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Abstract—In spite of growing frequency and sophistication
of attacks two factor authentication schemes have seen very
limited adoption in the US, and passwords remain the single
factor of authentication for most bank and brokerage accounts.
Clearly the cost benefit analysis is not as strongly in favor of
two factor as we might imagine. Upgrading from passwords
to a two factor authentication system usually involves a large
engineering effort, a discontinuity of user experience and a hard
key management problem. In this paper we describe a system
to convert a legacy password authentication server into a two
factor system. The existing password system is untouched, but is
cascaded with a new server that verifies possession of a smart-
phone device. No alteration, patching or updates to the legacy
system is necessary. There are now two alternative authentication
paths: one using passwords alone, and a second using passwords
and possession of the trusted device. The bank can leave the
password authentication path available while users migrate to
the two factor scheme. Once migration is complete the password-
only path can be severed. We have implemented the system and
carried out two factor authentication against real accounts at
several major banks.

I. INTRODUCTION

In the US only a small minority of banks offer two factor
authentication. There are a number of possible reasons for
this. But high among them is the fact that changing from
a single factor (password) authentication system to a two
factor system requires a complete overhaul of the legacy
authentication system. This is a painful and costly upgrade for
any organization to make. Generally there is no evolutionary
path to upgrading the authentication infrastructure: the old
system must be pulled out and a new one put in place. There
is a hard transition when users are forced to begin using the
new system.

Not surprisingly many institutions will avoid and delay this
pain if possible. Even if the fraud that results from password
stealing is large (see e.g. [24]) it represents a known cost
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Iguaçu, Brazil. 978-1-4577-1019-3/11/$26.00 c©2011 IEEE.

while the risk of a major glitch or security incident when
doing infrastructure changes is unknown. There is the further
risk that two factor authentication might result in customer
defections or excessive support calls. There is at least the
potential for very significant customer dissatisfaction if a
hard transition is forced upon users [10]. Banks are probably
following the maxim “if it ain’t broke don’t fix it.” While
password authentication may appear “broke” to much of the
security community the reluctance to move to two factor
schemes suggests that it isn’t “broke enough” to justify the
pain of the proposed two factor fixes.

The system we describe addresses this problem by offering
a painless migration path to two factor authentication. First,
an institution can upgrade to two factor authentication without
altering its legacy authentication servers: the change is strictly
incremental, meaning that while an additional server will be
added to their data center (in fact it can also reside outside,
see Section IV-C), no alteration of their existing system is
necessary. The existing servers stay in place and do not
have to be upgraded patched or altered in any way. The
additional server requires no access to any data on the legacy
server (e.g. it doesn’t require any knowledge of the passwords
or even userIDs). Second, it is possible to have both the
legacy password authentication and the two factor systems
co-exist; this makes it possible to roll the two factor system
out gradually. For example some users can continue to use
passwords while others use two factor. Or users can use two
factor only when the situation demands it (e.g. logging in
from an internet kiosk). If there are any problems with the
two factor scheme reversion is effortless since the old system
is still in place. The two factor scheme can be rolled out to
different subsets of users to test their reaction and iron out any
difficulties before offering it to everyone.

II. RELATED WORK

The Impostor [20] system of Pashalidis and Mitchell, is
a password management system where roaming users can



access their credentials. Rather than have users authenticate
themselves by typing a master password, a challenge response
authentication is used. The user is assigned a large string that
forms the secret. When requesting access the user is chal-
lenged to provide characters from randomly selected positions
in the string, and is authenticated only if he responds correctly.

Florêncio and Herley [9] describe another proxy web service
that allows users to access web-sites by using a MITM proxy.
The user’s password is pre-encrypted and carried as a list
of one-time passwords. Thus the proxy does not store the
passwords, but rather the keys with which the passwords
have been pre-encrypted. This however is still a single factor
scheme. Further, there is a vulnerability to an attacker who
steals one-time passwords. The KLASSP system [11] and the
(outdated) trick in [8], by the same authors, tries to circumvent
keyloggers, but still use a single factor for sign in.

Balfanz and Felten [7] provide smartcard functionality using
a mobile device (a PalmPilot). Using a serial link to a PC
the device provided a trusted authentication path. They also
first discuss the interesting question of splitting trust between
a limited capability trusted device (e.g. a smartphone) and a
powerful but untrusted one (e.g. a PC). There have been several
other proposals that follow this trust splitting paradigm and
involve using a cellphone, PDA or smart-phone to provide a
second factor or an out-of-band channel for authentication.
Wu et al. [18] sketch an architecture where a proxy stores
credentials; the proxy delivers a challenge which must be
answered by SMS to authenticate the user. It is thus a single-
signon scheme where an out of band channel is used for a
second factor. Parno et al. [6] describe a smart-phone based
system that performs mutual authentication, even when users
are confused or make bad decisions. The system protects both
against phishing (where the user incorrectly believes he is
connected to MyBank) and spyware where keyboard traffic is
recorded. The system requires a connection (such as bluetooth)
between the trusted device and the machine on which the
browser resides. Mannan and van Oorschot [17] describe MP-
Auth: another system that uses a trusted mobile device such
as a PDA or smart-phone to enter the password. The device
encrypts the password using the end server’s public key before
passing it to the untrusted terminal. MP-Auth also requires a
channel (such as bluetooth) between the trusted device the
untrusted machine. The public keys of the sites to be accessed
are pre-loaded onto the device, which prevents the untrusted
machine from mounting a MITM attack.

While other proposals address the question of logging in
from untrusted environments we believe ours is the first to
convert a legacy password system into a two factor scheme.
Previous efforts have focused on protecting the user’s long
term secret [6], [5], [9] but are still single factor schemes: if
the user’s secret (password) is discovered the system fails. By
contrast, in our scheme discovery of the password does not
allow access along the two factor path. Thus a bank that has

migrated all of it’s users (i.e. disabled the single factor path as
discussed in Section V) would not be vulnerable even if the
original underlying secrets (i.e. passwords) were discovered.
Second, we do not require any connection between the trusted
smart-phone and the untrusted machine.

III. METHOD

A. Legacy Single Factor Authentication

Clearly there will be large differences between the server
arrangements of different organizations depending on the scale
of the population served. While generalization is hard the
server chain will generally have the components shown in
Figure 1. A web-server accesses upper level database and
application servers that provide the content and functionality.
Below it, generally an SSL accelerator handles the burden
of (at least) the asymmetric encryption (and possibly the
symmetric encryption also). A firewall protects the data center
from various forms of attack. Depending on the scale of the
system the web server functions may themselves be broken
into smaller components. For example, there might be a server
that just handles the authentication. Thus depicting the web
server as a single block is not intended to suggest that only a
single machine is involved.

The web server handles the POST events that come from lo-
gin forms submitted by users. When the credentials submitted
result in a successful login the web-server communicates with
database and application servers that retrieve user information
and perform whatever functions are supported. At a lower level
the traffic may flow through other servers such as an SSL
accelerator and a firewall server.

Instead of replacing the authentication server we add an-
other server which we call a Cascader. None of the existing
applications on any of the other servers change (see Section
IV-C). Thus the system involves merely adding a server and
not altering legacy systems. The Cascader sits between the
upper (web, authentication and application) and lower (SSL
acceleration and firewall) level servers and intercepts all traffic
(of any session using 2-factor authentication). Rather than
deal with the authentication server directly, the user’s traffic
now goes through the Cascader, and is modified by it. This
allows us to change the authentication information required
from the user. The user will now have to deliver two factors
of authentication to the Cascader. Note however that the
Cascader does not access the legacy authentication secrets
directly (although of course it can see them as they pass
through), and the legacy authentication server does not have
access to the new (strong) credentials. Yet, login will only
succeed (along the two factor path) when the user correctly
presents both factors.

B. The Trusted Device

The trusted device must be capable of basic encryption.
In our implementation we used a BenQ E72 Smart-Phone



running Windows Mobile version 6.0. We emphasize that we
are using only the computing abilities of the device and there
is no requirement that it have any connectivity at the time
of login. Thus we do not require, as [6], [17], [5] do, that
the device form a bluetooth connection with the untrusted
machine, or that it be able to send or receive SMS, phone
or web messages, as [18], [14] do. This is a major point of
differentiation between our solution and previous two factor
proposals based around smart phones. Furthermore, by not
requiring the device to connect to the untrusted machine, we
circumvent any attack where a compromised machines reads
information stored in the trusted device.

1) Application Running on the Device: The application
running on the device must be able to encrypt the user’s legacy
password using the device key Kd and the nonce N. Storing
p on the device might be convenient for the user, but for the
scheme to be truly two factor both p and N must be input.
If the application cached p then we would really have only a
single factor proof-of-possession scheme (albeit with a strong
secret Kd). A screenshot of the implementation is shown in
Figure 2 (note this is the version running on the simulator
rather than the physical device).

2) Registering the Device: The device specific encryption
key has to be transmitted to the device. The key Kd must
be of high entropy, i.e. much higher than the highest strength
allowed for the legacy password, and the desired strength of
the new factor. In our sample implementation, we use a 512
bit Kd, which is downloaded to the device at registration,
together with the executable code. Note that we do not assume
any connectivity at the time of login: the download of the
executable to the device can be via USB or any other means
of porting data to the device. This is a one-time registration
that never has to be repeated. At the same time the user must
register his userID at the site. Only one encrypting device is
permitted per user, and so the userID uniquely identifies the
device key Kd that was issued.

3) Logging in to the Service: When logging in to the
service the user navigates to the Cascader at, for example,
www.mybank2factor.com where a login service is running.
The user is first prompted for his userID, and then given a
nonce N. The user must then submit E(p, h(Kd, N)) to the
site within one minute. Upon receipt the Cascader decrypts,
using the nonce it just provided and the device key it knows
to have been issued to that userID:

E−1(E(p, h(Kd, N)), h(Kd, N)) = p.

It forwards this to the legacy password authentication server.
The overall sequence of steps is as follows and is shown in
Figure 3:

1) User navigates to www.mybank2factor.com on untrusted
machine

2) User enters userID
3) User is given nonce N

Fig. 1. Legacy system at mybank.com data center. The existing system which
supports only password authentication. The web-server handles authentication
and passes traffic to higher up database and application servers. Lower down
is an SSL accelerator and firewall.

4) User enters N and p on trusted device
5) Trusted device calculates E(p, h(Kd, N))

6) User types E(p, h(Kd, N)) on the untrusted machine,
and submits to www.mybank2factor.com

Thereafter the Cascader at www.mybank2factor.com decrypts
E−1(E(p, h(Kd, N)), h(Kd, N)) = p and forwards, along
with the userID, to www.mybank.com.

IV. IMPLEMENTATION AND STATUS

A. Smart Device

1) Encryption: We use a dedicated implementation of the
RC4 stream cipher to encrypt the password [23], [4]. Since
RC4 does not take a separate nonce we combine the device
key and nonce to produce a single-use key for each encryption.
This combination is done by hashing rather than concatenation
to protect against an attack involving the key schedule of RC4.
Thus the actual encryption is E(p, h(Kd, N)), where h() is
the SHA-1 hash [23], [4], [21]. The nonce expires one minute
after being issued. RC4 has certain known weaknesses and
might easily be replaced by a more advanced stream cipher.
The cipher produces a hexadecimal output. To reduce the
number of characters entered we group the output 5 bits at
a time and use elements from the 25 = 32 character alpha-
bet: ABCDEFGHJKLMNPQRSTUVWXYZ23456789. These
characters are easily readable in most fonts on most displays
without confusion (e.g. between ‘0’ and ‘O’). The device
key Kd is stored on the device using the Data Protection
API (DPAPI) [22]. The entire smart device application is
approximately 1000 lines of C# code. It might easily be
rewritten for other mobile devices such as iPhone etc.

2) Registration and Revocation of Device Keys: Key man-
agement can be as onerous a problem as changing back-end
infrastructure. However, the load in our system is very light.



Fig. 2. The application was implemented on a Windows Mobile 6.0 smart-
phone simulator and then ported to a BenQ E72 smart-phone. The figure
depicts the simulator screenshot. The application running on the device accepts
the input nonce N and produces the output code E(p, h(Kd, N)). Figure
shows the device after user has entered N (left) and after the output code
E(p, h(Kd, N)) has been generated (right). The user will enter the latter at
the untrusted terminal.

Fig. 3. The user experience illustrating the main actions taken by the user.
The userID is entered on the untrusted browser, nonce N and password are
entered on the smart-phone, and the resulting encryption E(p,Kd, N) is
entered on the browser.

Since the user already has a way of contacting the bank on a
trusted channel (i.e. over SSL when he logs in) there is no need
for a key exchange protocol. The requirement of registration
is that the user’s smart-phone be bound to a device key
Kd. That key will be issued only once. The user downloads
the application; each download of the application contains a
unique Kd. This download should be available only when the
user is logged in. The cascader then stores the userID-Kd pair
to enable decryption later.

It is important to have a revocation procedure when the

Fig. 4. The change required at the mybank.com data center. Addition
of Cascader enables two factor authentication without changing any of the
existing legacy components. The Cascader is added, and offers a new path
for providing p to the legacy authentication system.

smart-phone is lost, stolen, broken or simply replaced. Recall
that if an attacker steals the phone he cannot login without
the password. A good suggestion made by Parno et al. [6] is
that revocation should be done by phone. This simply would
involve releasing the binding of the userID to the device key
Kd.

Replacement is slightly more complex. Assume that a user
has lost his phone, and the legacy (i.e. password only) path
is no longer available. Thus he can no longer login (neither
of course can the possessor of the phone). Currently most
banks will issue a new password after authenticating the user
(e.g. using secret questions, or asking details of the account).
Since the legacy path has been severed this will no longer
suffice. Instead the bank changes the password on the legacy
system, and gives the user this new password, encrypted with
a new key K

′

d and a nonce. That is gives the user the code
E(p, h(Kd, N)). Thus the user can access the account using
the reset password via the cascader. At that point the user can
download a new version of the application (which contains a
new key). The user would then be free to register a new device
by installing a new version of the device application (with a
new device key Kd) on a new smart-phone.

B. Cascader

A key requirement of our approach is that the Cascader
acts as a transparent proxy without needing to reconfigure the
backend servers.

To accomplish this we leverage the work on link-translating
proxies of Freedman et al. [16], CGIproxy [1] and Mao
and Herley [19]. Mao and Herley [19] describe in detail how
to build a transparent proxy which handles SSL, preserves



session state, and preserves the same-origin policy separation
of content. The basic idea is to map every domain to be loaded
from the target server to a sub-domain of the proxy. This is
done by creating a wildcard DNS entry for the Cascader, and
appending the Cascader domain to the URL to be loaded. Thus
if we register the domain cascade2factor.com for the Cascader
then by loading https://www.paypal.com.cascade2factor.com
the user is served content from https://www.paypal.com via
the Cascader. In this instance the Cascader is essentially an IIS
service which appends .cascader2factor.com to the URL of all
absolute links in responses before relaying to the client, and
strips .cascader2factor.com from all requests from the client.
A detailed treatment is given in [19].

However the proxy of Mao and Herley [19] suffers from a
problem with SSL content: they use a single wildcard certifi-
cate to cover multiple subdomains. Different browsers handle
wildcard certificates differently (see RFC 2818): Firefox and
Opera will allow a certificate for *.cascade2factor.com to
cover any number of sub-domains. However, Internet Explorer,
Chrome and Safari allow coverage of only a single subdo-
main. Thus a certificate for *.cascade2factor.com cannot cover
https://www.paypal.com.cas
cade2factor.com. This has the effect that users of URRSA
see many certificate errors when using IE, Chrome or Sa-
fari. Since many sites load content from several different
domains (e.g. a user logging into hotmail will load SSL
content from .hotmail.com, .live.com and .spaces.com) this
generates many certificate errors for the user. This problem
manifest, e.g., in URSSA [9]. We entirely eliminate this
shortcoming of URRSA as follows. By restricting to a single
site we have restricted the number of domains that must be
covered. For example, a user logging into Paypal loads content
using SSL from www.paypal.com and www.paypalobjects.
com; each using a different certificate. Rather than have
a single wildcard certificate to cover *.cascade2factor.com
we use the subjectAltName:dNSName field of the original
certificate. Thus, in the Paypal example, the first certificate
would have Common Name (CN) www.paypal.com and sub-
jectAltName:dNSName www.paypal.com.cascade2factor.com.
Similarly for the paypalobjects certificate. This has several
advantages over the URRSA system. First, certificate errors are
entirely eliminated no matter what browser is used. Second,
the user sees the same certificate whether he accesses the
system via cascader or directly through the legacy path. This
is an important advantage. If the site uses Extended Validation
(EV) certificates that is what the user will see; if the site has
a misconfigured, expired or name mismatch that fact will be
displayed to the user. This contrasts with URRSA where the
user sees the proxy certificate (and errors) rather than that of
the web-site.

C. Status

We have implemented the entire system and successfully
tested with the following banking sites: WellsFargo, Citibank,
Bank of America and PayPal. Obviously we did not have
access to the data centers of any of these institutions. Thus, our
Cascader system is located outside the mybank.com firewall,
but in other respects it follows the architecture of Figure
4 precisely. A BenQ E72 Smartphone, running Windows
Mobile 6.0 was used for the trusted device. The user instals
the application onto the phone, and the application already
contains the (unique) device key Kd. The fact that we are
able to login to sites such as Paypal attests that deployment is
truly independent of the legacy servers.

After submission of the encrypted password
E(p, h(Kd, N)) the user’s browser is directed to
www.paypal.com.casc
ade2factor.com and the credentials are submitted. To the user
it appears exactly like a normal MyBank session; all of the
functionality generally available. The two differences are that
the address bar indicates www.paypal.com.cascade2factor.com
instead of www.paypal.com and the certificate issued matches.

V. ATTACKS AND SECURITY ANALYSIS

Loss of Codes: Most one-time password systems are vul-
nerable to loss of the list of OTP’s. This is the case for the
OTP systems [15], [12], [2], [9]. Since our codes are generated
on request and are good for only one minute this is not a risk
with our system. Thus, the system has similar protection to
that afforded by [3].

Code Stealing: As we mentioned before, the device already
has a (long) encryption key Kd. This key is specific to
each account/device and will be used for every encryption
done on that device. To generate an authentication string
E(p, h(Kd, N)) the user enters the userID in the system to
request an new nonce N . A natural attack is to request an
extra authentication code, and store that for future use. This
is the traditional code stealing attack that one-time password
systems are vulnerable to. It does not succeed here: since the
nonce N is useful for only one minute an attacker cannot
harvest codes for future use. This is an advantage with respect
to [15], [12], [2], [9]. In each of these systems there is a risk
that a user is duped into revealing future codes to an attacker.
By contrast securID [3] and our system survive this attack.

A slightly different version of the attack, is to choose a
random N and harvest that code, hoping the system will
provide the same N in a future request. The probability of
success of such attack can be controlled by the length of
N . In our implementation, we use a 10 digit N , and limit
the number of times the system can be used to 1000. That
limits the probability that a random challenge be presented in
the future to 10e-7. Therefore, an attacker who successfully
steals 10 codes has about 10e-6 of ever been able to use
those codes. In comparison, the success probability of an



attacker simply guessing the securID code is 10e-6 at each
trial. We use the figure of 1000 logins in this analysis is for
illustrative purposes: this would allow a user to login once a
day for almost three years. That represents heavy usage, and
a reasonable lifetime for a phone. Increasing the number of
digits in the nonce can of course improve the security, but at
the cost of forcing the user to type more.

Recall, the compromised machine has no direct access to
the trusted device, except for what the user types. It cannot
download or copy Kd, and it cannot request hundreds of
authentication strings.

Stolen Device: An advantage of our system with respect to
other two factor schemes (e.g. securID or smartCard + PIN)
is that the proof-of-knowledge factor is never entered on the
untrusted machine. An attacker who runs a keylogger on a
PC and then steals the securID of a user who has logged in
would then have access to both the secret and the device. By
contrast an attack who steals the smart-phone from a user of
our system would gain the device, but would still not know
the password.

VI. CONCLUSION

We have shown how to convert a single factor scheme
into a two-factor scheme. We create a cascade of a bank’s
existing legacy password system with a new server that verifies
possession of a trusted device. Since the system does not
require changing the legacy system it provides a painless
migration path from passwords to two factor authentication.
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