold to filter out false positives, but a moderate size threshold to guarantee
the algorithm’s sensitivity.

7.5. Experiments on Road Companion Discovery
To test the efficiency of road companion discovery, we perform the evaluation on
dataset D1 with the road network of Beijing, which has 106,579 road nodes and
141,380 road segments. The default size threshold δs is set as 8 and the time threshold
δt is set as 11. In this experiment, we compare the performance of four methods: (1) The
Clustering-and-Intersection framework with road network distance computation (CI);

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:27

0%

20%

40%

60%

80%

100%

3 7 11 15

BU SC CI

SW TC

0%

20%

40%

60%

80%

100%

3 7 11 15

BU SC CI

SW TC

t
t

Precision Recall

(a) (b)

Fig. 27. Effectiveness: (a) precision, (b) recall vs. δt

(2) The Smart-and-Closed algorithm with road network distance computation (SC); (3)
The smart-and-closed algorithm with Filtering-and-Refinement strategy (FR); and (4)
The Road-Buddy based method (RB).

We first evaluate the time and space costs of road companion discovery. The number
of accessed road nodes is used as the measure for I/O cost. Based on default settings, we
evaluate the algorithms with different values of δs. Figure 28 shows the running time
and accessed node number. Generally speaking, when the size threshold grows larger,
both running time and I/O costs decreases. The computation cost of road companion
discovery is much larger than the traveling companion discovery on Euclidean space.
This is mainly caused by the high I/O overhead in road network distance computation.
Since the road network distance computation becomes the major cost, SC cannot save
much time comparing to CI. However, FR and RB are an order of magnitude faster
than SC and CI, because they utilize the filtering-and-refinement strategy to avoid
most unnecessary road network distance computations. The effects of RB is better,
since RB groups the objects in small buddies and limits the distance computation in a
small region with lower I/O overhead.

100

1000

10000

100000

4 8 12 16

BU SC CI FR

10

100

1,000

10,000

4 8 12 16

BU SC CI FR

10
2

10
3

10
4

10
5

s
s

Time (second) Access Node #

(a) (b)

Fig. 28. Efficiency: (a) time, (b) I/O of road companion discovery vs. δs

The influence of duration threshold δt is also studied in our experiment. Based on
default settings, the value of δt is changed from 3 to 15, the algorithm’s performances
are shown in Fig. 29. All the algorithms run faster when δt grows larger, because fewer
road companion candidates can last for a long time. Again, RB and FR only cost 20%
to 50% time as CI and SC.

The experiment results show that, the main bottleneck of road companion discovery
is at the distance computation stage. The traditional companion discovery method, BU
and SC, do not work well on the road networks. The new frameworks of RB and FR

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28

100

1000

10000

100000

3 7 11 15

RB SC CI FR

10

100

1000

10000

3 7 11 15

RB SC CI FR

10
2

10
3

10
4

10
5

t t

Time (second) Access Node #

(a) (b)

Fig. 29. Efficiency: (a) time, (b) I/O of road companion discovery vs. δt

reduce the time cost on unnecessary shortest path computation, therefore they can
achieve higher efficiency peformances.

7.6. Evaluations on Loose Companion Discovery
In the previous experiments, we set the leaving threshold δl as 0. In this subsection,
we conduct experiments on loose companion discovery. We run the algorithms of BU,
SC and CI on dataset D3 by tuning δl from 0 to 6 snapshots.

Fig. 30 shows the algorithms’ time and space costs. With larger δl, all the algorithms’
space costs increase rapidly since they cannot prune the candidates if several objects
temporarily leave the companion, hence the system has to spend more time in making
intersections with a larger candidate set. However, even with large δl, BU still can
discover the loose companions in about 20 seconds.

1000

10000

100000

1000000

0 2 4 6

BU SC CI

0

20

40

60

80

100

0 2 4 6

BU SC CI

10
3

10
4

10
5

10
6

l

Time (second) Candidate size (#)

(a) (b)

l

Fig. 30. Efficiency: (a) time, (b) space vs. δl

Finally we carry out the effectiveness experiment on the military dataset D2. δl is
changed from 0 to 6 snapshots, and other parameters are set as the default values.
As shown in Fig. 31 (a), the precision of companion discovery decreases with larger
δl, since more companions are generated and inevitably the number of false positive
increases. However, the good news is that the recall increases as δl grows (Fig. 31 (b)).

The experiment results show the necessity of loose companion discovery. With a re-
leased time constraint, BU and SC can discover more meaningful companions and
achieve a higher recall. The system’s feasibility is increased in real applications.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:29

0%

20%

40%

60%

80%

100%

0 2 4 6

BU SC CI

0%

20%

40%

60%

80%

100%

0 2 4 6

BU SC CI

Precision Recall

l l

(a) (b)

Fig. 31. Effectiveness: (a) precision, (b) recall vs. δl

8. RELATED WORK
According to the methodologies, the related works of traveling companion discovery
can be loosely classified into two categories: trajectory clustering and movement pat-
tern discovery.

8.1. Trajectory Clustering
The works in this category focus on developing efficient algorithms to cluster moving
objects. Gaffney et al. first proposed the fundamental principles of clustering mov-
ing objects based on the theories of probabilistic modeling [Gaffney and Smyth 1999;
Cadez et al. 2000]. Many distance functions, such as DTW [Yi et al. 1998] and LCSS
[Gunopoulos 2002] are proposed. Lee et al. proposed a novel partition-and-group
framework to find the clusters based on sub-trajectories [Lee et al. 2007].

In [Har-Peled 2003], Har-Peled shows that the moving objects can be clustered
when the resulting clusters are competitive at any time during the motion. Yang
et al. proposed the idea of neighbor-based pattern detection method for windows
[Yang et al. 2009]. Ester et al. made the progress to generate incremental clusters
[Ester et al. 1998]. Li et al. propose a micro-cluster [Li et al. 2004] based schema
to cluster moving objects. Zhang and Lin use the k-centre clustering algorithm
[Gonzalez 1985] for histogram construction. A distance function combining velocity
and position differences is proposed in their work [Zhang and Lin 2004]. More recently,
Jensen et al. utilize the velocity features to cluster objects for the current and near fu-
ture positions [Jensen et al. 2007].

However, as pointed out in [Jeung et al. 2008], most of the above methods can not
be used directly for traveling companion discovery. The major problem is that those
algorithms tend to generate clusters for the entire trajectory dataset, instead of each
snapshot. Hence the detailed object relationships and evolving companion patterns are
all lost. In addition, some algorithms require the object’s velocity in advance and need
to scan the data for multiple times. Such requirements are not fit for the trajectory
streams.

8.2. Movement Pattern Discovery
Movement pattern discovery is a hot topic in recent years. The problem has been
variously referred to as the search for flocks [Gudmundsson and Kreveld 2006],
moving clusters [Kalnis et al. 2005], spatial-tempo joins [Bakalov et al. 2005], spa-
tial co-locations [Yoo and Shekhar 2004], meetings [Gudmundsson et al. 2004], con-
voys [Jeung et al. 2008], moving groups [Aung 2008], swarms [Li et al. 2010] and so
on.

One of the earliest works is flock discovery [Gudmundsson et al. 2004]. A flock
is defined as a group of objects moving together within a circular region
[Gudmundsson and Kreveld 2006]. There are several variations of this model: Vari-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30

able flock permits the members to change during the time span [Benkert et al. 2008],
meeting is a circle similar to flock but fixed in a single location all the time
[Gudmundsson and Kreveld 2006]. However, such shapes are restricted to circles and
the results are also sensitive to the parameter of radius.

Li et al. designed a flow scan algorithm for hot route mining [Li et al. 2007]. Liu et
al. mined frequent trajectory patterns by using RF tag arrays. Their work successfully
demonstrated the feasibility and the effectiveness of movement patterns in real life
[Liu et al. 2007]. Tao et al. proposed the technique of spatio-temporal aggregation us-
ing sketch index. This method can process the queries an order of magnitude faster
than the previous works [Tao et al. 2004]. Giannotti et al. proposed the interest region
based mining algorithm [Giannotti et al. 2007]. Horvitz et al. propose the models of us-
ing groups of mobile users to discover congestions in urban areas [Horvitz et al. 2005].
The shortest path problem has been studied on land surface [Xing and Shahabi 2010;
Liu and Wong 2011] and this technique has been used to process the k-NN queries
[Shahabi et al. 2008; Xing et al. 2009]. Tao et al. propose the techniques to find k-skip
shortest paths [Tao et al. 2011]. Yuan et al. present a cloud-based system computing
customized and practically fast driving routes for an end user using traffic conditions
and driver behavior, which is a milestone study in this field. [Yuan et al. 2011].

Zhang et al. propose the techniques to produce intersections of streaming moving
objects [Zhang et al. 2008; Zhang et al. 2011]. This method is a big improvement from
existing algorithms by the speed-up of several orders of magnitude. Nutanong et al.
use a safe region to report objects that do not change over time [Nutanong et al. 2008;
Nutanong et al. 2010]. The proposed V*-Diagram has much smaller I/O and computa-
tion costs than previous methods. It outperforms the best existing technique by two
orders of magnitude.

However, since the above methods focus more on discovering hot spots, regions or
routes rather than object groups, they cannot be used directly for companion discovery.

Kalnis et al. proposed the first study to automatic extract moving clusters from large
spatial datasets [Kalnis et al. 2005]. In a recent work, Jeung et al. proposed the frame-
work of convoy query [Jeung et al. 2008]. It is a significant step forward in the works of
movement pattern mining, since it allows the objects to organize in arbitrary shapes.
Li et al. further released the constraints of convoy and proposed the swarm pattern to
discover object groups in a sporadic way [Li et al. 2010].

The concepts of convoy and swarm patterns are similar to traveling companion. How-
ever, the convoy mining algorithm needs to scan the entire trajectory into memory to
make trajectory simplification, and the system also needs to load the whole dataset
into memory to search for swarms. It is impractical to use such method in a data
stream environment. The swarm pattern is a frequent itemset-based concept. Since it
is difficult to detect large size frequent itemsets [Zhu et al. 2007], the swarm pattern
has limited applicability for datasets with large scale objects. The major advantage
of companion discovery technique is about the discovery efficiency. The buddy-based
method can discover the companions of arbitrary shapes an order of magnitude faster.
Hence it is a feasible method to be applied in the data stream scenarios of huge amount
of trajectories.

Fig. 32 compares the features of some related methods with the proposed algorithms
to discovery traveling companions, road companions and loose companions.

9. CONCLUSION AND FUTURE WORK
In this study we investigate the problem of traveling companion discovery on trajectory
data streams. We propose the algorithms of smart-and-closed discovery to efficiently
generate companions from trajectory data. The model of traveling buddy is proposed to
help improve both the clustering and intersection processes for companion discovery.
The proposed methods are extended to more complex scenarios for road companion and

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:31

Name
Pattern

Shape

Object

Number

Partnership

Discover

Increment

al Output

Flock circle multiple Yes No

Meeting circle multiple Yes No

Hot Route road segment multiple No No

Swarm arbitrary multiple Yes No

Convoy arbitrary multiple Yes No

Traveling

companion
arbitrary multiple Yes Yes

TraCluster arbitrary multiple No No

Road companion along the roads multiple Yes Yes

Loose companion arbitrary multiple Yes Yes

Released Time

Constraints

No

No

No

Yes

No

No

No

No

Yes

Fig. 32. The Comparison with Related Works

loose companion discovery. We evaluate the proposed algorithms in extensive experi-
ments on both real and synthetic datasets. The buddy-based method is shown to be an
order of magnitude faster than existing approaches on both Euclidean space and road
networks. The effectiveness of buddy-based algorithm also outperforms other competi-
tors in terms of precision and recall.

In the future, we are going to integrate the companion discovery methods to real ap-
plication services such as battlefield monitoring systems and traffic analysis services.

10. ACKNOWLEDGEMENTS
The work was supported in part by U.S. NSF grants IIS-0905215, CNS-0931975, CCF-
0905014, IIS-1017362, the U.S. Army Research Laboratory under Cooperative Agree-
ment No. W911NF-09-2-0053 (NS-CTA). The views and conclusions contained in this
document are those of the authors and should not be interpreted as representing the of-
ficial policies, either expressed or implied, of the Army Research Laboratory or the U.S.
Government. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation here on.

REFERENCES
AUNG, H.-H. 2008. Discovering moving groups of tagged objects. In Technique Report, National University

of Singapore.
BAKALOV, P., HADJIELEFTHERIOU, M., AND TSOTRAS, V. J. 2005. Time relaxed spatiotemporal trajectory

joins. In ACM GIS.
BENKERT, M., GUDDMUNDSSON, J., HUBNER, F., AND WOLLE, T. 2008. Reporting flock patterns. Comput.

Geom. Theory Appl. 41, 3, 111–125.
CADEZ, I. V., GAFFNEY, S., AND SMYTH, P. 2000. A general probabilistic framework for clustering individ-

uals and objects. In SIGKDD.
ESTER, M., KRIEGEL, H.-P., SANDER, J., WIMMER, M., AND XU, X. 1998. Incremental clustering for mining

in a data warehousing environment. In VLDB.
ESTER, M., KRIEGEL, H.-P., SANDER, J., AND XU, X. 1996. A density-based algorithm for discovering

clusters in large spatial databases with noise. In SIGKDD.
GAFFNEY, S. AND SMYTH, P. 1999. Trajectory clustering with mixtures of regression models. In SIGKDD.
GIANNOTTI, F., NANNI, M., PEDRESCHI, D., AND PINELLI, F. 2007. Trajectory pattern mining. In SIGKDD.
GONZALEZ, T. 1985. Clustering to minimize the maximum intercluster distance. Theoretical Computer Sci-

ence, 293–306.
GUDMUNDSSON, J. AND KREVELD, M. V. 2006. Computing longest duration flocks in trajectory data. In

ACM GIS.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32

GUDMUNDSSON, J., KREVELD, M. V., AND SPECKMANN, B. 2004. Efficient detection of motion patterns in
spatio-temporal data sets. In ACM GIS.

GUNOPOULOS, D. 2002. Discovering similar multidimensional trajectories. In ICDE.
HAN, J. AND KAMBER, M. 2006. Data Mining: Concepts and Techniques Second Edition. Morgan Kaufmann.
HAR-PELED, S. 2003. Clustering motion. Discrete and Computational Geometry 31, 4, 545–565.
HORVITZ, E., APACIBLE, J., SARIN, R., AND LIAO, L. 2005. Prediction, expectation, and surprise: Methods,

designs, and study of a deployed traffic forecasting service. In Twenty-First Conference on Uncertainty
in Artificial Intelligence, UAI.

JENSEN, C. S., LIN, D., AND OOI, B. C. 2007. Continuous clustering of moving objects. IEEE TKDE 19, 9,
1161–1174.

JEUNG, H., YIU, M. L., ZHOU, X., JENSEN, C. S., AND SHEN, H. T. 2008. Discovery of convoys in trajectory
databases. In VLDB.

KALNIS, P., MAMOULIS, N., AND BAKIRAS, S. 2005. On discovering moving clusters in spatial-temporal
data. In SSTD.

KROUT, T. 2007. Cb manet scenario data distribution. In Technique Report of BBN.
LEE, J.-G., HAN, J., AND WHANG, K.-Y. 2007. Trajectory clustering: a partition-and-group framework. In

SIGMOD.
LEE, M., HSU, W., JENSEN, C. S., CUI, B., AND TEO, K. 2003. Supporting frequent updates in r-trees: A

bottom-up approach. In VLDB.
LI, X., HAN, J., LEE, J.-G., AND GONZALEZ, H. 2007. Traffic density based discovery of hot routes in road

networks. In SSTD.
LI, Y., HAN, J., AND YANG, J. 2004. Clustering moving objects. In SIGKDD.
LI, Z., DING, B., HAN, J., AND KAYS, R. 2010. Swarm: Mining relaxed temporal moving object clusters

accurate discovery of valid convoys from moving object trajectories. In VLDB.
LIU, L. AND WONG, R. C.-W. 2011. Finding shortest path on land surface. In SIGMOD.
LIU, Y., CHEN, L., PEI, J., CHEN, Q., AND ZHAO, Y. 2007. Mining frequent trajectory patterns for activity

monitoring using radio frequency tag arrays. In IEEE PerCom.
NUTANONG, S., ZHANG, R., TANIN, E., AND KULIK, L. 2008. The v*-diagram: A query dependent approach

to moving knn queries. In VLDB.
NUTANONG, S., ZHANG, R., TANIN, E., AND KULIK, L. 2010. Analysis and evaluation of v*-knn: An efficient

algorithm for moving knn queries. In VLDB Journal.
PEARL, J. 1984. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley Long-

man Publishing Co., Inc.
SHAHABI, C., TANG, L. A., AND XING, S. 2008. Indexing land surface for efficient knn query. VLDB.
TANG, L.-A., YU, X., KIM, S., HAN, J., HUNG, C.-C., AND PENG, W.-C. 2010. Tru-alarm: Trustworthiness

analysis of sensor networks in cyber-physical systems. In ICDM.
TANG, L.-A., ZHENG, Y., XIE, X., YUAN, J., YU, X., AND HAN, J. 2011. Retrieving k-nearest neighboring

trajectories by a set of point locations. In SSTD.
TANG, L.-A., ZHENG, Y., YUAN, J., HAN, J., LEUNG, A., HUNG, C.-C., AND PENG, W.-C. 2012. On discovery

of traveling companions from streaming trajectories. In ICDE.
TAO, Y., KOLLIOS, G., CONSIDINE, J., LI, F., AND PAPADIAS, D. 2004. Spatio-temporal aggregation using

sketches. In ICDE.
TAO, Y., SHENG, C., AND PEI, J. 2011. On k-skip shortest paths. In SIGMOD.
XING, S. AND SHAHABI, C. 2010. Scalable shortest paths browsing on land surface. In GIS.
XING, S., SHAHABI, C., AND PAN, B. 2009. Continuous monitoring of nearest neighbors on land surface.

VLDB.
YANG, D., RUNDENSTEINER, E. A., AND WARD, M. O. 2009. Neighbor-based pattern detection for windows

over streaming data. In EDBT.
YI, B., JAGADISH, H. V., AND FALOUTSOS, C. 1998. Efficient retrieval of similar time sequences under time

warping. In ICDE.
YOO, J. S. AND SHEKHAR, S. 2004. A partial join approach for mining co-location patterns. In ACM GIS.
YUAN, J., ZHENG, Y., XIE, X., AND SUN, G. 2011. Driving with knowledge from the physical world. In KDD.
YUAN, J., ZHENG, Y., ZHANG, C., XIE, W., XIE, X., SUN, G., AND HUANG, Y. 2010. T-drive: driving direc-

tions based on taxi trajectories. In GIS.
ZHANG, Q. AND LIN, X. 2004. Clustering moving objects for spatial-temporal selectivity estimation. In ADC.
ZHANG, R., LIN, D., RAMAMOHANARAO, K., AND BERTINO, E. 2008. Continuous intersection joins over

moving objects. In ICDE.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:33

ZHANG, R., QI, J., LIN, D., WANG, W., AND WONG, R. C.-W. 2011. A highly optimized algorithm for contin-
uous intersection join queries over moving objects. In VLDB Journal.

ZHENG, K., ZHENG, Y., XIE, X., AND ZHOU, X. 2012. Reducing uncertainty of low-sampling-rate trajectories.
In ICDE.

ZHENG, Y., XIE, X., AND MA, W. 2010. GeoLife: A Collaborative Social Networking Service among User,
location and trajectory. IEEE Data Engineering Bulletin.

ZHENG, Y. AND ZHOU, X. 2011. Computing with Spatial Trajectories. Springer.
ZHU, F., YAN, X., HAN, J., YU, P. S., AND CHENG, H. 2007. Mining colossal frequent patterns by core

pattern fusion. In ICDE.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

