
FlashStore: High Throughput Persistent KeyValue Store

Biplob Debnath
∗

University of Minnesota
Twin Cities, USA

biplob@umn.edu

Sudipta Sengupta
Microsoft Research

Redmond, USA

sudipta@microsoft.com

Jin Li
Microsoft Research

Redmond, USA

jinl@microsoft.com

ABSTRACT

We present FlashStore, a high throughput persistent key-
value store, that uses flash memory as a non-volatile cache
between RAM and hard disk. FlashStore is designed to
store the working set of key-value pairs on flash and use one
flash read per key lookup. As the working set changes over
time, space is made for the current working set by destag-
ing recently unused key-value pairs to hard disk and recy-
cling pages in the flash store. FlashStore organizes key-value
pairs in a log-structure on flash to exploit faster sequential
write performance. It uses an in-memory hash table to index
them, with hash collisions resolved by a variant of cuckoo
hashing. The in-memory hash table stores compact key sig-
natures instead of full keys so as to strike tradeoffs between
RAM usage and false flash read operations.
FlashStore can be used as a high throughput persistent

key-value storage layer for a broad range of server class ap-
plications. We compare FlashStore with BerkeleyDB, an
embedded key-value store application, running on hard disk
and flash separately, so as to bring out the performance
gain of FlashStore in not only using flash as a cache above
hard disk but also in its use of flash aware algorithms. We
use real-world data traces from two data center applica-
tions, namely, Xbox LIVE Primetime online multi-player
game and inline storage deduplication, to drive and evalu-
ate the design of FlashStore on traditional and low power
server platforms. FlashStore outperforms BerkeleyDB by
up to 60x on throughput (ops/sec), up to 50x on energy
efficiency (ops/Joule), and up to 85x on cost efficiency
(ops/sec/dollar) on the evaluated datasets.

1. INTRODUCTION
A broad range of server-side applications need an underly-

ing, often persistent, key-value store to function. Examples
include state maintenance in Internet applications like on-
line multi-player gaming and inline storage deduplication.

∗Work is done during Summer Internship at Microsoft

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 2
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

A high throughput persistent key-value store can help to
improve the performance of such applications. Flash mem-
ory is a natural choice for such a store, providing persis-
tency and 100-1000 times lower access times than hard disk.
Compared to DRAM, flash access times are about 100 times
higher. Flash stands in the middle between DRAM and disk
also in terms of cost – it is 10x cheaper than DRAM, while
20x more expensive than disk – thus, making it an ideal gap
filler between DRAM and disk.

There are two types of popular flash devices, NOR and
NAND flash. NAND flash architecture allows a denser lay-
out and greater storage capacity per chip. As a result,
NAND flash memory has been significantly cheaper than
DRAM, with cost decreasing at faster speeds. NAND flash
characteristics have lead to an explosion in its usage in
consumer electronic devices, such as MP3 players, phones,
caches and Solid State Disks (SSDs). In the rest of the pa-
per, we use NAND flash based SSDs as the architectural
choice and simply refer to it as flash memory. We describe
SSDs in detail in Section 2. To get the maximum perfor-
mance per dollar out of SSDs, it is necessary to use flash
aware data structures and algorithms to avoid small random
writes that not only have a higher latency but also reduce
flash device lifetimes through increased page wearing.

In this paper, we present the design and evaluation of
FlashStore, a high performance key-value storage system us-
ing flash as a cache between RAM and hard disk. When a
key-value blob is written, it is sequentially logged in flash.
A specialized RAM-space efficient hash table index using a
variant of cuckoo hashing [32] and compact key signatures
is used to index the key-value blobs stored in flash mem-
ory. FlashStore attempts to capture the working set of key-
value pairs and make them accessible using one flash read.
It monitors the occupancy levels of RAM and flash, and
when either reach configurable thresholds, recently unused
key-value blobs are destaged to hard disk and their associ-
ated index entries are removed from RAM as well. Because
FlashStore is designed to capture the working set of key-
value pairs on flash and their associated index in RAM, it
achieves an ideal balance between the performance, cost,
and energy consumption of DRAM/flash/disk, and is able
to provide a huge persistent key-value store at reduced cost.

The contributions of this paper are summarized as follows:

∙ Key-value store using flash as persistent cache
over hard disk: FlashStore is designed to store the
working set of key-value pairs on flash and using one
flash read per key lookup. As the working set changes
over time, space is made for the current working set

by destaging recently unused key-value pairs to hard
disk and recycling pages in the flash store. FlashStore
organizes key-value pairs in a log-structure on flash to
exploit fast sequential write performance.

∙ Evaluation on real-world data center applica-
tions: We compare FlashStore with BerkeleyDB, an
embedded key-value store application, running on hard
disk and flash separately, so as to bring out the perfor-
mance gain of FlashStore in not only using flash as a
cache above hard disk but also in its use of flash aware
algorithms. We use real-world data traces from two
data center applications, namely, Xbox LIVE Prime-
time online multi-player game and inline storage dedu-
plication, to drive and evaluate the design of Flash-
Store on traditional and low power server platforms.
Our evaluations show that FlashStore outperforms
BerkeleyDB by up to 60x on throughput (ops/sec),
up to 50x on energy efficiency (ops/Joule), and up to
85x on cost efficiency (ops/sec/dollar).

The rest of the paper is organized as follows. We provide
an overview of flash memory in Section 2. In Section 3, we
describe two motivating real-world data center applications
that can benefit from a high throughput key-value store and
are used to evaluate FlashStore. We develop the design of
FlashStore in Section 4. We evaluate FlashStore and com-
pare it with BerkeleyDB in Section 5. We review related
work in Section 6. Finally, we conclude in Section 7.

2. FLASH MEMORY OVERVIEW
Figure 1 gives a block-diagram of an NAND flash based

SSD. In flash memory, data is stored in an array of flash
blocks. Each block spans 32-64 pages, where a page is the
smallest unit of read and write operations. A distinguishing
feature of flash memory is that read operations are very fast
compared to magnetic disk drive. Moreover, unlike disks,
random read operations are as fast as sequential read oper-
ations as there is no mechanical head movement. A major
drawback of the flash memory is that it does not allow in-
place updates (i.e., overwrite). Page write operations in a
flash memory must be preceded by an erase operation and
within a block, pages need be to written sequentially. The
in-place update problem becomes complicated as write op-
erations are performed in the page granularity, while erase
operations are performed in the block granularity. The typ-
ical access latencies for read, write, and erase operations are
25 microseconds, 200 microseconds, and 1500 microseconds,
respectively [10].
The Flash Translation layer (FTL) is an intermediate soft-

ware layer inside SSD, which makes linear flash memory
device act like a virtual disk. The FTL receives logical
read and write commands from the applications and con-
verts them to the internal flash memory commands. To em-
ulate disk like in-place update operation for a logical page
Lp, the FTL writes data into a new physical page Pp, main-
tains a mapping between logical pages and physical pages,
and marks the previous physical location of Lp as invalid
for future garbage collection. Although FTL allows current
disk based application to use SSD without any modifica-
tions, it needs to internally deal with flash physical con-
straint of erasing a block before overwriting a page in that
block. Besides the in-place update problem, flash memory

Figure 1: Solid State Disk (SSD)

exhibits another limitation – a flash block can only be erased
for limited number of times (e.g., 10K-100K) [10]. FTL uses
various wear leveling techniques to even out the erase counts
of different blocks in the flash memory to increase its over-
all longevity [20]. Recent studies show that current FTL
schemes are very effective for the workloads with sequen-
tial access write patterns. However, for the workloads with
random access patterns, these schemes show very poor per-
formance [15, 22, 25, 27, 28, 30]. One of the design goals
of FlashStore is to use flash memory in an FTL friendly
manner.

3. KEYVALUE STORE APPLICATIONS
We describe two real-world applications that can use

FlashStore as an underlying persistent key-value store. Data
traces obtained from real-world instances of these applica-
tions are used to drive and evaluate FlashStore’s design.

3.1 Online Multiplayer Gaming
Online multi-player gaming technology allows people from

geographically diverse regions around the globe to partici-
pate in the same game. The number of concurrent play-
ers in such a game could range from tens to hundreds of
thousands and the number of concurrent game instances of-
fered by a single online service could range from tens to
hundreds. An important challenge in online multi-player
gaming is the requirement to scale the number of users per
game and the number of simultaneous game instances. At
the core of this is the need to maintain server-side state so
as to track player actions on each client machine and update
global game states to make them visible to other players as
quickly as possible. These functionalities map to set and
get key operations performed by clients on server-side state.
The real-time responsiveness of the game is, thus, critically
dependent on the response time and throughput of these
operations.

There is also the requirement to store server-side game
state in a persistent manner for (at least) the following
reasons: (i) resume game from interrupted state if and
when crashes occur, (ii) offline analysis of game popularity,
progression, and dynamics with the objective of improving
the game, and (iii) verification of player actions for fairness
when outcomes are associated with monetary rewards. We
designed FlashStore to meet the high throughput and low
latency requirement of such get-set key operations in
online multi-player gaming.

3.2 Storage Deduplication
Deduplication is a recent trend in storage backup systems

that eliminates redundancy of data across full and incre-
mental backup data sets [38]. It works by splitting files
into multiple chunks using a content-aware chunking algo-
rithm like Rabin fingerprinting and using SHA-1 hash sig-
natures for each chunk to determine whether two chunks
contain identical data [38]. In inline storage deduplication
systems, the chunks (or their hashes) arrive one-at-a-time
at the deduplication server from client systems. The server
needs to lookup each chunk hash in an index it maintains
for all chunk hashes seen so far for that backup location in-
stance – if there is a match, the incoming chunk contains
redundant data and can be deduplicated; if not, the (new)
chunk hash needs to be inserted into the index.
Because storage systems currently need to scale to tens of

terabytes to petabytes of data volume, the chunk hash in-
dex is too big to fit in RAM, hence it is stored on hard disk.
Index operations are thus throughput limited by expensive
disk seek operations. Since backups need to be completed
over windows of half-a-day or so (e.g., nights and weekends),
it is desirable to obtain high throughput in inline storage
deduplication systems. RAM prefetching and bloom-filter
based techniques used by Zhu et al. [38] can avoid disk
I/Os on close to 99% of the index lookups. Even at this re-
duced rate, an index lookup going to disk contributes about
0.1msec to the average lookup time – this is about 103 times
slower than a lookup hitting in RAM. FlashStore can be
used as the chunk hash index for inline deduplication sys-
tems. By reducing the penalty of index lookup misses in
RAM by orders of magnitude by serving such lookups from
flash memory, FlashStore can help to increase deduplication
throughput.

4. FLASHSTORE DESIGN
We present the system architecture of FlashStore and the

rationale behind some design choices in this section. Flash-
Store’s design is driven by the need to work around two types
of operations that are not efficient on flash media, namely:

1. Random Writes: Small random writes effectively
need to update data portions within pages. Since a
(physical) flash page cannot be updated in place, a
new (physical) page will need to be allocated and the
unmodified portion of the data on the page needs to
be relocated to the new page.

2. Writes less than flash page size: Since a page is
the smallest unit of write on flash, writing an amount
less than a page renders the rest of the (physical) page
wasted – any subsequent append to that partially writ-
ten (logical) page will need copying of existing data
and writing to a new (physical) page.

To validate the performance gap between sequential and
random writes on flash, we used Iometer [5], a widely used
performance evaluation tool in the storage community, on
a 160GB fusionIO SSD [4] attached over PCIe bus to an
Intel Core 2 Duo E6850 3GHz CPU. The number of worker
threads was fixed at 8 and the number of outstanding I/Os
for the drive at 64. The results for IOPS (I/O operations
per sec) on 4KB I/O request sizes are summarized in Figure
2. Each test was run for 1 hour. The IOPS performance

99019

94500

16064

5948

0

20000

40000

60000

80000

100000

seq-reads rand-reads seq-writes rand-writes

IO
P
S

Figure 2: IOPS for sequential/random reads and writes

using 4KB I/O request size on a 160GB fusionIO drive.

of sequential writes is about 3x that of random writes and
worsens when the tests are run for longer durations (due to
accumulating device garbage collection overheads). We also
observe that the IOPS performance of (random/sequential)
reads is about 6x that sequential writes. (The slight gap
between IOPS performance of sequential and random reads
is possibly due to prefetching inside the device.)

Given the above, the most efficient way to write flash is to
simply use it as an append log, where an append operation
involves a flash page worth of data, typically 2KB or 4KB.
This is the main constraint that drives the rest of our key-
value store design. Flash has been used in a log-structured
manner and its benefits reported in earlier work ([23, 37, 31,
16].

4.1 Design Goals
The design of FlashStore is driven by the following guiding

principles:

∙ Support Low-latency, high throughput opera-
tions. This requirement is extracted from the needs
of many server class applications that need an under-
lying key-value store to function. Two motivating ap-
plications that are used for evaluating FlashStore are
described in Section 3.

∙ Use flash aware data structures and algorithms.
This principle accommodates the constraints of the
flash device so as to extract maximum performance
out of it. Random writes and in-place updates are ex-
pensive on flash memory, hence must be reduced or
avoided. Sequential writes should be used to the ex-
tent possible and the fast nature of random/sequential
reads should be exploited.

∙ Low RAM footprint per key independent of
key-value size. The goal here is to index all key-
value pairs on flash in a RAM space efficient manner
and make them accessible using one flash read. By
being RAM space frugal, one can accommodate larger
flash drive capacities and correspondingly larger
number of key-value pairs stored in it. Key-value
pairs can be arbitrarily large but the RAM footprint
per key should be independent of it and small (say,
about 10 bytes).

4.2 Architectural Components
Our key-value store system has the following main

components, as shown in Figure 3:

RAM Write Buffer: This is a fixed-size data structure
maintained in RAM that buffers key-value writes so that
a write to flash happens only after there is enough data
to fill a flash page (which is typically 2KB or 4KB in
size). To provide strict durability guarantees, writes can
also happen to flash when a configurable timeout interval
(e.g., 1 msec) has expired (during which period multiple
key-value pairs are collected in the buffer). The client call
returns only after the write buffer is flushed to flash. The
RAM write buffer is sized to 2-3 times the flash page size
so that key-value writes can still go through when part of
the buffer is being written to flash.

RAM Hash Table (HT) Index: The index structure, for
key-value pairs stored on flash, is maintained in RAM and
is organized as a hash table with the design goal of one flash
read per lookup. The index maintains pointers to the full
key-value pairs stored on flash. Key features include resolv-
ing collisions using a variant of cuckoo hashing and storing
compact key signatures in memory to tradeoff between
RAM usage and false flash reads. We explain these aspects
in Section 4.4. By destaging recently unused key-value
pairs from flash to hard disk when either RAM or flash
bottlenecks are reached, we eliminate the need for rehashing.

RAM Read Cache: This is a fixed-size read cache of
recently read items that is maintained in RAM. We use a
Least Recently Used (LRU) policy [33] to evict key-value
pairs when inserting items into a full cache.

Recency Bit Vector: A recency bit vector in RAM is
used to record the entries in the HT index that have been
recently accessed. This is used by the flash recycling thread
to determine whether a valid key-value pair on flash should
be destaged to hard disk or not (as described in Section
4.5). The i-th entry of the bit vector provides recency
information about the entry stored in the i-th slot of the
HT index.

Disk-presence Bloom Filter: A disk-presence bloom
filter in RAM is used to record keys destaged to hard disk
so that hard disk access latencies can be avoided when
lookups are done on non-existing keys. (Bloom filters are
surveyed in [13].)

Flash Store: The flash store provides persistent storage
for the key-value pairs and is organized as a recycled append
log. Key-value pairs are written to flash in units of a page
size. The pages on flash are used in a circular linked list
order – entries in recycled pages are destaged to hard disk
based on their validity and recently accessed status. The
eviction algorithm from flash store to hard disk uses the
recency bit vector described above.

Hard Disk Store: The hard disk store serves to store all
key-value pairs that have been evicted from flash because
of page recycling. Because key lookups can miss in RAM
and flash, we need to index the hard disk store also so as to
provide fast access to keys stored here. In the current design,

Figure 3: FlashStore architecture schematic showing

the different hierarchical storage areas.

we use Berkeley DB [1], an embedded key-value database,
as the hard disk store.

4.3 Key Lookup and Insert Operations
To understand the hierarchical relationship of the different

storage areas in our design, it is helpful to understand the
sequence of accesses in key insert and lookup operations.
We describe this next.

A key lookup operation (get) first looks up the RAM read
cache. Upon a miss there, it looks up the RAM write buffer.
Upon a miss there, it searches the RAM HT Index in order
to locate the key on flash store. Upon a miss there, it looks
up the disk-presence bloom filter – if the key is not present,
it returns null, otherwise it searches the hard disk store for
the key. If the key is found at any place other than the RAM
read cache, it is inserted into the RAM read cache and a key
evicted from there if it was full. The corresponding bit in
the recency bit vector is also set to indicate that this key
has been recently accessed.

A key insert (or, update) operation (set) writes the key-
value pair (together with its timestamp) into the RAM write
buffer. If (an earlier value of) the key exists in RAM read
cache, it will be invalidated. When there are enough key-
value pairs in RAM write buffer to fill a flash page (or, a con-
figurable timeout interval since the client call has expired,
say 1 msec), these entries are written to flash and inserted
to the RAM HT index. When flash usage exceeds a certain
threshold, previously used pages are recycled. During this
recycle operation, valid keys on recycled pages, depending
on their access pattern, are either reinserted into the flash
store or destaged to hard disk.

A delete operation on a key is supported through insertion
of a null value for that key. As an optimization, the entry
in RAM HT index can be deleted after the insertion goes
to flash. When this is done, the entry for that key in the
hard disk store needs to be deleted also. Eventually the null
entry on flash will be garbage collected.

The functionalities of (i) client key lookup/insert opera-
tions, (ii) writing key-value pairs to flash store and updating
RAM HT index, and (iii) recycling flash pages and destaging
key-value pairs to hard disk are handled by separate threads
in a multi-threaded architecture. Concurrency issues with
shared data structures arise in our multi-threaded design,

which are described in Section 4.6.

4.4 Hash Table Design
We outline the salient aspects of the hash table design in

FlashStore.

Cuckoo hashing to resolve hash collisions: FlashStore
uses a variant of cuckoo hashing [32] to resolve collisions.
The value proposition of cuckoo hashing is in increasing
hash table load factors while keeping lookup times bounded
to a constant. In the variant of cuckoo hashing we use,
we work with n random hash functions ℎ1, ℎ2, . . . , ℎn that
are used to obtain n candidate positions for a given key
x. These candidate position indices for key x are obtained
from the lower-order bit values of ℎ1(x), ℎ2(x), . . . , ℎn(x)
corresponding to a modulo operation. During insertion, the
key is inserted in the first available candidate slot. When
all slots for a given key x are occupied during insertion
(say, by keys y1, y2, . . . , yn), room can be made for key x
by relocating keys yi in these occupied slots, since each key
yi has a choice of (n − 1) other locations to go to. In the
original cuckoo hashing scheme [32], a recursive strategy
is used to relocate one of the keys yi – in the worst case,
this strategy could take many key relocations or get into
an infinite loop, the probability for which can be shown
to be very small and decreasing exponentially in n [32].
In our design, the system attempts a small number of key
relocations after which it makes room by picking a key to
move to an auxiliary hash table.

Storing compact key signatures to reduce RAM us-
age per slot: Traditional hash table designs store the re-
spective key in each entry of the hash table index [26]. De-
pending on the application, the key size could range from
few tens of bytes (e.g., 20-byte SHA-1 hash) to hundreds of
bytes or more. Given that RAM size is limited (in the order
of few gigabytes) and is much costly than flash, if we store
the full key in each entry of the RAM HT index, it may well
become the bottleneck for the maximum number of entries
in HT index before flash storage capacity bounds kick in.
On the other hand, if we do not store the key at all in the
HT index, the search operation on the HT index would have
to follow HT index pointers to flash to determine whether
the key stored in that slot matches the search key – this
would lead to many false flash reads, which are expensive,
since flash access speeds are 2-3 orders of magnitude slower
than that of RAM.
To address the goals of maximizing HT index capacity

(number of entries) and minimizing false flash reads, we
store a compact key signature (order of few bytes) in each
entry of the HT index. This signature is derived from both
the key and the candidate position number that it is stored
at. In FlashStore, when a key x is stored in its candidate
position number i, the signature in the respective HT index
slot is derived from the higher order bits of the hash value
ℎi(x). During a search operation, when a key y is looked
up in its candidate slot number j, the respective signature
is computed from ℎj(y)) and compared with the signature
stored in that slot. Only if a match happens is the pointer
to flash followed to check if the full key matches. We
investigate the percentage of false reads as a function of the
compact signature size in Section 5.5.

compact key signature pointer to key-value pair on flash

≈

≈
≈ ≈

≈ ≈2-byte 4-byte

Figure 4: RAM HT Index entry and example sizes in

FlashStore. (The all-zero pointer is reserved to indicate

an empty HT index slot.)

Storing key-value pairs on flash: Key-value pairs are
organized on flash in a log-structure in the order of the
respective write operations coming into the system. The
HT index contains pointers to key-value pairs stored on
flash. We use a 4-byte pointer, which is a combination
of a page pointer and a page offset. Consider a 160GB
flash SSD with 4KB pages, which is representative of SSDs
currently selling in the market. Then, a page number
can be specified with log2 (160GB/4KB) = 26 bits. The
remaining 6 bits can be used for in-page offset, which point
to 128B boundaries in a 4KB page. We thus aligned the
stored key-value pairs at 128B boundaries. FlashStore
reserves the all-one pointer to indicate an empty HT index
slot.

RAM HT Index Sizing. FlashStore is designed to use
a small number of bytes in RAM per entry so as to maxi-
mize the RAM HT index capacity for a given RAM usage
size. The RAM HT index capacity determines the number
of key-value piars stored on flash that can be accessed with
one flash read. The RAM size for the HT index can be de-
termined with application requirements in mind. With a
2-byte compact key signature and 4-byte flash pointer per
entry, which is a total of 6 bytes per entry as shown in Fig-
ure 4, a typical RAM usage of 4GB per machine for the
HT index accommodates a maximum of about 715 million
entries.

Whether RAM or flash capacity becomes the bottleneck
for storing the working set of keys on flash depends on the
key-value pair size. With 64-byte key-value pairs, 715 mil-
lion entries in the HT index occupy 42GB on flash that is
well within the capacity range of SSDs shipping in the mar-
ket today (from 64GB to 640GB). When there are multiple
such SSDs attached, additional RAM is needed to fully uti-
lize them. On the other hand, with 1024-byte key-value
pairs, these same number of entries in the HT index will
need 672GB of flash for storage, hence more than one flash
disk may be needed.

4.5 Flash Storage Management
Key-value pairs are organized on flash in a log-structure

in the order of the respective write operations coming into
the system. When there are enough key-value pairs in the
RAM write buffer to fill a flash page (or, when a pre-specified
coalesce time interval is reached), they are written to flash.
Each flash page begins with a header portion, contains meta-
data information including the time when the page was writ-
ten, number of key-value pairs in the page, and begin offset
for each. Each key-value entry on flash also has an associ-
ated write operation timestamp.

The pages on flash are maintained implicitly as a circular

linked list. Since the Flash Translation Layer (FTL) trans-
lates logical page numbers to physical ones, this circular
linked list can be easily implemented as a contiguous block
of logical page address with wraparound, realized by two
page number variables, one for the first valid page (oldest
written) and the other for the last valid page (most recently
written).
When RAM HT index exceeds a target maximum load

factor (say 90%) or flash usage exceeds a certain threshold
(say 80%), a cleaning operation is performed to bring
the usage below this threshold. The cleaning operation
considers currently used flash pages in oldest first order and
deallocates them in a way similar to garbage collection in
log-structured file systems. One each page, the sequence
of key-value pairs are scanned to determine whether they
are valid or not. A key-value pair on a flash page is invalid
(or, orphaned) if the record in the HT index for that
key does not point to this entry on this flash page – this
happens when a later write to the key happened. When a
key-value entry is determined to be valid, its access pattern
information (maintained in RAM) is used to determine
whether it should be reinserted into flash or destaged to
disk. (This flash eviction policy is described next.) In the
former case, it is inserted into the RAM write buffer (for
later re-entry into flash). In the latter case, it is written
to the index on hard disk and the corresponding entry in
the HT index marked as empty. After all the key-value
pairs on the current flash page are processed, the page is
recycled and the first page number variable is incremented.
We choose destaging thresholds and strategies based on
past work [21].

Flash Eviction Policy. FlashStore is designed to store a
superset of the working set of key-value pairs on flash to the
extent that the working set fits on flash. As the working
set changes, space is made for key-value pairs in the current
working set by destaging earlier key-value pairs to hard disk
and recycling pages in the flash store. To implement this
functionality, the flash recycling thread needs to determine
whether a key has been recently accessed. This is achieved
by storing a recency bit vector in RAM that records entries
in the HT index that have been recently accessed. When a
key in the i-th slot of the HT index is accessed, the i-th bit
of the vector is set to 1. (Note that when a key is relocated
due to insertion of another key in cuckoo hashing, its recency
bit needs to be relocated in the bit vector also.)
During the flash recycling operation, the flash recycling

thread checks the recency bit vector to determine whether
a valid key-value pair on flash has been recently accessed.
If so, it reinserts it into the RAM write buffer, otherwise
it destages the key-value pair to hard disk (and also clears
the corresponding bit in the bit vector in both cases). In
effect, when a key is reinserted into the RAM write buffer,
it gets a second chance and may end up being removed in
subsequent flash recycling iterations. This use of the recency
bit is similar to the class of clock or second-chance based
FIFO page replacement algorithms that aim to approximate
LRU [17].

4.6 FlashStore MultiThreaded Design and
Concurrency

With the objective of maximizing throughput of key
lookup and insert operations, we designed FlashStore

to be multi-threaded with logical partitioning of system
functionality across different threads.

Partitioning Functionalities into Threads. The func-
tionalities of (i) client key lookup/insert operations, (ii) writ-
ing key-value pairs to flash store and updating RAM HT in-
dex, and (iii) recycling flash pages and destaging key-value
pairs to hard disk are handled by separate threads in a multi-
threaded architecture. The threads in FlashStore are as fol-
lows:

∙ Client Serving Threads: One or more threads serve
key lookup/insert operations received from the client.
The key lookup/insert operations are described in Sec-
tion 4.3. For a write operation, the client serving
thread is responsible for adding the key-value pair to
the RAM write buffer. Additionally, if the key exists
in the RAM read cache, it invalidates that entry. The
rest of the write pipeline (i.e., write to flash) is per-
formed by the flash writing thread described below.

∙ Flash Writing Thread: The flash writing thread
is responsible for actually writing key-value pairs to
flash. When there are enough key-value pairs in RAM
write buffer to fill a flash page, or when a configurable
timeout interval expires (for returning the client call
with strict durability guarantee, e.g., 1 msec) the flash
writing thread writes these entries to flash and inserts
them to the RAM HT index. It also removes these
entries from the RAM write buffer.

∙ Flash Recycling Thread: The functionality of re-
cycling flash pages to reclaim storage on flash is per-
formed by this thread. When RAM HT index load
factor or flash usage exceeds certain thresholds, pre-
viously used pages are recycled. During this recycle
operation, valid keys on recycled pages, depending on
their access pattern, are either reinserted into the flash
store or destaged to hard disk.

∙ Hard Disk Store Management Thread(s): We
use Berkeley DB [1], an embedded key-value database,
to store and index the keys that are destaged to disk
from flash. It has a multi-threaded architecture which
we use “as is”.

Handling Concurrency. Concurrency issues with shared
data structures arise in our multi-threaded design, which
need to be handled through thread synchronization using
locks. The challenge here is to choose the right types of
locks at suitable levels of granularity so that a thread does
not block unless it needs to for correct concurrent execution
and to avoid busy waiting. In the Table 1, we summarize
the type of access (read or write) that different threads
need on each shared data structure and the type of lock
it is protected by. We then provide a description of the
concurrency mechanism used for each data structure.

RAM write buffer: The RAM write buffer has key-value
pairs added to it by client serving threads and flash
recycling thread – any such thread must block if the buffer
is full. Also, the flash writing thread must block until the
key-value pairs in the buffer is confirmed to write to a
flash page. Thus, the client serving/ flash recycling threads
and the flash writing thread have a producer-consumer

Data Structure Accessing Threads Access Type Lock Type

RAM write buffer
Client Serving Threads Read/Write
Flash Writing Thread Read/Write Producer-Consumer-Reader
Flash Recycling Thread Write

RAM HT index
Client Serving Threads Read
Flash Writing Thread Read/Write Reader-Writer
Flash Recycling Thread Read/Write

RAM read cache Client Serving Threads Read/Write Reader-Writer

Recency bit vector
Client Serving Threads Write

Mutex
Flash Recycling Thread Read/Write

Disk-presence Bloom filter
Client Serving Threads Read

Reader-Writer
Flash Recycling Thread Write

Table 1: Summary of the type of access (read or write) that different threads need on each shared data structure and

the type of lock it is protected by.

relationship on the RAM write buffer. Moreover, the client
serving threads also need to read the buffer upon a miss in
the RAM read cache during a read key operation. Thus, the
RAM write buffer needs to be protected by a combination
of producer-consumer and reader-writer locks. Each of these
locks have been looked at separately in the literature [33].
We adapted the synchronization techniques used separately
for each of them to obtain a combined lock of the desired
nature, which we call producer-consumer-reader lock.

RAM HT index: The RAM HT index is read by the
client serving threads during a read key operation and
read/written by the flash writing and flash recycling threads.
So, it is well served by the a reader-writer lock. However,
we are faced here with a design question on the granularity
of the lock. To maximize the number of concurrent oper-
ations on the HT index, it might be necessary to lock the
HT index at the level of each entry. This, however, would
create a huge overhead associated with maintenance of so
many locks. One the other hand, using just one lock for the
entire HT index would minimize the number of concurrent
operations allowed on it and lead to unnecessary blocking
of threads. We choose a design point that seeks to find a
middle ground between these two extremes as follows.
Let the HT index consist of N slots. We partition the

HT index into m segments with each segment having N/m
contiguous slots and introduce segment level locks. When
a thread needs to access slot i of the HT index, it obtains
the appropriate type of lock (read or write) on segment
number ⌈i/m⌉. Under this design, two threads that need
to respectively read and write different slots in the same
segment will still need to compete for the same segment lock
– hence the design compromises on maximum allowable
concurrency to reduce overhead in number of locks.

RAM read cache: The RAM read cache is accessed by the
client serving threads. A thread executing a key lookup op-
eration needs to read the cache and upon a miss, inserts the
current key-value pair (read from elsewhere) after evicting
another key-value pair (if the read cache was full).

4.7 Crash Recovery
FlashStore’s persistency guarantee enables it to recover

from system crashes due to power failure or other reasons.
Because the system logs all key-value write operations to
flash, it is straightforward to rebuild the HT index in RAM

by scanning all valid flash pages on flash. Recovery using
this method can take some time, however, depending on the
total size of valid flash pages that need to be scanned and
the read throughput of the flash memory.

If crash recovery needs to be executed faster so as to sup-
port “near” real-time recovery, then it is necessary to check-
point the RAM HT index periodically into flash (in a sep-
arate area from the key-value pair logs). Then, recovery
involves reading the last written HT index checkpoint from
flash and scanning key-value pair logged flash pages with
timestamps after that and inserting them into the restored
HT index. During the operation of checkpointing the HT
index, all insert operations into it will need to be suspended
(but the read operations by other threads can continue).
The flash writing thread can continue with flash writing op-
erations during this time but cannot insert items into the
HT index. We use a temporary, small in-RAM hash table
to provide index for the interim items. After the checkpoint-
ing operation completes, key-value pairs from the flash pages
written in the interim are inserted into the HT index. Key
lookup operations, upon missing in the HT index, will need
to check in these flash pages (via the small additional hash
table) until the latter insertions into HT index are complete.
The flash recycling thread is suspended during the HT index
checkpointing operation, since the recycling thread cannot
set HT index entries to null.

4.8 Extending FlashStore to Multiple Nodes
The current design of FlashStore focuses on maximiz-

ing throughput of a single node. The design should be
extensible in achieving high overall throughput when the
system is extended to multiple nodes, and existing ideas
in the literature can be used for this. One approach is to
use a one-hop Distributed Hash Table (DHT) based on
consistent hashing to map the key space across multiple
nodes [34, 19]. A second and simpler approach is to use
hash function based partitioning of keys across nodes, with
each node protected by buddy pair machines. (This design,
of course, has the issue that new nodes cannot be added
easily, since a hash function does not have the locality
preserving redistribution properties of consistent hashing.)
Extending FlashStore to a multiple node system is the
focus of future work.

5. EVALUATION
We evaluate FlashStore on two different computing plat-

forms on real-world traces obtained from the two applica-
tions described in Section 3.

5.1 C# Implementation
We have prototyped FlashStore in approximately 2500

lines of C# code. MurmurHash [6] is used to realize the
hash functions used in our variant of cuckoo hashing to com-
pute hash table indices and compact signatures for keys;
different seeds are used to generate different hash functions
in this family. The ReaderWriterLockSlim and Monitor

classes in .NET 3.0 framework [3] are used to implement
the concurrency control solution for multi-threading.

5.2 Comparison with BerkeleyDB
We compare FlashStore with BerkeleyDB [1], an embed-

ded key-value database that is widely used as a comparison
benchmark for its good performance. BerkeleyDB does not
use flash aware algorithms but we used the parameter set-
tings recommended in [1] to improve its performance with
flash. We use BerkeleyDB in its non-transactional concur-
rent data store mode that supports a single writer and multi-
ple readers [36]. This mode does not support a transactional
data store with the ACID properties, hence provides a fair
comparison with FlashStore (which supports some of the
ACID properties, e.g., durability). BerkeleyDB provides a
choice of B-tree and hash table data structures for building
indexes – we use the hash table version which we found to
run substantially faster. We use the C++ implementation
of BerkeleyDB with C# API wrappers [2].
To make a fair performance comparison with the per-

sistency guarantee provided by FlashStore, we configured
the standalone BerkeleyDB solution (on either flash or hard
disk) to flush to stable storage after key-value writes accu-
mulate to 4KB worth of data (which is the page size on
flash). Without this, we found that BerkeleyDB buffers
writes in RAM so long as it has sufficient available RAM and
flushes to stable storage only when the database is closed –
clearly, this does not provide the persistency guarantee that
comes with FlashStore. This modification slows down Bere-
leyDB but makes it an “apples-to-apples” comparison with
FlashStore.
To eliminate any possible performance improvements in

FlashStore due to caching in RAM for comparison purposes,
we turned off the RAM read cache in FlashStore for the
experiments. (Any RAM based caching used in BerkeleyDB
is left “as-is”.) Also, for the traces used for the evaluations
(see Table 3), all of the key-value pairs fit on the flash SSDs
we used (see Table 2) – hence, no destaging activity to hard
disk is incurred in FlashStore. To evaluate the impact of
destaging activity on FlashStore performance (Section 5.9),
we explicitly reduce the amount of flash used by FlashStore
to lower levels. We also turned off the disk-presence bloom
filter in FlashStore described in Section 4.2.

5.3 Evaluation Platforms
We use two different platforms to evaluate the perfor-

mance of FlashStore and compare it with BerkeleyDB. The
first platform, Blue, is a traditional server configuration us-
ing high power CPU, fusionIO flash SSD [4], and hard disk.
The second platform, Green, is a low power “green” plat-
form using a low power CPU, Samsung flash SSD [7], and

Trace
Total get- get:set Avg. size (bytes)
set ops ratio Key Value

Xbox 5.5 millions 7.5:1 92 1200
Dedup 40 millions 2.2:1 20 44

Table 3: Properties of the two traces used in the per-

formance evaluation of FlashStore.

low-power hard disk. The details of these two platforms
are provided in Table 2. The RAM power consumption fig-
ures were obtained using the estimate of 878mW per 1GB
of DDR2 DRAM given in [24]. The chassis/motherboard
cost, which includes CPU and RAM but not flash or HDD,
is indicated in the last column of the table.

For each of these platforms, we compare the throughput
(operations per sec) on the two traces described in Table
3 for the following systems: (i) FlashStore on flash (Flash-
Store), (ii) BerkeleyDB on flash (BerkeleyDB-SSD), and (iii)
BerkeleyDB on hard disk (BerkeleyDB-HDD). It is obvious
that Blue will provider better performance over Green in
terms of throughput but the question we also explore is that
at what cost this higher performance comes. To this end, we
also compare the (i) number of operations per unit energy
and (i) throughput per dollar for the above three systems
on the two traces on the two platforms in Section 5.8.

5.4 Evaluation Datasets
We described two real-world applications in Section

3 that can use FlashStore as an underlying persistent
key-value store. Data traces obtained from real-world in-
stances of these applications are used to drive and evaluate
FlashStore’s design.

Xbox LIVE Primetime Trace. We evaluate the
performance of FlashStore on a large trace of get-set

key operations obtained from real-world instances of the
Microsoft Xbox LIVE Primetime online multiplayer game
[9]. In this application, the key is a dot-separated sequence
of strings with total length averaging 94 characters and
the value averages around 1200 bytes. The ratio of get

operations to set set operations is about 7.5.

Storage Deduplication Trace. We have built a storage
deduplication analysis tool that can crawl a root directory,
generate the sequence of chunk hashes for a given average
chunk hash size, and compute the number of deduplicated
chunks and storage bytes. The enterprise data backup
trace we use for evaluations in this paper was obtained by
our storage deduplication analysis tool using 4KB chunk
sizes. The trace contains 27,748,824 total chunks and
12,082,492 unique chunks. Using this, we obtain the ratio
of get operations to set operations in the trace as 2.2:1.
In this application, the key is a 20-byte SHA-1 hash of the
corresponding chunk and the value is the meta-data for the
chunk, with key-value pair total size upper bounded by 64
bytes.

The properties of the two traces are summarized in Ta-
ble 3. Both traces include get operations on keys that have
not been set earlier in the trace. (Such get operations will
return null.) This is an inherent property of the nature of
the application, hence we play the traces “as-is” to evaluate
throughput in operations per second. For tuning hash table

Platform
CPU RAM Flash (SSD) Hard Disk (HDD) Chassis

Type Power Size Power Type Cost Power Type Cost Power Cost

Blue Intel Core 2 Duo 65W 4GB 3.5W fusionIO $2200 15W Seagate Barracuda $50 12W $1150
E8500 @3.16GHz 80GB 250GB 7200rpm

Green Intel Atom 330 8W 2GB 1.8W Samsung $500 0.4W Seagate Momentus $50 1.6W $200
@1.60GHz 64GB 160GB 5400rpm

Table 2: Blue and Green: The two evaluation platforms, their components, power usage, and cost.

parameters in Section 5.5, we need to measure the perfor-
mance of get and set operations separately. We do this
using the storage deduplication trace but with some modi-
fications as explained there.

5.5 Selection of Hash Table Parameters
Before we make performance comparisons of FlashStore

with BerkeleyDB, we need to select two parameters in our
hash table design from Section 4.4, namely, (a) number of
hash functions used in our variant of cuckoo hashing, and
(b) size of compact key signature.
We choose 24 hash functions in the RAM HT Index for our

FlashStore implementation. Note that during a key lookup,
all hash values on the key need not be computed, since the
lookup stops at the candidate position number the key is
found in. We fix the compact signature size to 2 bytes in
our implementation. A detailed explanation of the param-
eter value selection procedure with some recommendations
is given in ChunkStash [18].

5.6 Evaluation on Blue Platform
We ran the Xbox LIVE Primetime online multi-player

game and storage deduplication traces (from Table 3) on
FlashStore and BerkeleyDB systems. We log the average
number of ops/sec (get-set operations per sec) at a period
of every 10,000 operations during each run and then take
the overall average over a run to obtain throughput num-
bers shown in Figure 5 for the Blue platform.
FlashStore achieves an average throughput of 42,527

ops/sec on the Xbox trace. This is about 5x higher than that
of BerkeleyDB on flash SSD and about 60x higher than that
of BerkeleyDB on HDD. On the dedup trace, FlashStore
achieves a higher average throughput of 57,271 ops/sec. The
throughput of BerkeleyDB also increases on the dedup trace.
This can be explained as follows. The write mix per unit
operation in the dedup trace is about 2.65 times that of the
Xbox trace. However, since the key-value pair size is about
20 times smaller for the dedup trace, the number of syncs
to stable storage per write operation is about 20 times less.
Overall, the number of syncs to stable storage per unit op-
eration is about 7.6 times less for the dedup trace. Hence,
both FlashStore and BerkeleyDB obtain higher throughputs
on the dedup trace, though the gain is more for BerkeleyDB
since it benefits more from fewer syncs which translate to
random writes in BerkeleyDB but sequential writes in Flash-
Store. Moreover, because of this, the gains of FlashStore
over BerkeleyDB on the dedup trace are less than the corre-
sponding ones for the Xbox trace – on the dedup trace, the
average throughput of FlashStore is about 8x higher than
that of BerkeleyDB on flash SSD and about 24x higher than
that of BerkeleyDB on HDD. A second reason for this is that
the Xbox trace has many updates to (earlier written) keys
(while the dedup trace has none because of its application

42527
57271

8395 7325

700

2415

100

1000

10000

Xbox trace Dedup trace

a
v

g
.

o
p

s/
se

c
(l

o
g

 s
ca

le
)

Blue

FlashStore

BerkeleyDB-SSD

BerkeleyDB-HDD

Figure 5: Blue platform: Comparative throughput

(ops/sec) evaluation of FlashStore and BerkeleyDB on

the two traces.

8470
10884

4985

2006

481

1012

100

1000

10000

Xbox trace Dedup trace

a
v

g
.

o
p

s/
se

c
(l

o
g

 s
ca

le
)

Green

FlashStore

BerkeleyDB-SSD

BerkeleyDB-HDD

Figure 6: Green platform: Comparative throughput

(ops/sec) evaluation of FlashStore and BerkeleyDB on

the two traces.

nature) and these translate to in-place updates to stable
storage in BerkeleyDB.

5.7 Evaluation on Green Platform
We next compare the throughput (get-set operations

per sec) performance of FlashStore and BerkeleyDB on the
Green platform for the Xbox LIVE Primetime and storage
deduplication traces (from Table 3). As for the Blue plat-
form, we log the average number of ops/sec at a period of
every 10,000 operations during each run and then take the
overall average over a run to obtain throughput numbers
shown in Figure 6 for the Green platform.

FlashStore achieves an average throughput of 8,470
ops/sec on the Xbox trace and 10,884 ops/sec on the dedup
trace. These numbers indicate a reduction of about 5x in
throughput compared to the Blue platform. This is expected
because of the low power nature of the Green platform. A
more appropriate comparison between the Blue and Green
platforms should involve performance per unit cost and/or
per unit power – we present this in Section 5.8. Most of the
relative performance comparisons between FlashStore and
BerkeleyDB on the two traces and their explanations for

Platform
Xbox trace

ops/Joule ops/sec/dollar
FlashStore BerkeleyDB-SSD BerkeleyDB-HDD FlashStore BerkeleyDB-SSD BerkeleyDB-HDD

Blue 509 100 9 13 2 0.6
Green 830 489 42 12 7 2

Table 4: Blue vs. Green: Comparison of power & cost aware metrics for FlashStore and BerkeleyDB on Xbox trace.

Platform
Dedup trace

ops/Joule ops/sec/dollar
FlashStore BerkeleyDB-SSD BerkeleyDB-HDD FlashStore BerkeleyDB-SSD BerkeleyDB-HDD

Blue 686 88 30 17 0.2 2
Green 1067 197 89 16 3 4

Table 5: Blue vs. Green: Comparison of power & cost aware metrics for FlashStore and BerkeleyDB on dedup trace.

the Blue platform also hold for the Green platform.

5.8 Blue vs. Green Platforms: Power and Cost
Aware Metrics

We undertake a comparison between FlashStore and
BerkeleyDB on the Blue and Green platforms involving op-
erations per unit energy (Joule) and throughput (ops/sec)
per unit cost (dollar). The first metric obtain (ops/Joule)
is obtained by dividing the throughput (ops/sec) of the ap-
plication by the power usage (Joules/sec) of the platform.
for computing this metric, we obtained power usage num-
bers for CPU, RAM, flash SSD, and HDD for each platform
as provided in Table 2. We did not have access to total
motherboard power usage information for either platform,
hence the ops/Joule metrics numbers we present should be
interpreted in a relative sense and not used for absolute com-
parison with benchmarks of other systems.
The second metric (ops/sec/dollar) is obtained by divid-

ing the throughput (ops/sec) of the system by the upfront
dollar investment in the platform and attempts to approxi-
mate a TPC-style benchmark [8] for key-value stores. The
latter is obtained by adding the chassis/motherboard cost
(which is indicated in the last column of Table 2) to the cost
of the respective flash SSD or HDD used by the application.
These metrics are provided in Tables 4 and 5 for the Xbox
and dedup traces respectively.
For the first metric of ops/Joule, FlashStore achieves

about 500 ops/Joule on the Xbox trace and 700 ops/Joule
on the dedup trace on the Blue platform. The correspond-
ing numbers for the Green platform are about 60% higher.
Thus, the Green platform is more energy efficient than the
Blue platform, but that comes at the cost of lower absolute
throughput, a tradeoff that is often present in low power
computing systems. The ops/Joule provided by BerkeleyDB
(on either SSD or HDD) is about an order of magnitude
lower than that of FlashStore on both platforms.
For the second metric of ops/sec/dollar, FlashStore

achieves comparable performance on both platforms and
both traces. FlashStore’s performance on this metric is
higher than that of BerkeleyDB by about 1-2 orders of
magnitude on the Blue platform and about 2x-6x on the
Green platform. Thus, FlashStore wins on either platform
but the choice of platform needs a tie-breaker based on
other metrics.

5.9 Storage Deduplication Performance
The throughput in ops/sec obtained by FlashStore on the

dedup trace can be converted to an average throughput of
the data stream being backed up as follows. For the given
ratio of unique chunks to total chunks in the dedup trace, we
obtain an estimate of 1.44 operations per processed incoming
chunk in the trace (1 get and 0.44 sets on average). Thus,
the throughput of 57,271 ops/sec obtained by FlashStore on
the Blue platform translates to 39,772 chunks processed per
sec. With a chunk size of 4KB used to obtain the trace, this
gives an incoming data throughput of 155 MB/sec. (For
a 1TB dataset, note that with 3GB of RAM and 32GB of
flash, FlashStore can index all chunk hashes on flash without
destaging to hard disk, hence we do not need to consider
throughput reduction due to destaging here.)

This is comparable in value to the data transfer rates ob-
tained by RAM prefetching mechanisms proposed in [38]
for hard disk index based inline deduplication systems. The
point we want to make here is that a storage deduplication
system using FlashStore as its index can achieve high data
backup throughputs by mitigating hard disk seek bottlenecks
on index lookups.

Our design of FlashStore accommodates the RAM
prefetching mechanisms for hard disk index based inline
deduplication systems proposed in [29, 38]. The perfor-
mance numbers we report for FlashStore on the storage
deduplication traces would be further enhanced when these
optimizations customized for inline storage deduplication
are incorporated. The impact of intelligent caching and
prefetching strategies on boosting FlashStore performance
for storage deduplication is explored in ChunkStash [18].

5.10 Impact of Flash Recycling Activity
Finally, we evaluate the impact of flash recycling activ-

ity on FlashStore performance. We configured FlashStore
to use amounts of flash equal to varying percentages of the
dataset size, starting from 90% down to 25%. Because of
flash recycling activity, we expect reductions in FlashStore
performance as the usable flash capacity is reduced. We plot
this effect in Figure 7 where we also overlay the throughput
obtained by BerkeleyDB on hard disk for comparison pur-
poses.

FlashStore shows a graceful degradation in throughput as
flash capacity is reduced. This is not only because of flash
recycling activity but also because lookups on destaged keys
need to be served from hard disk (when the working set does

4
2
5
2
7

5
7
2
7
1

39538
43485

36381 37141

27824 27375

19554

10794

700 2415

0

10000

20000

30000

40000

50000

60000

Xbox trace Dedup trace

F
la

sh
S

to
re

 a
v

g
. o

p
s/

se
c

Blue

SSD=dataset size SSD=90% of dataset

SSD=80% of dataset SSD=50% of dataset

SSD=25% of dataset BerkeleyDB-HDD

Figure 7: Impact of flash recycling activity on Flash-

Store performance and comparison with BerkeleyDB on

hard disk on the two traces. The flash capacity in Flash-

Store is reduced as a percentage of the dataset size for

each trace.

not fit on flash). The performance the on Xbox trace drops
less sharply because it has many key updates, hence recycled
pages have many orphaned entries that are discarded. In
contrast, the dedup trace has no key updates (after the first
unique instance of a chunk appears, its associated key is
set and never changed), hence recycled pages contain many
valid keys that need to be destaged to hard disk, thus hitting
disk bottlenecks. Note that even with flash reduced to 25%
of dataset size, the throughput of FlashStore is several times
that of BerkeleyDB on hard disk.

6. RELATED WORK
Flash memory has received lots of recent interest as a sta-

ble storage media that can overcome the access bottlenecks
of hard disks. Researchers have considered modifying ex-
isting applications to improve performance on flash as well
as providing operating system support for inserting flash as
another layer in the storage hierarchy. In this section, we
briefly review work that is related to FlashStore and point
out its differentiating aspects.
MicroHash [37] designs a memory-constrained index

structure for flash-based sensor devices with the goal of op-
timizing energy usage and minimizing memory footprint.
This work does not target low latency operations as a design
goal – in fact, a lookup operation may need to follow chains
of index pages on flash to locate a key, hence involving mul-
tiple flash reads.
FlashDB [31] is a self-tuning B+-tree based index that

dynamically adapts to the mix of reads and writes in the
workload. Like MicroHash, this design also targets memory
and energy constrained sensor network devices. Because a
B+-tree needs to maintain partially filled leaf-level buckets
on flash, appending of new keys to these buckets involves
random writes, which is not an efficient flash operation.
Hence, an adaptive mechanism is also provided to switch
between disk and log-based modes. The system leverages
the fact that key values in sensor applications have a small
range and that at any given time, a small number of these
leaf-level buckets are active. Minimizing latency is not an
explicit design goal.
The benefits of using flash in a log-like manner have been

exploited in FlashLogging [16] for synchronous logging. This
system uses multiple inexpensive USB drives and achieves

performance comparable to flash SSDs but with much lower
price. Flashlogging assumes sequential workloads. In con-
trast, FlashStore works with arbitrary key access workloads.

Gordon [14] uses low power processors and flash memory
to build fast power-efficient clusters for data-intensive ap-
plications. It uses a flash translation layer design tailored
to data-intensive workloads. In contrast, FlashStore builds
a persistent key-value store using existing flash devices (and
their FTLs) with throughput maximization as the main de-
sign goal.

FAWN [12] uses an array of embedded processors
equipped with small amounts of flash storage (but no hard
disk) to build a power-efficient cluster architecture for data-
intensive computing. Its design focuses mainly on read-
mostly workloads. The differentiating aspects of FlashStore
include the design goal of achieving high throughput on
read-write mixed workloads in server-class applications, use
of flash as a cache above hard disk to hold the working set
of key-value pairs, and a specialized in-memory hash table
structure with cuckoo hashing to minimize RAM usage per
entry and achieve high load factors with bounded lookup
time. FAWN uses SSD as a replacement for hard disk. In
contrast, FlashStore uses SSD as cache above hard disk and
incorporates mechanisms for destaging as well as popular-
ity measures for deciding which key-value pairs to destage to
hard disk. Unlike FAWN, FlashStore eliminates the need for
rehashing, a prohibitively expensive operation, by destaging
key-value pairs to disk when hash table target load factors
are reached.

BufferHash [11] builds a content addressable memory
(CAM) system using flash storage for networking applica-
tions like WAN optimizers. It buffers key-value pairs in
RAM, organized as a standard hash table, and flushes the
hash table to flash when the buffer is full. Past copies of hash
tables on flash are searched using a time series of Bloom fil-
ters maintained in RAM and searching keys on a given copy
involve multiple flash reads. In contrast, FlashStore is de-
signed to access any key in the current working set using one
flash read, leveraging cuckoo hashing and compact key sig-
natures to minimize RAM usage of a customized in-memory
hash table index. Moreover, it uses flash as a cache on top
of hard disk.

The work in [24] provides architectural support for us-
ing flash as an operating system managed disk cache and
improves performance and reliability by splitting flash disk
caches into separate read and write regions. This work uses
raw flash memory and develops a programmable flash con-
troller. FlashStore can be viewed as optimizing flash usage
for a specific application, namely persistent key-value store,
by using flash-aware data structures and algorithms on top
of device FTL. By focusing on a single application and op-
timizing for it, we strive to squeeze out better performance
than generic approaches at the operating system level.

eNVy [35] uses raw flash memory as the replacement for
hard disk. It uses page level mapping to manage flash. It
also does garbage collection and wear-leveling. FlashStore
uses high-performance SSD as a cache above hard disk to
build a high throughput key-value store. In ChunkStash,
the flash management and wear-leveling is done by the flash
device itself.

7. CONCLUSION
We designed FlashStore to be used as a high through-

put persistent key-value storage layer for a broad range of
server class applications. To this end, we used real-world
data traces from two data center applications, namely, Xbox
LIVE Primetime online multi-player game and inline stor-
age deduplication, to drive and evaluate the design of Flash-
Store on traditional and low power server platforms. Flash-
Store outperforms BerkeleyDB (running on hard disk and
flash separately) by 1-2 orders of magnitude on the metrics
of throughput (ops/sec), energy efficiency (ops/Joule), and
cost efficiency (ops/sec/dollar) for both applications running
on both server platforms.

8. REFERENCES
[1] BerkeleyDB. http://www.oracle.com/technology/

products/berkeley-db/index.html.

[2] BerkeleyDB for .NET.
http://sourceforge.net/projects/libdb-dotnet/.

[3] C# System.Threading. http://msdn.microsoft.
com/en-us/library/system.threading.aspx.

[4] Fusion-IO Drive Datasheet . http://www.fusionio.
com/PDFs/Data_Sheet_ioDrive_2.pdf.

[5] Iometer. http://www.iometer.org/.

[6] MurmurHash Fuction.
http://en.wikipedia.org/wiki/MurmurHash.

[7] Samsung SSD. http://www.samsung.com/global/
business/semiconductor/productInfo.do?fmly_id=

161&partnum=MCCOE64G5MPP.

[8] TPC: Transaction Processing Benchmark.
http://www.tpc.org/.

[9] Xbox LIVE Primetime game.
http://www.xboxprimetime.com/.

[10] N. Agrawal, V. Prabhakaran, T. Wobber, J. Davis,
M. Manasse, and R. Panigrahy. Design Tradeoffs for
SSD Performance. In USENIX ATC, 2008.

[11] A. Anand, S. Kappes, A. Akella, and S. Nath.
Building Cheap and Large CAMs Using BufferHash.
University of Wisconsin Madison Technical Report
TR1651, Feb 2009.

[12] D. Andersen, J. Franklin, M. Kaminsky,
A. Phanishayee, L. Tan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. In SOSP, Oct. 2009.

[13] A. Broder and M. Mitzenmacher. Network
Applications of Bloom Filters: A Survey. In Internet
Mathematics, 2002.

[14] A. M. Caulfield, L. M. Grupp, and S. Swanson.
Gordon: Using Flash Memory to Build Fast,
Power-Efficient Clusters for Data-Intensive
Applications. In ASPLOS, 2009.

[15] F. Chen, D. Koufaty, and X. Zhang. Understanding
Intrinsic Characteristics and System Implications of
Flash Memory Based Solid State Drives. In ACM
SIGMETRICS, 2009.

[16] S. Chen. Flashlogging: Exploiting flash devices for
synchronous logging performance. In SIGMOD, 2009.

[17] F. Corbato. A Paging Experiment with the Multics
System. In MIT Project MAC Report MAC-M-384,
1968.

[18] B. Debnath, S. Sengupta, and J. Li. ChunkStash:
Speeding Up Inline Storage Deduplication Using Flash

Memory. In USENIX ATC, 2010.

[19] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s Highly Available Key-value Store.
In SOSP, 2007.

[20] E. Gal and S. Toledo. Algorithms and Data Structures
for Flash Memories. In ACM Computing Surveys,
volume 37, 2005.

[21] B. Gill, M. Ko, B. Debnath, and W. Belluomini.
STOW: A Spatially and Temporally Optimized Write
Caching Algorithm. In USENIX ATC, 2009.

[22] A. Gupta, Y. Kim, and B. Urgaonkar. DFTL: a Flash
Translation Layer Employing Demand-Based Selective
Caching of Page-Level Address Mappings. In
ASPLOS, 2009.

[23] A. Kawaguchi, S. Nishioka, and H. Motoda. A
Flash-Memory Based File System. In USENIX ATC,
1995.

[24] T. Kgil, D. Roberts, and T. Mudge. Improving NAND
Flash Based Disk Caches. In ISCA, 2008.

[25] H. Kim and S. Ahn. BPLRU: A Buffer Management
Scheme for Improving Random Writes in Flash
Storage. In FAST, 2008.

[26] D. E. Knuth. The Art of Computer Programming:
Sorting and Searching (Volume 3). Addison-Wesley,
Reading, MA, 1998.

[27] I. Koltsidas and S. Viglas. Flashing Up the Storage
Layer. In VLDB, 2008.

[28] S. Lee, D. Park, T. Chung, D. Lee, S. Park, and
H. Song. A Log Buffer-Based Flash Translation Layer
Using Fully-Associate Sector Translation. In ACM
TECS, volume 6, 2007.

[29] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezise, and P. Camble. Sparse Indexing: Large
Scale, Inline Deduplication Using Sampling and
Locality. In FAST, 2009.

[30] S. Nath and P. Gibbons. Online Maintenance of Very
Large Random Samples on Flash Storage. In VLDB,
2008.

[31] S. Nath and A. Kansal. FlashDB: Dynamic
Self-tuning Database for NAND Flash. In IPSN, 2007.

[32] R. Pagh and F. F. Rodler. Cuckoo hashing. Journal of
Algorithms, 51(2):122–144, May 2004.

[33] A. Silberschatz, P. B. Galvin, and G. Gagne.
Operating System Concepts. John Wiley & Sons, 2008.

[34] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In
SIGCOMM, 2001.

[35] M. Wu and W. Zwaenepoel. envy: A non-volatile,
main memory storage system. In ASPLOS, 1994.

[36] H. Yadava. The Berkeley DB Book. Apress, 2008.

[37] D. Zeinalipour-yazti, S. Lin, V. Kalogeraki,
D. Gunopulos, and W. A. Najjar. Microhash: An
Efficient Index Structure for Flash-based Sensor
Devices. In FAST, 2005.

[38] B. Zhu, K. Li, and H. Patterson. Avoiding the Disk
Bottleneck in the Data Domain Deduplication File
System. In FAST, 2008.

