
Optimal Aggregation Policy for Reducing Tail Latency of
Web Search

Jeong-Min Yun1, Yuxiong He2, Sameh Elnikety2, Shaolei Ren3

1POSTECH 2Microsoft Research 3Florida International University

ABSTRACT
A web search engine often employs partition-aggregate ar-
chitecture, where an aggregator propagates a user query to
all index serving nodes (ISNs) and collects the responses
from them. An aggregation policy determines how long the
aggregators wait for the ISNs before returning aggregated
results to users, crucially affecting both query latency and
quality. Designing an aggregation policy is, however, chal-
lenging: Response latency among queries and among ISNs
varies significantly, and aggregators lack of knowledge about
when ISNs will respond. In this paper, we propose aggre-
gation policies that minimize tail latency of search queries
subject to search quality service level agreements (SLAs),
combining data-driven offline analysis with online process-
ing. Beginning with a single aggregator, we formally prove
the optimality of our policy: It achieves the offline optimal
result without knowing future responses of ISNs. We extend
our policy for commonly-used hierarchical levels of aggrega-
tors and prove its optimality when messaging times between
aggregators are known. We also present an empirically-
effective policy to address unknown messaging time. We
use production traces from a commercial search engine, a
commercial advertisement engine, and synthetic workloads
to evaluate the aggregation policy. The results show that
compared to prior work, the policy reduces tail latency by
up to 40% while satisfying same quality SLAs.

1. INTRODUCTION
A web search engine often employs partition-aggregate ar-

chitecture, forming a distributed system with aggregators
and index serving nodes (ISNs). The web index is large,
containing information on billions of web documents, and is
typically document-sharded among hundreds of ISNs [7, 12].
Such a system includes aggregators that merge results col-
lected from ISNs (e.g., a single aggregator (Figure 1(a))).

An aggregation policy determines how long the aggregator
waits for its ISNs before sending the results back. Design-
ing a good aggregation policy is crucial: It directly impacts

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
SIGIR’15. August 09 - 13, 2015, Santiago, Chile.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3621-5/15/08.̇.$15.00.
DOI: http://dx.doi.org/10.1145/2766462.2767708.

(a) (b)

Figure 1: Web search engine architecture: (a) single-level
aggregation, (b) two-level aggregation.

quality and responsiveness, which are among the most im-
portant metrics in web search. For example, the aggregator
can choose to wait for responses from all ISNs, returning
complete results, or it may wait for only a fixed time dura-
tion, returning partial results from a subset of ISNs. There
is a clear trade-off: The longer the aggregator waits, the
more results it collects, improving quality but degrading re-
sponsiveness. The objective of the aggregation policy can be
expressed as reducing a high latency percentile while meet-
ing one or more quality constraints. Reducing a high latency
percentile, i.e., tail latency, is more suitable than average la-
tency to ensure consistently low latency, which is important
to attract and retain users [4, 17, 25, 27, 33].

Designing an effective online aggregation policy is chal-
lenging: Aggregators do not know when ISNs will return
their results and their response times vary significantly. For
example, different web search queries exhibit highly variable
demand: the 99-th percentile query execution time is often
a factor of 10 larger than the average [13, 22]. Even for the
same query, the response times of different ISNs could vary
widely [5]: It may take only 10 ms to collect responses from
a majority of ISNs but require another 200 ms to receive the
remaining few.

Prior work provides aggregation heuristics that reduce the
tail latency compared to simply waiting for all responses, but
they miss significant potential latency improvement. Instead
of using heuristics, we take a different approach: Imagine
if the aggregator knows the future, in particular when each
ISN will respond. We study this case to derive an offline pol-
icy, which decides when to return the results on a per-query
basis. We further show that this offline policy is optimal,
forming a clear latency target that an online policy strives
to achieve.

However, in practice, the aggregator must make online de-
cisions without knowing the future information (e.g., when

ISNs will respond), which invalidates offline policies and
makes the problem challenging. When an online aggregation
policy decides to terminate a query and returns its partial re-
sults, it makes a bet that waiting for the remaining responses
to arrive will take too much time. However, all the remain-
ing responses might arrive immediately afterwards, indicat-
ing that search quality was degraded with only a marginal
latency reduction.

Inspired by the offline policy, we develop an online policy
that uses two thresholds, one for query quality and the other
is a time threshold. Only if a query meets or exceeds the
quality threshold at the time threshold, the aggregator ter-
minates the query. We employ offline analysis of the query
logs to compute the quality and time thresholds.

We prove a surprising result: The aggregation policy is
optimal, providing the same results as the offline optimal
policy. It minimizes the tail latency of queries while meet-
ing their quality service level agreements (SLAs). In con-
trast, prior work does not identify the optimal structure of
the online policy, or compare to the offline optimal solution.
They employ heuristics to reduce tail latency indirectly, for
example, by minimizing latency variance [20].

Next, we study multiple levels of aggregators, which is
an important practical case yet largely unaddressed in prior
work. There is no heuristic specifically designed for multi-
ple aggregators. Figure 1(b) shows a cluster with two-level
aggregation, containing a single top-level aggregator, called
TLA, and several mid-level aggregators, called MLAs. Mi-
crosoft Bing search employs the two-level aggregation archi-
tecture [1]. This architecture fits naturally with the hierar-
chy of data center networks, where MLAs collect responses
from ISNs located in the same rack and TLA collects re-
sponses from the MLAs, reducing inter-rack communication.
Moreover, MLAs can reduce the processing load of the top
aggregator, for example by re-ranking results and removing
near duplicates [34].

Multilevel aggregation is significantly more challenging
than single-level aggregation because the aggregator’s de-
cisions at the different levels are coupled and cannot be op-
timized independently. For example, an aggressive TLA pol-
icy (e.g., terminating queries based on a lower time or quality
threshold) needs to be combined with a more conservative
MLA policy to meet the quality SLAs. Finding a good policy
requires exploring various combinations of aggregation de-
cisions at different levels and deciding the parameters used
at each level jointly, which significantly increases the design
space and computation complexity. Further, messaging time
between aggregators (including both processing and trans-
mission time) may or may not be known online.

We extend our policy to address the challenges for multi-
level aggregation and prove its optimality when messaging
times between aggregators are known. For unknown mes-
saging times, we show that the policy performs very close to
the offline optimal using empirical evaluation. To the best
of our knowledge, this policy is the first one to solve the
multilevel aggregation problem.

We assess our techniques using query logs from a produc-
tion cluster of a commercial search engine, a commercial
advertisement engine, as well as using synthetic workloads
derived from well-known distributions. We evaluate the pol-
icy extensively in both single-level and two-level aggregation
clusters with different quality and latency targets, varying
the number of ISNs, latency distributions. We conclude

our policy consistently outperforms the state-of-the-art tech-
niques. In particular, the results show, to meet the target
quality constraints, on a 44-ISN search cluster with a single
aggregator, we reduce the 95-th tail latency by 36% (from
59 ms to 38 ms) compared with the best existing work. The
results also show similar savings for two-level aggregation.

The key contributions of this work are the following: (1)
We characterize the workload to outline how a good aggre-
gation policy should behave. (2) We develop an optimal ag-
gregation policy, combining both data-driven offline analysis
with online processing, to minimize a crucial metric — tail
latency of search queries — subject to quality constraints.
(3) We generalize our policy to address multilevel aggre-
gation, which has practical importance but has not been
addressed in prior research. (4) We conduct extensive eval-
uation using production traces as well as various synthetic
workloads to assess the benefits of the proposed aggregation
policy and show that it outperforms existing solutions.

2. PROBLEM FORMULATION
Aggregation policy assigns an online algorithm for each

aggregator to decide when it returns its response.
Latency. Web search requires consistently low latency to

attract and retain users [4, 17, 25, 27, 33], for which average
latency is not a suitable metric due to potentially very large
variation in latency. Thus, service providers often target to
reduce high percentile latency of web search queries, which is
also called tail latency [13, 19, 31]. We define query latency
as the latency measured at top aggregator.

Quality. To quantify search quality, we define the utility
of a query as the fraction of ISNs from which the TLA re-
ceives results and returns to the user. This definition is also
used in prior work [20]. Lower utility indicates the query is
more likely to miss important answers, thus resulting in a
lower quality. A utility of 1 is the best baseline case: The
aggregators receive responses from all ISNs.

We use both average utility and tail utility, which are two
important metrics for web search SLAs [2, 19]. The average
utility is the mean utility of all queries, and tail utility is
high-percentile utility of queries, ensuring consistently high
quality results for the search queries.

Optimization Objective. The objective of an aggrega-
tion policy is to minimize query tail latency of a large-scale
web search engine, while satisfying average and tail utility
constraints. This is a common objective in many prior stud-
ies [11, 20, 22] as well as in real systems. For example, the
optimization criteria of Bing search is to minimize the 95-th
tail latency subject to an average utility of 0.99 and 95-th
tail utility of 0.95.

Given an aggregation policy A and a set of n queries,
we denote the latency and utility of query i by ti and ui,
respectively, for i = 1, 2, · · · , n. The k-th percentile latency
for the set of n queries, denoted by tk%, is the dkne-th largest
latency among these n queries. Likewise, we can compute
the h-th percentile utility, denoted by uh%, as the dhne-
th lowest utility. Note that both latency and utility are
affected by the aggregation policy A. Thus, our tail latency
minimization (called TLM) problem is formulated as:

TLM : minimizeA tk% (1)

s.t., 1
n

∑n
i=1 ui ≥ ūavg and uh% ≥ ūh%, (2)

where (2) specifies the average and tail utility constraints.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1
U

ti
lit

y

Time (ms)

Q1

Q2
Q3

Q4

Fast

Straggling
Long

Long

Figure 2: Progress of 4 sample queries.

Table 1: Aggregation Policy Comparison.

Complete Terminate Complete Inputs Multi
Fast Straggling Long Time Utility level

Wait-All X 7 X 7 7 7
Time-Only X X 7 X 7 7

Utility-Only 7 X 7 7 X 7
Time-Utility X X 7 X X 7

Kwiken X X 7 X X 7
FSL X X X X X X

Production Deployment Environment. When an ag-
gregator decides to return partial results, there is an imple-
mentation choice to either abort query execution on the ISNs
that have not yet responded or to let them complete. The
later is more common in practice as observed in both com-
mercial search engines, e.g., Bing [20], and the well-known
open source search software Apache Lucene [18]. Supporting
query abort has a cost and comes with limited benefits.

Supporting abort messages and interrupting running queries
increases search engine implementation complexity, making
logging, testing, debugging more difficult in addition to the
message processing overhead of the abort messages. Also,
the computational resource savings from aborting a late
query are often negligible. More specifically, as query pro-
cessing on ISNs has a timeout limit (e.g., ≤ 200 ms in Bing
search [19]), no query takes longer processing time than the
timeout limit. Moreover, to meet an average utility of 0.99,
at most 1% of ISNs could terminate processing earlier us-
ing an abort message, making the overall computational re-
source savings limited. Finally, aborting late messages also
has little impact on the waiting time (and thus the latency)
of other concurrent queries, because commercial search en-
gines are provisioned with additional capacity to ensure that
ISNs operate at low to modest loads with a very small query
waiting time [21].

Therefore, we present and evaluate our aggregation poli-
cies based on systems without abort messages. However, as
the performance impact of abort messages is small, these
policies are also well applicable to systems with aborts.

3. INTUITIONS
We derive the key intuitions of our aggregation policy us-

ing query workload characteristics. Then, we discuss what
a good policy should do and what existing policies miss.

Workload Characterization. The execution time dis-
tribution of web search queries has a high variability: Prior
work shows that the 99-th percentile query execution time
is a factor of 10x larger than the average, and even 100x
larger than the median [13, 22]. In addition, for processing
a single query, some ISNs may take much longer than others
even if they all use the same server hardware due to several
well-known factors, such as document partitioning scheme,
correlation between query term frequencies and inverted list
sizes [5].

Figure 2 shows utility progress for a few examples from
Bing. We categorize queries into three types: (1) Fast query
for which the responses from all ISNs arrive quickly, e.g.,
Q1 in Figure 2. (2) Straggling query for which most of the
responses arrive quickly but a few ISNs take much longer

to respond, e.g., Q2 in Figure 2. (3) Long query for which
most responses take a long time, e.g., Q3 and Q4.

Key Intuition. Our policy identifies query type and de-
cides which queries among the three types to complete or
terminate by considering the tradeoff of latency and utility:

Complete fast queries. Since they do not impact tail la-
tency even if we wait for all responses, we complete them
with full utility.

Terminate straggling queries. We reduce latency with lit-
tle utility loss. For any given utility target, we can only
tolerate a limited utility loss. For example, for an average
utility of 0.99, only 0.01 utility loss is allowed. We allocate
the allowed utility loss to straggling queries to maximize la-
tency reduction.

Complete long queries. As their responses from ISNs ar-
rive late but altogether at TLA, terminating them early can
cause major utility loss. Thus, we let long queries complete
without affecting the tail latency, because a latency per-
centile target allows for a few slow queries without penalty
(e.g., for 95-th latency, 5% slow queries are allowed), which
we call tail latency slackness.

The distinction among fast, straggling and long queries
is relative, depending on the selection of time and utility
thresholds obtained by offline analysis of query workloads.

Existing Policies. Table 1 compares six aggregation
policies with respect to their actions on the three types of
queries, inputs, and support for multilevel aggregations.

Wait-All waits for every ISN before returning the results.
The query latency is dominated by the slowest ISN, re-
sulting in a high latency. Time-Only terminates a query
upon a timeout threshold [22]. It terminates both long and
straggling queries without differentiation. Utility-Only ter-
minates a query if it already received a given percentage of
responses, even including fast queries whose full completion
does not affect tail latency. These three policies miss either
time or utility to differentiate among query types.

Time-Utility terminates a query when its timeout thresh-
old is triggered and the query utility reaches a threshold.
It is better than Time-Only, but it still early terminates
long queries after they receive the threshold percentage of
responses. Kwiken [20] terminates a query if it runs a fixed
time interval either after a utility threshold or exceeding a
time threshold. It selects these thresholds by minimizing
latency variance among all responses. Although minimizing
latency variance may indirectly reduce tail latency, it can
degrade utility significantly. For example, in Figure 2, Q2
and Q3 have similar variances in terms of latency from their
ISNs. However, terminating the straggling query Q2 causes
little utility loss, while terminating a long query Q3 results
in a large utility loss. Although Time-Utility and Kwiken

Algorithm 1 FSL: Online processing

Input: time threshold t∗ and utility threshold u∗

1: for each query do
2: if all the responses are returned within t∗ then
3: Do nothing
4: else if utility u ≥ u∗ after the aggregator waits for t∗

then
5: Early terminate this query
6: else
7: Run query until completion (or system failure timeout)
8: end if

9: end for

use both time and utility for aggregation, neither of them
directly optimizes for tail latency by exploiting tail latency
slackness to obtain high utility for long queries.

Furthermore, none of the existing policies address multi-
level aggregation, which is common in practice, and is much
more challenging than a single level. In comparison, our
policy takes effective actions for Fast, Straggling and Long
queries, so we name it FSL. FSL exploits time and utility,
and addresses single and multiple aggregation levels.

4. SINGLE-LEVEL AGGREGATION
This section presents the design and analysis of our pol-

icy FSL (for fast, straggling and long queries) for a single
aggregator. FSL decides when to terminate a query by com-
bining both online processing and offline analysis. For on-
line processing, FSL jointly considers the time and utility
of a query. In particular, we define a time threshold t∗ and
a utility threshold u∗. Based on whether a query is com-
pleted by t∗, and its utility at time t∗, we categorize the
running query as fast, straggling or long, and take actions
accordingly. The offline processing calculates the optimal
values of t∗ and u∗ according to the workload information,
utility target, and type of tail latency we seek to minimize.
As response time distributions of interactive services vary
slowly over time [20, 24], we trigger offline processing pe-
riodically to update the parameters for online processing.
The latency can also be monitored online to trigger offline
analysis whenever needed. To adapt to varying system load,
we can construct a table that maps each load (e.g., query
arrival rate) to its time and utility threshold values through
offline analysis of the corresponding query logs; online pro-
cessing simply applies the proper parameters by monitoring
the load. FSL is not another heuristic: We derive an offline
optimal algorithm with complete future information in Sec-
tion 4.3 and prove that the online algorithm FSL is optimal,
performing as well as offline optimal without knowing future
responses of queries.

4.1 Online Processing
Online processing of FSL takes two runtime properties of a

query — time and utility — as inputs, and it decides when to
terminate query under execution. In particular, as described
in Algorithm 1, if the aggregator does not receive all query
responses after the query has been sent to the ISNs for time
t∗, FSL checks the progress of the query: if the utility of the
current query is higher than or equal to u∗, then terminate
the query at time t∗ (for reducing tail latency with a small
utility loss); otherwise, let the query run till completion (to
avoid significant utility loss).

Intuitively, FSL uses t∗ and u∗ to differentiate the three

types of queries and take actions accordingly. (1) If a query
completes by t∗, the query is fast: FSL executes fast queries
till completion. (2) If a query has received most of the re-
sponses by t∗, the remaining utility of the query is marginal
and the query is straggling: FSL early terminates strag-
gling queries. (3) If responses are only received from no or
a few ISNs at time t∗, the query is long: FSL executes long
queries till completion, avoiding a significant utility degra-
dation. Moreover, to optimize a tail latency target, e.g.,
95%, the longest 5% of queries have no effect. Thus, by
carefully choosing the values of t∗ and u∗ through offline
analysis (as shown in Section 4.2), FSL allows long queries
to complete, avoiding utility degradation without affecting
the desired target tail latency.

In practice, system failure timeouts are set at the aggre-
gators to prevent them from waiting forever in the case of
server/network failures. Upon this timeout, FSL returns the
collected results, just like all other aggregation policies. In
addition, when there is only a tail utility constraint with-
out average utility constraints, FSL can return the results
of long queries after reaching the target tail utility rather
than query completion.

4.2 Offline Processing
Offline processing includes a search algorithm to find the

optimal time and utility thresholds. Algorithm 2 presents
its formal description.

Inputs and outputs. FSL takes the workload data, util-
ity constraints and tail latency objective as inputs. The
workload data includes receiving time of each ISN responses
for every query in the training set, which is the duration
from aggregator sending the query to receiving its response.
The output of FSL is the optimal time and utility threshold
(t∗, q∗) that minimizes the k-th percentile latency subject to
all utility constraints.

High-level description. The search algorithm iterates
over all possible values of time thresholds. For each time
threshold t, it calculates the optimal value of utility thresh-
old u to maximize query utility (average and/or tail) while
producing k-th percentile latency of t. Then among all the
t values, we select the smallest one which meets the utility
constraints, producing the optimal k-th latency subject to
utility constraints. The corresponding (t, q) values are the
optimal time and utility thresholds (t∗, q∗).

Step 1. Given a step size δ, there are a set of candidate
time thresholds {δ, 2δ, ...,mδ}, where m is decided by the
maximum latency tmax of all responses. The tail latency of
FSL can exceed the (theoretically) true optimal by at most
δ. By reducing δ, our result approaches arbitrarily close to
the theoretically optimal, while the search complexity in-
creases, trading off algorithm complexity for accuracy. For
web search, δ =1 ms is sufficiently accurate.

Step 2. For any possible time threshold t, we compute
the corresponding utility of each query. We sort the queries
according to a descending order of the utility values. Fig-
ure 3(a) shows an example for a set of queries with sorted
utility. The queries at the top of the list are fast queries:
they complete before time threshold t and each gets a full
utility of 1. At the very bottom are long queries, whose
utility is affected significantly by early termination at t. Be-
tween fast and long queries are straggling queries, which, if
early terminated, incur smaller utility loss than long queries

(a) Construct B (b) Construct C

Figure 3: Example of the matrix construction of B and C
at time threshold t, where k = 95 and n = 1000.

would. Such a list of utility values for a given time threshold
t corresponds to column t/δ of matrix B in Algorithm 2.

A research question here is how we differentiate straggling
versus long queries, which also relates to how we compute
the utility threshold u. Given a latency objective k, (e.g.,
k=95 for optimizing 95-th latency), we know that we can
disregard the latency of less than (100 − k) = 5 percent
of queries (i.e., classify these queries as long queries). We
choose the long queries to be those with the highest loss in
utility if we early terminate them, i.e., the bottom (100−k)
percent of queries in the list. The remaining queries are
straggling queries to be early terminated, losing less utility
in total. Here, the utility threshold u is equal to the utility
value of the (100 − k)-th percent query from the bottom.
As shown in Figure 3(a), suppose that there are n = 1000
queries in total, u corresponds to the utility value of the
n ∗ k/100 = 950-th query from the top. The beauty of dif-
ferentiating straggling and long queries in this way is that
(1) it allows us to obtain the highest utility gain for any
given latency target, and (2) during online processing, it
does not require future response times of ISNs to differenti-
ate straggling versus long queries.

Step 3. We update the resulting utilities of queries ac-
cording to online processing: the utility values of fast and
straggling queries remain unchanged, while the utility values
of the long queries become 1 since these queries will run till
completion. An example is shown in Figure 3(b).

In the case where long queries are returned due to system
failure timeout, their utility values are set to the utility of
the query at the timeout instead of a full utility of 1.

Step 4. We find the smallest termination time threshold
t value that meets all quality SLAs.

Time complexity. Let r represent the number of ISNs,
m the number of time threshold candidates, and n the num-
ber of queries. Step 1 takes time n ∗ r to compute tmax.
Step 2 takes O(rnm) for the matrix construction of A, and
takes O(n log(n)m) for the sorting to compute B. Step 3
take O(n log(n)m) for sorting, and other operations have
lower asymptotical order. Step 4 performs a search over
all entries of the table with cost of O(nm). Therefore, the
overall time complexity of the offline processing of FSL is
O((rn + n log(n))(tmax/δ). The offline processing is an ef-
ficient polynomial time algorithm for any given value of δ.
For 10,000 queries, 1,000 ISNs, tmax = 350 ms, and δ = 1
ms, we compute this in 43 seconds on a desktop PC.

Algorithm 2 FSL: Offline Processing

Input:
• time step size δ and log data X = [Xi,r] for n queries: Xi,r

is the response time for r-th ISN and i- th query
• constraints: average utility uA, kT -percentile utility uT
• optimization objective: latency percentile k

Procedure:
Step 1. tmax = maxi,r Xir; m = d tmax

δ
e

Step 2. Construct A = [Ai,j] ∈ Rn×m: Ai,j represents the util-
ity of i-th query when terminating it at time j× δ; construct
B = [Bi,j] ∈ Rn×m: The j-th column of B is sorted results
(in descending order of the utility) of j-th column of A.

Step 3. Construct C = [Ci,j] ∈ Rn×m: set Ci,j = Bi,j for

i ≤ b k·n
100
c and Ci,j = 1 otherwise; construct C′ ∈ Rn×m by

resorting each column of C in descending order of the utility.
Step 4. Find time threshold.

// For the kT -percentile utility constraint uT
Set tT = jT × δ, where jT = min{j|C

b kT n
100
c,j
≥ uT }

// For the average utility constraint uA

Set tA = jA × δ, where jA = min{j|
∑

i C
′
i,j

n
≥ uA}

Output: time threshold t∗ = max{tT , tA} and utility threshold

u∗ = Bd kn
100
e,t∗/δ

4.3 Optimality Proof
FSL is an online policy without future information: it does

not know when the remaining responses will be returned by
ISNs. In Theorem 1, we compare FSL with an optimal offline
policy, which assumes complete information. We show that
FSL performs as well as the optimal offline policy — FSL is
an optimal online policy achieving the minimum tail latency
subject to utility constraints.

We first define an optimal offline policy, which decides
termination time of each query by assuming full knowledge
of the query as well as the entire query set. Each query
may have its own termination time. A simple brute-force
algorithm to compute such an optimal solution is as follows.
For each query i, its candidate termination time ti is one of
the response times of all ISNs, and hence there are r choices
(assuming that there are r ISN). For a set of n queries,
the search space is rn. The brute-force algorithm finds the
set of {ti}, which produces the smallest tail latency while
satisfying all utility constraints.

Theorem 1. For a cluster with a single aggregator, FSL
achieves an arbitrarily close-to-minimum tail latency while
meeting average and tail utility constraints.

Proof. We show the equivalency of FSL and the optimal
offline policy.

First, we perform a transformation from the optimal solu-
tion to FSL. Suppose that the offline optimal finishes query
i at ti. Without loss of generality, we assume that t1 ≤ t2 ≤
· · · ≤ tn among a total of n queries. Then, k-th tail latency
of the optimal offline policy is t′ = t(k∗n/100), and we have
two observations.
• For queries whose finish time is smaller than t′, finishing

them at t′ does not change the k-th tail latency.
• For queries whose finish time is bigger than t′, waiting

for all ISNs does not change the k-th tail latency.
This observation indicates, in the optimal offline policy,

each query can have three possible cases: finish before t′

(i.e., fast query), finish exactly at t′ (i.e., straggling query)
or wait until receiving all ISNs’ results (i.e., long query).
Hence, this is the same as our policy. Algorithm 2 of FSL

is a constructive proof of finding the minimum t′, which is
equivalent to the minimum time threshold t∗ (with a devi-
ation smaller than the step size δ). Thus, when the search
time step size δ → 0, the tail latency produced by FSL can
be made arbitrarily close to offline optimal.

5. MULTILEVEL AGGREGATION
This section extends FSL for multiple levels of aggrega-

tors, which are common in practice but are much more chal-
lenging than a single level. First, the aggregators’ decisions
on different levels are coupled and must be coordinated to
reduce tail latency subject to quality SLAs. Second, the
number of communication messages between different levels
of aggregators must be small, e.g., an MLA cannot simply
forward the results to TLA whenever it receives an ISN re-
sponse, which further magnifies the design challenge.

At runtime, an MLA may or may not know the messag-
ing time between itself and its higher-level aggregators in
advance. Here the messaging time primarily includes net-
work latency plus some lightly-weighted processing such as
reranking and removing near duplicates. We consider three
different scenarios of the messaging time: (a) known mes-
saging time, (b) unknown but varying in a small bounded
range, (c) general case of unknown messaging time with po-
tentially large variations. In this section, we first focus on
two-level aggregation, and generalize our results to arbitrary
levels in Section 5.4.

5.1 Known Messaging Times
Inspired by FSL and its analysis in Theorem 1, we de-

velop an optimal online policy for two (or multiple) levels of
aggregators when messaging times between aggregators are
known. We call this FSL-K, where ‘K’ stands for Known
messaging time. The key idea of FSL-K is as follows: A
TLA returns the results of each query in one of the three
ways: (1) return full results before/at time threshold t∗; (2)
based on the query utility progress at t∗, return partial re-
sults at a time threshold t∗, or (3) wait until receiving all
responses from MLAs. We show that FSL-K at TLA is op-
timal, performing as well as an optimal offline policy. Once
the top-level aggregation policy is known, we derive the time
threshold for MLA by considering both t∗ and the messaging
time between TLA and MLAs.

Online Processing of FSL-K. Online processing of FSL-
K takes as inputs time threshold t∗ and utility threshold q∗,
as decided by offline analysis.

TLA policy. For each query, if TLA receives responses
from all MLAs and their ISNs prior to the time threshold
t∗, this query is fast and TLA returns complete results. Oth-
erwise, TLA has two choices: (1) If the utility of the cur-
rent query is no less than q∗, then return the query results
at t∗; Or (2) Complete the query and collect the results
from all MLAs and their ISNs. In practice, system failure
timeouts are set at TLA/MLA to stop waiting in case of
server/network failure.

MLA policy. Suppose the messaging time between an
MLA i and its TLA is di. For each query, MLA i responds
to TLA in one of the two cases.
• If MLA i received all ISN responses before time t∗ − di,

it sends back the responses to TLA. This is a common case,
where an MLA only sends one message to TLA.
• Otherwise, the MLA sends its results to TLA twice,

because it cannot tell if a query is straggling or long (without

Algorithm 3 FSL-K: Offline processing

Input:
• time step size δ and log data X = [Xi,r] for n queries: Xi,r

is the response time for r-th ISN and i- th query
• log data Y = [Yi,q]: Yi,q is the messaging time from q-th MLA

to TLA for i-th query
• utility constraints and latency percentile k from inputs of

Algorithm 2
Procedure:

Step 1. tmax = maxi,r Xi,r + maxi,q Yi,q ; m = d tmax
δ
e

Step 2. Construct A = [Ai,j] ∈ Rn×m: Ai,j represents the
utility of i-th query when its finish time at TLA is j × δ;
construct B = [Bi,j] ∈ Rn×m: The j-th column of B is
sorted results (in descending order) of j-th column of A.

// To compute Aij , we first compute the utility of each q-th MLA
at (j × δ − Yi,q), and compute the sum of them.

Step 3. Do Steps 3 & 4 in Algorithm 2

Output: time threshold t∗ = max{tT , tA} and utility threshold

u∗ = Bd kn
100
e,t∗/δ

global information from TLA). First, at time t∗−di, it sends
back all the responses it received so far to TLA, in order to
catch the checkpoint time of TLA at t∗. Second, the MLA
sends the additional results to TLA after it received the
responses from all of its ISNs, which is to obtain full results
for the long queries that do not finish prior to t∗ − di.

Alternatively, a TLA can inform its MLAs of not sending
the second message when it decides to early return. The
benefits of this alternative are arguable since (1) This does
not decrease the overall number of messages (i.e., reducing
one MLA message for straggling queries by adding a TLA
message); (2) MLAs still send two messages for the long
queries; (3) Search engines usually do not abort execution
of straggling queries at ISNs (Section 2).

FSL-K is efficient at runtime in terms of both computa-
tion and communication. Its computation cost at both TLA
and MLAs is negligible, requiring a simple counting on the
number of responses. For communication cost, each MLA
sends at most two messages to TLA. The average number of
messages is even smaller: in most of the cases, queries are
fast, requiring one message per MLA only; even if queries
are straggling or long, only the MLAs with slow ISNs send
two messages. For example, MLAs send 2 messages only
5.58% of the time on our evaluation using commercial ad-
vertisement search workloads (Section 6.2).

Offline Processing of FSL-K. Algorithm 3 presents of-
fline processing of FSL-K, which has a similar flow as FSL
with two differences. (1) FSL-K requires messaging times
from MLAs to TLA as additional inputs. (2) At Step 2,
to compute the utility of a query i at a time threshold
t at TLA, we sum over its utilities obtained at the q-th
MLA at time threshold t − dq. Its time complexity is still
O((rn+ n log(n))(tmax/δ)).

Optimality Proof. Theorem 2 shows the optimality of
FSL-K. Its proof is analogous to Theorem 1, which we skip
for interest of space.

Theorem 2. For two-level aggregation with known mes-
saging time, FSL-K achieves an arbitrarily close-to-minimum
tail latency while meeting utility constraints.

5.2 Bounded Messaging Times

We extend FSL-K to FSL-B for the case when messaging
times between aggregators are unknown but bounded within
a small range, where ‘B’ of FSL-B stands for Bounded mes-
saging time. Suppose that the messaging time from the q-th
MLA to TLA for the i-th query is bounded in the range
[Y −i,q, Y

+
i,q]. To meet the utility constraints, FSL-B considers

the (worst-case) upper bound Y +
i,q as messaging time, and

then uses the same offline and online processing as FSL-K.
Thus, FSL-B is guaranteed to satisfy all utility constraints,
and the resulting tail latency is at most maxi,q(Y

+
i,q − Y

−
i,q)

higher than theoretically optimal in the worst case.

5.3 Unknown Messaging Times
Now, we consider a general case where the messaging

times between aggregators are unknown with potentially
large variations. It models the cases such as with poor net-
work condition or with aggregators sharing processing with
other workloads. In this case, even if we find the optimal
time threshold t∗ at TLA, it is still difficult for MLAs to
decide when to respond to TLA to meet the checkpoint t∗.
While it is challenging to provide a performance guarantee,
we develop an effective heuristic policy, which shows very
good empirical performance (Section 6). We call this FSL-
U, where ‘U’ stands for Unknown messaging time.

FSL-U defines three parameters: besides time and util-
ity thresholds t∗ and q∗, respectively, FSL-U includes the
third parameter, i.e., MLA threshold t∗m, which indicates the
time threshold when MLAs shall return their results to TLA.
Note that we choose to use the same t∗m for all MLAs, be-
cause without knowing how much it may take each MLA to
respond, there is no reason to differentiate MLAs in terms of
the time thresholds for returning their responses. For search
engine in practice, each MLA is often associated with the
same number of ISNs and running on the same hardware.

Online Processing of FSL-U. TLA still takes t∗ and
u∗ as inputs, working in the same way as FSL-K. MLA also
works similarly as FSL-K, but it applies an additional MLA
time threshold of t∗m, obtained by offline processing. Under
FSL-U, each type of queries behaves as follows.
• Fast queries: TLA receives complete results before t∗.

To achieve this, every MLA must have received all its ISNs’
responses before t∗m, and all messaging times between MLAs
and TLA are smaller than t∗ − t∗m.
• Straggling queries: The utility at TLA is not equal to 1,

but bigger than or equal to u∗ at t∗. This can happen if any
one of the above conditions for fast queries does not satisfy.
• Long queries: The utility at TLA is smaller than u∗ at

t∗. In this case, TLA waits for the responses from all MLAs
and their associated ISNs (within timeouts).

Offline Processing of FSL-U. Algorithm 4 uses both
ISN latencies and inter-aggregator messaging times to search
for the optimal values of the three parameters. Compared
with FSL-K, the main difference is that FSL-U needs to
search over one more dimension — the time threshold t∗m
for MLA (Step 2 of Algorithm 4). The time complexity of
Algorithm 4 is O((rn+ n log(n))(tmax/δ)

2), which is higher
than FSL-K by a multiplicative factor O(tmax/δ) due to the
enlarged search space of t∗m.

Note that, although offline processing of FSL-U still finds
the best aggregation policy parameters (t∗, u∗, t∗m) based on
log data to minimize the tail latency, we cannot claim that
FSL-U is optimal when applied online. The offline opti-
mal solution may give different MLA time threshold values

Algorithm 4 FSL-U: Offline processing

Input: take the same input as Algorithm 3
Procedure:

Step 1. Set tmmax = maxi,r Xi,r and tmax = tmmax + maxi,q Yi,q
Step 2. Given each candidate t∗m, find t∗ and u∗ for TLA
Set v = 1

// Denote the number of MLAs as p
1: for v ≤ dtmmax/δe do
2: Construct D = [Di,q] ∈ Rn×p: Di,q is the utility of q-th

mid-level aggregator for i-th query if we finish it at v × δ.
3: Construct E = [Ei,q] ∈ Rn×p: Ei,q is the finish time of

the q-th mid-level aggregator for i-th query
// Ei,q = min{v′δ, vδ}, where v′δ is the time the q-th aggre-

gator receives all the responses

4: Construct A = [Ai,j] ∈ Rn×m′ , where m′ = d tmax
δ
e: Ai,j

represents the utility of i-th query when its finish time at
the top-level aggregator is j × δ

// For each query i, the utility at j × δ is determined by
adding up all entries of Di,q whose corresponding value
of Ei,q + Yi,q (i.e., the receiving time of q-th mid-level
aggregator’s response at the top-level) is smaller than j×δ

5: Construct B = [Bi,j] ∈ Rn×m: The j-th column of B is
sorted results (in descending order of the utility) of j-th
column of A.

6: Do Steps 3 & 4 in Algorithm 2.
7: Set t∗v = max{tT , tA} and u∗v = Bd kn

100
e,t∗v/δ

8: v = v + 1
9: end for
Step 3. Find v∗ = arg minv{t∗v} and set (t∗, u∗, t∗m) =

(t∗v , u
∗
v , v
∗ × δ)

Output: time threshold at the top-level t∗, utility threshold u∗,

and time threshold at the mid-level t∗m

to each MLA, because it has the offline information on the
inter-aggregator messaging times for each query while this
information cannot be obtained online (unlike FSL-K where
the messaging time is assumed to be known online). How-
ever, our empirical results in Section 6 show FSL-U performs
close to offline optimal.

5.4 Generalization to Multilevel Aggregation
We can easily extend FSL-K, FSL-B, and FSL-U to more

than two levels of aggregators. Here, we still call the top-
level aggregator as TLA, but there may be more than one
level of MLAs. For FSL-K (known messaging time), TLA
still has one time threshold t∗ and utility threshold q∗. All
levels of MLAs send their responses in advance such that
TLA receives the responses prior to or at t∗. The optimality
of FSL-K still holds, and the time complexity is O((srn +
n log(n))(tmax/δ)) with s levels of aggregators. The exten-
sion of FSL-B to multilevel aggregation is also straightfor-
ward, following that of FSL-K. The performance bound of
FSL-B becomes the summation of the upper bounds on mes-
saging times over all levels. To extend FSL-U to multiple
levels, we use a different time threshold t∗m for each level
of MLA. The resulting complexity of offline processing in-
creases with the increased level of MLAs, due to enlarged
search space, the time complexity isO((rn+n log(n))(tmax/δ)

s),
since each level of MLA has a search complexity ofO(tmax/δ).

6. EVALUATION
We evaluate FSL for single-level aggregation by comparing

it to alternative policies using a production trace of a 44-ISN
cluster from a commercial web search engine, and we use
several latency objectives and utility constraints. We also

study several distributions forming synthetic workloads. For
two-level aggregation, we create eight aggregation policies
and compare FSL-K and FSL-U to them using a trace from a
two-level commercial advertisement engine, in addition to a
synthetic workload to model a large system with 1936 ISNs.

30 40 50 60 70 80 90
0.95

0.96

0.97

0.98

0.99

1

A
ve

ra
ge

 u
til

ity

95−th tail latency (ms)

Figure 4: Tail latency comparison for single aggregator
with Bing production traces.

6.1 Single Aggregator
Bing Production traces. We use a query log from a

production cluster of Microsoft Bing search engine. The log
records the latency of 44 ISNs over 66,922 queries. These
queries missed the result cache and were sent to ISNs for pro-
cessing. We use a subset of 10,000 queries for training, and
the remaining 56,922 queries for evaluation. As Bing search
does not abort processing of late responses at ISNs (Section
2), the recorded query execution times of ISNs remain un-
affected by aggregation policy and hence we replay in our
simulation to compare the alternative aggregation policies.
We set the system failure timeout as 500 ms. A response
that does not arrive by 500 ms is ignored by all policies.

Evaluation with production traces. Our target is to
minimize the 95-th tail latency under the constraint that av-
erage utility is greater than or equal to 0.99. We implement
all policies in Table 1 and compute the best parameters for
each policy using the same training dataset. We show their
results in Figure 4 that depicts the 95-th tail latency on
the x-axis and the average utility on the y-axis. Wait-All is
the baseline with utility = 1 and it has the highest 95-th
tail latency. For Utility-Only we use two configurations be-
cause when the utility threshold is 0.99, the aggregator must
wait for responses from all ISNs because (43/44) < 0.99.
We, therefore, set utility threshold to (43/44) = 0.977 and
to (42/44) = 0.955, and report both settings in the figure.
FSL provides the shortest tail latency compared to all other
schemes: (FSL: 38 ms, Time-Utility: 65 ms, and Kwiken: 59
ms). In particular, FSL reduces the tail latency by 53% over
Wait-All and by 36% over the best alternative. All policies
have similar average latencies (between 15 and 17 ms) be-
cause the average response latency is determined mainly by
fast queries which constitute majority queries.

To see why FSL achieves lower tail latency, we study the
utility of all queries according to their length (measured as
the maximum latency of all ISN responses) quantized into
bins of 20 ms as depicted in Figure 5. The first point on each
curve shows the average utility for the queries with length
∈ [0, 20], and second point for ∈ [20, 40]. Notice that the first
two points represent over 92% of queries. We do not show a
curve for Utility-Only because it is a horizontal line across
all queries regardless of their length. Time-only terminates
all queries after a threshold and we see a similar behaviour
for Time-Utility: All relatively slow queries are terminated

0 100 200 300 400 500
0.4

0.5

0.6

0.7

0.8

0.9

1

A
ve

ra
ge

 U
ti

lit
y

Response Time (ms)

Time−Only
Time−Utility
Kwiken
FSL

Figure 5: Average utility for quantized query length (single
aggregator & Bing production traces).

early regardless of being long or straggling. Next, Kwiken
terminates queries starting from the second point which im-
pacts many fast queries, and again, all relatively slow queries
are terminated early. In contrast, FSL exploits the (5%) la-
tency slackness to obtain high utility for long queries, which
allows it to terminate straggling queries more aggressively,
reducing tail latency further while meeting utility targets.

Sensitivity study. Using the production traces, we study
the two tail latency optimization targets (95-th and 99-th)
under several utility constraints as depicted in Table 2. The
values of the first row show the 95-th tail latency correspond-
ing to data in Figure 4. The stricter the utility constraint,
the fewer the chances to reduce the tail latency (compared
with Wait-All) while meeting the constraint. This behaviour
applies both for average and tail utility constraints as well
as across the two tail latency objectives. The last row shows
that we can enforce two utility constraints, one on average
and another on the 95-th tail utility. Under all configura-
tions FSL reduces the tail latencies the most: It provides the
minimum tail latency while meeting the utility constraints,
consistently outperforming heuristic policies.

Synthetic datasets. We evaluate the policies using sev-
eral synthetic datasets with average utility constraints (AVG
≥ 0.99) assuming a single aggregator with 44 ISNs. For each
dataset, we generate 66,922 queries and use 10,000 as a train-
ing set and the remaining 56,922 for evaluation. We use two
methods to generate synthetic datasets: (1) In one-phase
sampling, query latency at each ISN is sampled indepen-
dently from a distribution. (2) In two-phase sampling, we
first sample the query mean from a distribution, and then
sample its latency at each ISN from a second distribution
parametrized by the query mean. While one-phase sampling
generates latencies from all ISNs of all queries assuming in-
dependence, two-phase sampling models the scenarios where
long (short) queries tend to have overall higher (lower) la-
tencies from many of its ISN responses. These two sampling
methods are also used in [20]. We report the average of
Pearson’s correlation coefficient (PCC) between ISNs for all
pairs of ISNs, as well as the average of coefficient of varia-
tion (σ/µ) for all queries. As a reference, for the production
traces: PCC = 0.9920 which is a high value showing signifi-
cant correlation among ISN latencies for a particular query,
and CV = 0.1777, a small value as workload is dominated
by many fast queries.

Evaluation with synthetic datasets. Table 3 reports
the results. The first two rows show one-phase sampling with
log-normal and exponential distributions. PCC is small in-
dicating little correlation among ISN latencies per query:

Table 2: Percentage of tail latency reduction over Wait-All policy for different utility constraints with Bing production traces
and single aggregator. A higher value is better, i.e., bigger latency reduction.

Utility constraint 95-th tail latency reduction (%) 99-th tail latency reduction (%)
Time-Only Time-Utility Kwiken FSL Time-Only Time-Utility Kwiken FSL

AVG ≥ 0.99 0 31.57 26.63 53.11 15.48 15.48 15.48 18.05
AVG ≥ 0.999 0 0 8.91 34.60 9.90 10.09 9.90 12.90

95-th tail ≥ 0.95 19.79 19.79 27.93 70.38 72.11 19.45 72.11 80.26
95-th tail ≥ 0.99 3.75 3.75 17.31 64.21 66.53 19.45 66.53 75.54
99-th tail ≥ 0.99 0 0 3.42 29.66 6.04 6.04 2.29 10.76

AVG ≥ 0.99&95-th tail ≥ 0.95 0 19.79 26.63 53.11 15.48 15.48 15.48 18.05

Table 3: 95-th tail latency reduction (%) of policies over Wait-All policy for single aggregator and synthetic distributions.

ISN latency (X) distribution PCC CV Time-Only Time-Utility Kwiken FSL
Log-normal distribution (Xi,r ∼ lnN (1, 1)) 0.0030 1.1574 50.28 50.28 50.28 53.83
Exponential distribution (Xi,r ∼ exp(0.1)) 0.0031 0.9793 30.31 31.79 30.31 34.76

mi ∼ exp(0.1), Xi,r ∼ lnN (log(mi), log(1 +mi)/5) 0.4724 0.4205 39.27 49.05 39.27 60.21
mi ∼ exp(0.1), Xi,r ∼ lnN (log(mi), log(1 +mi)/10) 0.8108 0.2035 12.60 29.47 22.17 41.73
mi ∼ exp(0.1), Xi,r ∼ lnN (log(mi), log(1 +mi)/100) 0.9978 0.0200 0 3.20 3.92 12.57
mi ∼ BoundedPareto(α = 0.5, lo = 1, hi = 300), 0.9963 0.0213 4.51 6.06 4.81 25.36

Xi,r ∼ lnN (log(mi), log(1 +mi)/100)

each query has similar utility at any time point, which does
not produce the straggling and long query behaviours. The
policies Time-Only, Time-Utility, Kwiken reduce the tail la-
tency compared to the baseline, and FSL provides bigger tail
latency reduction. We observe similar behaviour under all
the distributions we employed (not reported due to space).

Next, we study the two-phase sampling, which has higher
correlation and is more realistic for search workloads. We
use both Exponential and Bounded Pareto distributions for
the first sampling phase. We use log-normal distribution for
the second-phase sampling because sampling from normal
distribution may result in negative values for latency. FSL
clearly outperforms the other policies and the improvement
of FSL over other polices increases as PCC increases.

6.2 Two-Level Aggregation

100 120 140 160 180
0.95

0.96

0.97

0.98

0.99

1

A
ve

ra
ge

 u
til

ity

95−th tail latency (ms)

(a) Advertisement Engine

40 60 80 100 120
0.95

0.96

0.97

0.98

0.99

1

A
ve

ra
ge

 u
til

ity

95−th tail latency (ms)

(b) Synthetic

Figure 6: Policy comparison for cluster with two-level ag-
gregators on (1) production traces of advertisement engine
and (2) synthetic datasets.

We evaluate two-level aggregation using a production trace
of Bing Advertisement Engine as well as a synthetic dataset
modeling a large-scale system with a few thousand ISNs.

Advertisement engine production traces. We use
a query log from a production cluster with two-level aggre-

gation of Bing advertisement engine. The log records the
latencies of 1 TLA, 16 MLAs and 4 ISNs per MLA (total
ISNs is 64) over 16,311 queries. We use a subset of 10,000
queries for training and the remaining 6,311 for evaluation.

There is no policy that targets two-level aggregation in
prior work. So we develop the following eight policies for
the MLA&TLA policies. (1) Wait-All & Wait-All (baseline),
(2) Wait-All & Utility-Only (0.95), (3) Utility-Only (0.95) &
Utility-Only (0.95), (4) Time-Only & Time-Only, (5) Time-
Utility & Wait-All, (6) Wait-All & Time-Utility,(7) Kwiken
& Wait-All, (8) Wait-All & Kwiken. We make the MLA
delay known to FSL-K (which obtains the optimal solution)
and unknown to FSL-U (which is heuristic) and study how
they compare to each other as well as to other polices.

Figure 6(a) compares the 95-th tail latencies for average
utility target of 0.99. FSL-K offers the shortest tail latency
(112 ms). FSL-U is close (125 ms), within 12% of the opti-
mal, lower by 30% over the baseline and lower by 15% over
the best alternative policy. Notice that (Wait-All & Utility-
Only) and (Utility-Only & Utility-Only) produce same tail
latency and average utility as baseline and therefore are not
plotted in the figure.

Evaluation with synthetic datasets. We also evaluate
FSL using a synthetic dataset modelling a large-scale system
with two levels of aggregation containing 1 TLA, 44 MLA
and 44 ISNs per MLA (total ISNs is 1,936). The synthetic
dataset has the same mean and variance as Bing queries.
In addition, the MLA messaging delay is sampled from an
exponential distribution with parameter µ = 7.5 ms, which
is the measured average messaging time between aggrega-
tors. Figure 6(b) shows that FSL-K provides the shortest
tail latency (49 ms), and FSL-U is close (54 ms) and is sub-
stantially better than the other polices; the tail latency of
FSL-U is within 16% of the optimal, and lower by 51% over
the baseline and by 38% over the best alternative policy.

Sensitivity study.Table 4 shows the impact of changing
system parameters using the synthetic workload. Row 1 is
the default settings as depicted in Figure 6(b). Each row re-
ports the impact of one change: optimizing the 99-th tail la-
tency (row 2), tightening the utility constraint AV G ≥ 0.999
(row 3), changing the messaging time from MLAs to TLA to

Table 4: Tail Latency reduction over baseline policy with two-level aggregation using synthetic workloads.

Variable setting
Tail latency reduction of each policy (% over Wait-All & Wait-All (baseline))

Time-Only Time-Utility Wait-All & Kwiken& Wait-All FSL-K FSL-U&Time-Only &Wait-All Time-Utility Wait-All &Kwiken

Default setting 0 18.55 21.63 21.47 14.24 58.28 51.33
Minimize 99-th tail latency 15.73 9.07 12.62 9.08 12.54 60.06 19.32
AVG ≥ 0.999 0 10.41 0 13.71 3.68 41.77 31.34
Two-phase sampling for MLAs 0 21.38 20.73 22.44 20.12 55.33 49.20
of MLAs = 11, ISNs/MLA = 176 0 24.50 13.47 28.28 8.46 57.38 49.39
of MLAs = 22, ISNs/MLA = 88 0 20.65 17.41 24.69 9.83 57.88 50.87
of MLAs = 44, ISNs/MLA = 44 0 18.55 21.63 21.47 14.24 58.28 51.33
of MLAs = 88, ISNs/MLA = 22 0 15.41 25.73 18.42 17.93 58.67 52.64
of MLAs = 176, ISNs/MLA = 11 0 14.97 30.81 17.22 24.31 59.50 54.43

follow a two-phase sampling instead of a one-phase sampling
(row 4), changing the system layout while maintaining the
same number of ISNs (row 5 to 8). For all settings, FSL-
K and FSL-U consistently provide lower tail latencies. Note
that FSL-K and FSL-U are less sensitive than the other poli-
cies, although the amount of their latency reduction slightly
increases as the number of ISNs/MLA decreases.

7. RELATED WORK
Complementary latency reduction techniques on

web search. ISNs of web search often employ dynamic
pruning to early terminate the post-list processing of a query
and to avoid scoring the postings for the documents that un-
likely make the top-k retrieved set [3, 32]. Early termination
is an example that web search trades completeness of query
response for latency. Prior work [19] quantifies the relation-
ship of quality and latency at ISNs, and trades quality for
latency under heavy loads. Multicores [15, 22] and graphics
processors [14] have also been used to parallelize query pro-
cessing and reduce query latency. All the above techniques
improve ISN latency, complementary to our study where we
take ISN latency as inputs and focus on aggregation policy
at aggregators.

Beyond ISN-level improvement, there are studies on re-
ducing the latency for search queries across different system
components, e.g., optimizing caching [6, 9, 10, 16, 26] and
prefetching [23] to mitigate I/O costs, and improving net-
work protocols between ISNs and aggregators [28]. These
studies are also complementary to our work. Only queries
that are not cached are sent to ISNs for processing. We take
transmission time between ISNs and aggregators as inputs,
working (orthogonally) for any transmission protocols.

Request reissue is a standard technique to reduce latency
tail in distributed systems at the cost of increased resource
usage [13, 20, 29, 33]. When web indices are replicated,
reissuing a query at another cluster or server may improve
latency by using responses that finishes first. Reissuing con-
sumes extra resources to replicate indexes and to process a
query more than once. Therefore, it is more preferable to
have an effective aggregation policy to reduce latency and
meet quality SLAs without reissuing many queries.

Aggregation policies. We discussed several existing ag-
gregation policies and their performance in Sections 3 and
6, which we will not repeat. Broder and Mitzenmarcher [8]
study a related problem on maximizing reward as a function
of time and utility, but they assume the responses of ISNs
are i.i.d (independent and identically distributed), which
Section 6.1 shows that ISN responses are highly correlated

in practice. Moreover, they do not consider multilevel ag-
gregations. Finally, we note that aggregation problem also
exists in other domains (e.g., aggregate data sources in wire-
less sensor networks for energy minimization [30]), which re-
quires domain-specific techniques and differs from our work.

8. CONCLUSION
We develop an aggregation policy, combining data-driven

offline analysis with online processing, to reduce tail latency
of web search queries subject to search quality SLAs. We
first focus on a single aggregator and prove the optimality of
our policy. We then extend our policy for multilevel aggrega-
tion and prove its optimality when messaging times between
aggregators are known. We also introduce an empirically-
effective policy to address unknown messaging time. We
conduct experiments using production logs from a commer-
cial web search engine, a commercial advertisement engine
and synthetic workloads. Compared with prior work, the
proposed policy reduces tail latency by up to 40%.

References
[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan. Data center tcp
(dctcp). SIGCOMM Comput. Commun. Rev., 41(4):–, Aug.
2010.

[2] I. S. Altingovde, R. Blanco, B. B. Cambazoglu, R. Ozcan, E. Sa-
rigil, and O. Ulusoy. Characterizing web search queries that
match very few or no results. In CIKM, 2012.

[3] V. N. Anh, O. de Kretser, and A. Moffat. Vector-space ranking
with effective early termination. In SIGIR, 2001.

[4] I. Arapakis, X. Bai, and B. B. Cambazoglu. Impact of response
latency on user behavior in web search. In SIGIR, 2014.

[5] C. S. Badue, R. Baeza-Yates, B. Ribeiro-Neto, A. Ziviani, and
N. Ziviani. Analyzing imbalance among homogeneous index
servers in a web search system. Inf. Process. Manage., 43(3),
2007.

[6] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock, V. Pla-
chouras, and F. Silvestri. The impact of caching on search en-
gines. In SIGIR, 2007.

[7] L. A. Barroso, J. Dean, and U. Hölzle. Web search for a planet:
The google cluster architecture. IEEE Micro, 23(2):22–28, 2003.

[8] A. Broder and M. Mitzenmacher. Optimal plans for aggregation.
In PODC, 2002.

[9] B. B. Cambazoglu, I. S. Altingovde, R. Ozcan, and Ö. Ulusoy.
Cache-based query processing for search engines. ACM Trans-
actions on the Web, 6(4):14, 2012.

[10] B. B. Cambazoglu, F. P. Junqueira, V. Plachouras, S. Bana-
chowski, B. Cui, S. Lim, and B. Bridge. A refreshing perspective
of search engine caching. In WWW, 2010.

[11] B. B. Cambazoglu, V. Plachouras, and R. Baeza-Yates. Quan-
tifying performance and quality gains in distributed web search
engines. In SIGIR, 2009.

[12] J. Dean. Challenges in building large-scale information retrieval
systems (Invited talk). In WSDM, 2009.

[13] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM,
56(2):74–80, Feb. 2013.

[14] S. Ding, J. He, H. Yan, and T. Suel. Using graphics processors
for high performance ir query processing. In WWW, 2009.

[15] E. Frachtenberg. Reducing query latencies in web search using
fine-grained parallelism. In WWW, 2009.

[16] Q. Gan and T. Suel. Improved techniques for result caching in
web search engines. In WWW, 2009.

[17] J. Hamilton. The cost of latency. http://perspectives.mvdirona.
com/2009/10/31/TheCostOfLatency.aspx, 2009.

[18] E. Hatcher and O. Gospodnetic. Lucene in Action. Manning
Publications Co., 2004.

[19] Y. He, S. Elnikety, J. Larus, and C. Yan. Zeta: Scheduling
interactive services with partial execution. In SOCC, 2012.

[20] V. Jalaparti, P. Bodik, S. Kandula, I. Menache, M. Rybalkin,
and C. Yan. Speeding up distributed request-response workflows.
In SIGCOMM ’13, 2013.

[21] M. Jeon, Y. He, S. Elnikety, A. L. Cox, and S. Rixner. Adaptive
parallelism for web search. In EuroSys, 2013.

[22] M. Jeon, S. Kim, S.-W. Hwang, Y. He, A. L. Cox, and S. Rixner.
Taming tail latencies in web search. In SIGIR, 2014.

[23] S. Jonassen, B. B. Cambazoglu, and F. Silvestri. Prefetching
query results and its impact on search engines. In SIGIR, 2012.

[24] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling
algorithms with PACE. In SIGMETRICS, 2001.

[25] C. Macdonald, N. Tonellotto, and I. Ounis. Learning to predict
response times for online query scheduling. In SIGIR, 2012.

[26] R. Ozcan, I. S. Altingovde, and Ö. Ulusoy. Cost-aware strategies
for query result caching in web search engines. ACM Transac-
tions on the Web, 5(2):9, 2011.

[27] E. Schurman and J. Brutlag. The user and business impact of
server delays, additional bytes, and http chunking in web search.
In Velocity, 2009.

[28] G. Upadhyaya, V. S. Pai, and S. P. Midkiff. Expressing and
exploiting concurrency in networked applications with aspen. In
PPoPP, 2007.

[29] A. Vulimiri, O. Michel, P. B. Godfrey, and S. Shenker. More is
less: Reducing latency via redundancy. In Hot Topics in Net-
works, 2012.

[30] Z. Ye, A. A. Abouzeid, and J. Ai. Optimal stochastic poli-
cies for distributed data aggregation in wireless sensor networks.
IEEE/ACM Trans. Netw., 17(5):1494–1507, Oct. 2009.

[31] J. Yi, F. Maghoul, and J. Pedersen. Deciphering mobile search
patterns: A study of Yahoo! mobile search queries. In WWW,
2008.

[32] F. Zhang, S. Shi, H. Yan, and J.-R. Wen. Revisiting globally
sorted indexes for efficient document retrieval. In WSDM, 2010.

[33] J. Zhang, X. Long, and T. Suel. Performance of compressed
inverted list caching in search engines. In WWW, 2008.

[34] S. Zhu, A. Potapova, M. Alabduljalil, X. Liu, and T. Yang. Clus-
tering and load balancing optimization for redundant content
removal. In WWW, 2012.

http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx
http://perspectives.mvdirona.com/2009/10/31/TheCostOfLatency.aspx

	Introduction
	Problem Formulation
	Intuitions
	Single-Level Aggregation
	Online Processing
	Offline Processing
	Optimality Proof

	Multilevel Aggregation
	Known Messaging Times
	Bounded Messaging Times
	Unknown Messaging Times
	Generalization to Multilevel Aggregation

	Evaluation
	Single Aggregator
	Two-Level Aggregation

	Related Work
	Conclusion

