
Practical Data Location Obfuscation

Bertrand Anckaert?, Mariusz H. Jakubowski‡,
Ramarathnam Venkatesan‡ and Chit Wei (Nick) Saw‡

?Department of Electronics and Information Systems
Ghent University

B-9000 Ghent, Belgium
banckaer@elis.UGent.be

‡Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
{mariuszj, venkie, chitsaw}@microsoft.com

January 2009
Technical Report
MSR-TR-2009-3



Software running on an open architecture, such as the PC, is vul-
nerable to inspection and modification. This is a concern, as soft-
ware may consist of or provide access to valuable information. As
a result, several defenses against program understanding and mod-
ification have been proposed in literature. The approach discussed
in this paper complements existing work and focuses on hiding the
actual location of data throughout the execution of the program. To
achieve this, we combine three techniques: (i) periodic reordering of
the heap, (ii) migrating local variables from the stack to the heap
and (iii) pointer scrambling. The techniques serve to complicate
static data flow analysis and dynamic data tracking. Our prototype
implementation compiles C programs into a binary for which ev-
ery access to the heap is redirected through a memory management
unit. In order to protect traditionally stack-based variables as well,
a mechanism is provided to migrate them to the heap and to adapt
all accesses to those variables. Finally, an option is provided to en-
able pointer scrambling. If this is turned on, the program can no
longer operate directly on the pointers; therefore, pointer arithmetic
is intercepted as well. Experimental evaluation on benchmarks from
the SPEC CPU2006 benchmark suite illustrates the type of trade-off
that needs to be made for this type of protection. Balance must be
struck between comprehensive protection and cost in terms of ex-
ecution time and (to a lesser extent) static and dynamic memory
footprint.

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

http://www.research.microsoft.com

1



1 Introduction

Software running on an untrusted host is inherently vulnerable to inspection
and modification. Recent advances on the theoretical level have shown both
negative [1] and positive [12] results on the possibility of protecting software
within this severe threat model. However, little is known about the type of
application one usually wants to protect.

Intuitively, any protection scheme other than a physical one depends on
the operation of a finite state machine. Ultimately, given physical access, any
finite state machine can be examined and modified at will, given enough time
and effort [5]. However, we can observe increasing deployment of software on
open architectures in scenarios where the software contains secret information
or where integrity of the software is required by the business model.

For example, access to copyrighted music and video is increasingly controlled
by software-based digital containers. The experience of multi-player games re-
lies heavily on users not being able to gain competitive advantages through
cheating. Software licenses may be enforced through technical protection mech-
anisms embedded in the software. As a final example, ad-supported software
relies on the ads being correctly displayed and reported.

The above examples illustrate current demand for practical defense mech-
anisms. Even if theoretically secure protection is impossible, the question is
more whether we can increase the time and effort required to attack software to
make the benefits outweigh the costs. As an example, consider a simple “Hello
World” program. Assume we want to protect this against modification of the
“Hello World” message. Without countermeasures, an attacker could easily re-
place the characters of “World” by, e.g., “Alice” in the binary, using tools such
as strings and hex editors. However, a limited amount of obfuscation would
easily foil this straightforward attack and make it more economically viable for
Alice to write her own “Hello Alice” program from scratch than to modify the
existing “Hello World” program. From an economical point of view, the binary
would then be sufficiently protected against this type of attack.

Practical obfuscation techniques are thus about raising the bar to a level that
supersedes the incentive of the attacker. This incentive is composed of many fac-
tors, such as the perceived consequences, facilitating conditions and habits [11].
In this paper, we present a novel technique to raise the bar by hiding the lo-
cation of data. This technique is orthogonal to many other software protection
techniques from the domain of obfuscation and tamper-resistance. We advocate
having an arsenal of software protection techniques, as we believe that combined
and iterated application of different techniques can create complexity, including
emergent properties due to interaction among various transformations.

At the core of our technique is a software-based Memory Management Unit
(MMU). An input program is rewritten so that every operation on the heap
goes through the MMU. As the MMU mediates every access to the heap, the
MMU is the only component that needs to know the exact location of the data.
As a result, the MMU can now periodically reorder the heap. This will make
it harder for the attacker to track data when the program is running. After all,

1



if software protection is a cat-and-mouse game, we don’t want the data to be a
sitting duck.

This technique is reminiscent of the oblivious RAMs discussed by Goldreich
and Ostrovsky [9]. They rightfully argue that a physically shielded CPU com-
bined with an encrypted program is insufficient to protect the software fully,
since addresses of accessed memory are not hidden; as a result, information such
as loop structure may leak. They introduce the concept of oblivious RAMs to
hide the original memory-access pattern. Essentially, each fetch/store cycle is
replaced by many fetch/store cycles. They show how to do an on-line simulation
of an arbitrary RAM by a probabilistic oblivious RAM with a polylogarithmic
slowdown in the running time.

This illustrates the high cost of software protection even in the presence of
a trusted hardware component. Our technique is similar, but results in a more
practical compromise amongst cost, security and viability. Despite the promise
of a more widespread distribution of Trusted Platform Modules (TPMs), we
believe that many scenarios will not be able to rely on hardware in the years
to come. These scenarios may require the correct operation of the software on
legacy systems or on systems whose owners are reluctant to enable the TPM
because of fears such as privacy breaches and user lock-in. Furthermore, as dis-
cussed above, less stringent security requirements may be sufficient in practical
settings. Therefore, our design allows for parameterization of the extent and
frequency of reordering.

As reordering the heap does not protect all data (e.g., stack-based local
variables), we have added the option to migrate the local variables automatically
to the heap. This is done by (i) allocating the required memory when the
variable is declared, (ii) rewriting all accesses to the variable to go through the
pointer, and (iii) freeing the memory when the variable goes out of scope.

Finally, we have included the option of scrambling the pointers seen by
the program. If the pointers are scrambled, the program can no longer perform
pointer arithmetic on those pointers, so in this case, we need to intercept pointer
arithmetic as well.

The remainder of this paper is structured as follows. A more detailed de-
scription of the operation of the MMU is given in Section 2. Section 3 provides
an analysis of the added complexity from the viewpoint of the attacker. More
practical implications of the technique are discussed in Section 4. An experi-
mental evaluation is given in Section 5. Related work is the topic of Section 6
and suggestions for future work are made in Section 7. Finally, conclusions are
drawn in Section 8.

2 Operation of the MMU

The main idea behind our approach is to reorder the data on the heap peri-
odically while retaining the original functionality of the program. The MMU
will mediate all accesses to the heap, making the reordering as transparent as
possible to the original program. As accessing the heap is a common operation,

2



heap

Memory 
Management 

Unit

program

Figure 1: High-level overview

the overhead cannot be too large. Therefore, we use a mechanism derived from
paging to keep track of the current location of the data.

The heap is divided into pages of a certain size s (e.g., s = 4KiB) and we
keep track of the location of each allocated page through a mapping. For every
access to the heap, we randomly permute n + 1 pages with probability 1/p,
where n and p are security parameters that can be tweaked to enable a trade-off
between performance and security. Additionally, the pages are encrypted. To
make it harder to detect the permutation through binary similarities, we use
the technique of salting. This means that before every encryption, the pages
are padded with a different value, which will result in different encrypted pages,
even for identical content (because of the unique salt).

Because of this reordering mechanism, the correspondence between pointers
in the program’s data space and the actual location of the data in memory varies
over time. The correct mapping is considered to be known only to the MMU. As
with traditional paging mechanisms, the tables to map pointers to the actual
locations of the pages can be stored in pages as well. With 4KiB pages, for
example, two levels of indirection would suffice to retrieve the requested page.

Software-based protection in the malicious-host model suffers from the ab-
sence of a nucleus of trust. In order to make claims about the security of the
applied technique, we will assume that the MMU can be trusted. This is an
engineering assumption. However, if we can make the trusted component small
enough, the problem of protecting a generic program is reduced to the prob-
lem of protecting a very specific, smaller piece of code. The MMU can then in
practice be protected by existing techniques from the domain of obfuscation and
individualization. The security claims in the next section assume that the MMU
can perform encryption and decryption, has access to a pseudo-random number
generator, and has the memory required to swap two pages. The operation of
the MMU is depicted in Figure 1.

3



3 Security Analysis

Each time a data item on a given page is read or written by the program, n
additional pages are pulled into the MMU with probability 1/p. The requested
operations are performed, the pages are salted differently, re-encrypted, and put
back into memory in a random permutation. This is the root of confusion for
the attacker.

With every step, different candidate locations exist for the location of a
particular piece of data. If we assume that the accesses to the heap are ran-
dom, then the following construction may be used to get the average number of
possible candidates, assuming that p = 1.

Let’s assume that there are N pages in total. We tackle this problem as
follows: When a page is accessed, it will be pulled into the MMU, along with n
additional pages. After the first timestep t1, n pages are written back to memory
in a random permutation over the n+ 1 pages, while one page is retained in the
MMU. After the first timestep, there are n + 1 candidate locations for the page
that was actually requested. We denote this as C(t1) = n + 1, or the confusion
at timestep t1 is n + 1.

We therefore mark these pages “red”. In the next step, n random pages are
taken from the N − 1 pages not yet in the MMU. Every taken page which was
not yet marked “red” now becomes “red.”

To assess the additional number of pages marked at each timestep, we note
that a sequence of draws from a finite population without replacement is defined
by a hypergeometric distribution. As such, the average number of marked pages
in a sequence of n draws from the N−1 candidates, of which C(ti)−1 are marked
at timestep ti+1, is given by n(C(ti)− 1)/(N − 1). The average number of non-
marked pages is then n − n(C(ti) − 1)/(N − 1). As a result, we obtain the
following equations for the confusion:

C(t1) = 1 + n

C(ti+1) = C(ti) + n− n(C(ti)− 1)/(N − 1)

One can easily verify that this converges to N , since no more candidates are
added once C(ti) equals N . Thus, for n = N − 1 and p = 1, we would obtain
true oblivious RAMs [9] under the specified assumptions.

4 Prototype Implementation

In this section, we will elaborate on the more practical aspects of the sug-
gested transformation. Our prototype implementation compiles C programs
into programs with the described properties. The prototype is built on top of
the Phoenix framework [13], which is discussed in Section 4.1. The core of the
transformation, namely redirecting all heap accesses through the MMU, will be
discussed in Section 4.2. The two optional transformations — migrating local
variables to the heap and scrambling the pointers in the program’s data space

4



— will be discussed in Section 4.3 and 4.4. The next two sections (4.5 and 4.6)
elaborate on the complications that arise when pointer usage crosses the bound-
ary between code within the reach of our transformation and external code. The
final section (4.7) discusses the robustness of the prototype implementation.

4.1 Phoenix

Our prototype implementation is built on top of Phoenix1, a framework for
building compilers and tools for program analysis, optimization and testing.
Phoenix consists a comprehensive set of modules and can process different lan-
guages for different target platforms. Our prototype implementation targets the
C language compiled to x86 code.

Conceptually, the prototype is a C2 plugin, which means that we graft our-
selves onto the backend of the compiler. The backend reads the C Intermediate
Language (CIL) generated by the front end and lowers it to machine code.

4.2 Mediating Heap Accesses

The MMU will be mediating every access to the heap. It will take care of
the allocation and release of dynamic memory as well. Therefore, all calls to
memory-management functions (malloc, calloc, realloc and free) are redirected.
The current dynamic memory allocation mechanism uses buddy blocks for allo-
cations smaller than or equal to the page size s. When no previously allocated
memory is available for reuse, memory is allocated per page. If the block is
more than twice as large as desired, it is broken in two. One of the halves is
selected, and the process repeats until the block is the smallest power of two
larger than or equal to the request.

A list of free blocks of different sizes is maintained. When blocks are freed,
the buddy of that block is checked; if it is free as well, they can be merged once
again. In the presence of free blocks, a request for memory is started from the
smallest free block that can serve the request. For blocks larger than the page
size s, we allocate the smallest number of pages sufficient to serve the request.

The pointers returned to the program do not need to correspond directly
to the actual location of the data. However, if we want to allow the program
to perform pointer arithmetic independently, care needs to be taken that the
returned pointers can be the result of a regular allocation mechanism. This
means that memory requests cannot return pointers that fall within previously
allocated memory areas in the program’s data space. Otherwise, during a sub-
sequent memory access, we will not be able to determine whether the pointer
was computed through an offset from the earlier allocation, or originates from
the new request.

Currently, this is resolved by maintaining a straightforward relation between
the pointers returned by the regular memory requests performed by our MMU
behind the screens and the pointers returned to the program. The relation is
not one-to-one to facilitate future memory accesses.

1http://research.microsoft.com/Phoenix/

5



As the pointers seen by the program do not correspond to the location of
the data in memory, we need to intercept every read and write operation to the
heap. These memory accesses may be anywhere in the memory area allocated
by the program, and we need an easy way to translate the addresses to the
correct location of the data at the time the request is made. Therefore, we
make sure that the pointers returned to the program from a memory request
are page-size aligned. On subsequent accesses, we can then easily determine the
offset on the page, and a mapping will translate the page addresses as seen by
program to the actual current location of the page.

4.3 Migrating Local Variables to the Heap

The technique discussed above only affects data on the heap. In many scenar-
ios, the local variables of a program may contain critical information or their
integrity may be crucial for uncompromised execution of the program. There-
fore, we have added the option of migrating local variables from the stack to
the heap.

In practice, definitions of the local variables are replaced by pointer creations
through memory requests. Subsequent uses of the local variable are adapted to
go through the pointer. If the variable goes out of scope, the memory is freed.

4.4 Pointer Scrambling

If we wish to blur the relation between the different pointers returned to pro-
gram, we need to scramble them. If left unscrambled, the relation between
different pointers can reveal, for example, that different smaller memory areas
have been allocated on the same page, or that two independently computed
pointers are related. If we want the program to be able to perform pointer
arithmetic, the transformation needs to be isomorphic with respect to addition,
subtraction, and the order relation.

Transforming the page addresses to page-size aligned addresses to facili-
tate subsequent data accesses, as described in section 4.2, has this isomorphic
property. However, this restriction makes it hard to hide the relation between
different pointers well. On the other hand, if the pointers are scrambled more
thoroughly, the program can no longer operate on the pointers directly. As a
result, if extensive pointer scrambling is turned on, we will redirect all pointer
arithmetic to the MMU as well.

4.5 Escaping Pointers

As with any form of data obfuscation, interfacing with external code poses a
challenge. The problem is that the external code is not under our control and
can therefore not be modified to take the data obfuscation into account. As
a result, the data needs to be put into its original format before it is passed
to external code. This poses a potential security risk, as it forces the code to
contain functionality to undo the transformations. Therefore, we advocate that

6



the reliance on external code be reduced to the absolute minimum. If possible,
library functions should be internalized and included in the transformation as
much as possible. Ideally, the only time data is normalized is just before I/O, as
this cannot be avoided when preserving the relevant behavior of the program.

In our case, as the pointers in the program’s data space no longer point to the
actual data, a problem arises when pointers are passed to code that is beyond
our control. This problem occurs when pointers escape to library functions
or system calls. Other than internalizing external code, we discuss two main
strategies to deal with this.

The first is to normalize the data. This would mean that we reorder all of the
memory accessible through the escaping pointers so that the memory is in the
correct layout and to pass the correct pointer to this memory area. This may
require extensive normalization of the memory via a recursive process, since
external code may receive aggregate arguments that in turn contain pointers
to various memory locations from which other memory locations may become
accessible.

The second approach is to redirect calls to those library functions to internal
code that will emulate the library functions in such a way that they take the
shuffled layout into account.

The first approach is more general and requires less domain-specific knowl-
edge. However, it increases the attack surface of the MMU, as it should now
contain functionality to turn the memory back into a normal layout. We would
clearly like to avoid this. Therefore, we may opt instead not to include any data
that may escape to library functions or system calls in the transformation. This
makes sense, as this data may be revealed anyway when crossing the boundary.
On the other hand, it may not always be easy to determine conservatively and
accurately the data that could potentially escape during an execution of the
program. These motivations, along with the fact that we are currently target-
ing C programs with only limited reliance on library code, have led us to switch
to the second approach.

Our experimental evaluation shows that the number of library functions
called from the inspected benchmarks (C programs of the SPECCPU 2006
benchmark suite) is limited. These library calls consist mainly of three types of
operations: (i) memory operations such as memset, memcpy and memmove; (ii)
string operations such as strlen, strcat and strcpy; and (iii) basic file operations
such as read, open, and remove. The workload of creating the required function
wrappers which take the shuffled memory layout into account proved to be lim-
ited. The wrappers typically divide the operation into a sequence of calls to the
library function, so that the library function can operate on contiguous chunks
of data (typically of size s). Furthermore, the SPEC benchmarks do not pass
complicated structures containing pointers to the outside world.

4.6 Incoming Pointers

A related problem is pointers coming in from library functions. These may pose
a problem because it may be hard to distinguish them from scrambled pointers.

7



Again, we see two possible solutions. The first is to take the “all or nothing”
approach. In this solution, as soon new pointers are created (by library calls
or dereferences), we will absorb them into our scheme by notifying the MMU
of the creation, and using a modified pointer subsequently. This way, we are
certain that the pointers have been masked (if masking is turned on), and that
we need to go through the translation mechanism for every heap operation.

Once again, this may create problems if pointers to pointers or structs
containing pointers are passed to the program. From our experiments, we
have learned that most pointers created by external functions are the result
of memory allocation, which is intercepted anyway. One notable exception are
command-line arguments, which are passed as an array of strings (char point-
ers). As the number of arguments is known and the structure of the array is
well known, we can absorb these pointers as well.

The second approach is to mark the pointers under the control of the MMU.
We do this by relying on the fact that on our target operating system (Windows),
the upper 2GiB of the virtual address space are reserved for the kernel. This
means that the program shouldn’t see pointers for which the highest bit is set.
Our marking thus consists of setting this highest bit, which will identify pointers
that are part of our scheme. Furthermore, this marking does not break pointer
arithmetic, which means that such arithmetic can still be done directly by the
program if extensive pointer scrambling is not turned on.

We have implemented both approaches and made the first approach optional.

4.7 Robustness of the Prototype

The transformation as implemented by our prototype requires a correct inter-
pretation of the operation of the C code. This is no problem for the evaluated
benchmarks, and the interpretation will generally be correct for programs that
have not been made hard to analyze deliberately. For completeness, we report
a number of limitations that may become apparent with programs that unin-
tentionally or deliberately contain “unclean” code. In practice, the programs
that one wants to protect should adhere to rigorous coding practices, as these
are required for maintainability and portability.

The transformation redirects a number of operations, including function
calls. This means that calls to those functions (e.g., malloc) need to be de-
tected. Currently, our tool supports indirect function calls, but only as long as
they do not escape pointers to the outside world. This is an implementation
issue and could be resolved through run-time checks at the cost of additional
slowdown.

Another more fundamental limitation would arise if the program performs il-
legitimate pointer arithmetic on scrambled pointers (e.g., by casting the pointers
to integers and operating on the integers). Aside from being a portability issue,
this would prevent the framework from detecting and redirecting the pointer
operations.

In general, any disguised pointer usage will potentially compromise the cor-
rect operation of our transformation. As already mentioned, this does not occur

8



in the benchmarks from the SPEC CPU2006 benchmark suite, which have been
tested extensively by others and ported across 32-bit and 64-bit systems.

5 Experimental Evaluation

We tested the transformation on five C benchmarks from the SPEC CPU2006
suite listed in Table 1. The obfuscated benchmarks were run and timed on
a Pentium 3.0 GHz workstation with 2 GB of RAM. For timing comparisons
with the unmodified benchmarks, we applied the obfuscation by adding the
following individual transformations in stages. The implementation of these
transformations is described elsewhere in this paper:

• Mediated Heap Access

• Migrating Local Variables to the Heap

• Pointer Scrambling

5.1 Benchmarks

Table 1 lists the benchmarks against which we tested.

Benchmark Description
401.bzip2 Compression
429.mcf Combinatorial optimization
433.milc Physics: quantum chromodynamics
458.sjeng Artificial intelligence: chess
470.lbm Fluid dynamics

Table 1: Description of the Benchmarks

We ran each of the baseline benchmarks on the test machine to get the base
execution timings. We then applied the obfuscation in stages as described and
collected the timings of each test run. These timings were then expressed as a
factor of the baseline timing to represent the overhead of the applied transfor-
mation. These results are shown in Table 2.

Transformation 401.bzip2 429.mcf 433.milc 458.sjeng 470.lbm
Mediated Heap 117.7 47.9 15.5 4.5 8.7
Mediated Heap + Pointer Scrambling 151.1 61.0 21.7 93.9 8.8
Mediated Heap + Migrated Local Variables 518.3 91.2 114.6 542.1 23.5
Mediated Heap + Migrated Variables + Scrambling 523.6 102.3 117.4 619.4 23.7

Table 2: Transformation Overhead for Selected Benchmarks

9



It should be noted that in running these tests, the transformations were
applied over the entire program in order to achieve an unbiased and consistent
set of results for comparison of the various techniques. As every memory access
in the code is redirected through the MMU, the impact on the run times can
be significant.

We also performed the tests on two simple functions that we created that
repeatedly perform a specific operation in a loop to see the effect the trans-
formations have on these particular types of operations. The first function,
pseudorand, computes the function xn = (axn−1 + b) mod c 30,000,000 times.
In the program, a single variable x is allocated on the heap. The second function,
sumlist, calculates the summation of 30,000,000 integers stored in a linked list.
In this case, all 30,000,000 list elements are allocated on the heap. The results
for these tests are shown in Table 3. The difference in the overhead illustrates
that the method is sensitive to the amount and type of data on which it is ap-
plied, and judicious, targeted application can significantly improve performance.
Section 7 mentions some further practical ways to alleviate the slowdown.

5.2 Performance Issues

Even with the slowdown levels incurred by our preliminary implementation, se-
lective application of our techniques may find some practical use. For example,
applications such as DRM and access control involve Boolean checks executed
outside performance-sensitive program paths. Such security tests may be re-
quired just once, a few times, or infrequently during runtime. These operations
often can be made orders of magnitude slower without perceptibly affecting user
experience.

When better optimized, our implementation may also be useful in more
performance-oriented applications, such as stream decryption with sensitive
keys. Runtime profiling and user input can help to determine which parts of
the application would benefit most from our techniques. To avoid attracting
attention to security-critical code, we would typically protect various unrelated
parts of the application as well.

Transformation pseudorand sumlist
Mediated Heap 3.7 156.7
Mediated Heap + Pointer Scrambling 4.0 160.5
Mediated Heap + Migrated Local Variables 9.1 315.3
Mediated Heap + Migrated Variables + Scrambling 10.2 338.2

Table 3: Transformation Overhead for Simple Functions

10



6 Related Work

The technique described can be used for both obfuscation and tamper-resistance.
Most existing techniques from the domain of tamper-resistance focus on pro-
tecting the integrity of code and are based on checksumming segments of the
code [2, 10]. A generic attack against such schemes has been devised for the x86
through the manipulation of processor-level segments, and for the UltraSparc
through a special translation look-aside buffer load mechanism [15]. Related
techniques [3] hash the execution of a piece of code, while others have looked at
the reaction mechanism in more detail. Once tampering is detected, appropri-
ate action needs to be taken. If the manifestation of this action is too obvious,
it can be easily tracked down. Delayed and controlled failures [8] are a way to
make it harder to locate the reaction mechanism.

Software obfuscation [6, 1] aims to make programs harder to understand.
There is a considerable body of work on code obfuscation that focuses on making
it harder for an attacker to decompile a program and extract high level semantic
information. Our technique is complementary to most existing work and focuses
specifically on making it harder to detect dynamic data flow.

White-box cryptography [4] can be seen as a specific, clearly defined problem
in obfuscation. Here the goal is to hide a secret key in a cryptographic software
implementation in the malicious-host model. Our solution can help to defend
against certain attacks based on analyzing dataflow, but should be viewed as
just one component of a comprehensive software-protection toolbox.

7 Future Work

The prototype implementation could be improved and extended in a number of
ways. Future work includes optimizing the code, especially that of the MMU to
reduce the cost of the applied transformation. We continue with a discussion of
a number of possible extensions.

7.0.1 Alternative Heap Management

The current heap management is based upon a paging mechanism, and pages
are permuted periodically. Alternative schemes are possible as well. One sug-
gested alternative approach is to keep the data in a self-balancing binary search
tree. This way, data would be retrieved by looking for it in a binary tree. As
the tree is self-balancing, the data reordering would be automatic. A splay-
tree implementation, as suggested by Varadarajan et al. [14], could furthermore
exploit data locality, as recently accessed items will be near the top of the tree.

7.0.2 Code Reordering

A more elaborate extension would consist of including the code (not just the
data) in the reordering mechanism. This would typically be done after the

11



assembly representation has been generated, possibly as a link-time transfor-
mation. The code can be divided into chunks that can fit on a single page as, at
this point, the exact code size is known. We could then redirect control-transfer
instructions to code on other pages to go to the MMU. The MMU could then
make the requested code available for execution by the CPU. Requests for code
pages can be handled similarly to data accesses to permute the code and data.

7.0.3 User-directed Application

The operation of our current prototype is fully automated. Furthermore, the
results reported in the evaluation section are obtained by applying the transfor-
mation to the entire program. The slowdown could easily be alleviated through
profiling, as a result of the 10/90 rule of thumb: 10 percent of the code is re-
sponsible for 90 percent of the execution time. If we could avoid frequently
executed code, the slowdown would be considerably smaller. We believe that
the reported timing information enables the reader to get a good feel of the real
cost of the technique.

In practice, however, it is often the case that the programmer has domain-
specific information as to which data needs to be protected and which data is
less vital. Therefore, the option may be provided to mark that data at the
source level and to limit the transformation to this data.

8 Conclusion

This paper has presented a practical approach to hiding data-access patterns
in real-life programs. The technique involves shuffling and encrypting data
in memory, as well as protecting pointer references. Realizing some benefits
of oblivious memory accesses [9, 14], the approach complicates attacks based
on dataflow analysis and memory traces. Our tool implementation may be
useful standalone against certain targeted dataflow attacks, but should also be
considered as an element of more comprehensive protection systems [7].

References

[1] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan,
and K. Yang. On the (im)possibility of obfuscating programs. In Proceed-
ings of the 21st IACR Crypto Conference, volume 2139 of Lecture Notes in
Computer Science, pages 1–18, 2001.

[2] H. Chang and M. Atallah. Protecting software code by guards. In Pro-
ceedings of the 1st ACM Workshop on Digital Rights Management, vol-
ume 2320 of Lecture Notes in Computer Science, pages 160–175. Springer-
Verlag, 2002.

[3] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski.
Oblivious hashing: a stealthy software integrity verification primitive. In

12



Proceedings of the 5th Information Hiding Conference, volume 2578 of Lec-
ture Notes in Computer Science, pages 400–414. Springer-Verlag, 2002.

[4] S. Chow, P. Eisen, H. Johnson, and P. Van Oorschot. White-box cryptog-
raphy and an AES implementation. In Proceedings of the 9th Workshop on
Selected Areas in Cryptography, volume 2595 of Lecture Notes in Computer
Science, pages 250–270. Springer-Verlag, 2003.

[5] F. Cohen. Operating system evolution through program evolution. Com-
puters and Security, 12(6):565–584, 1993.

[6] C. Collberg, C. Thomborson, and D. Low. Breaking abstractions and un-
structuring data structures. In Proceedings of the 6th International Confer-
ence on Computer Languages, pages 28–38. IEEE Computer Society Press,
1998.

[7] N. Dedic, M. H. Jakubowski, and R. Venkatesan. A graph game model for
software tamper protection. In 2007 Information Hiding Workshop, 2007.

[8] T. Gang, C. Yuqun, and M. Jakubowski. Delayed and controlled failures
in tamper-resistant systems. In The 8th Information Hiding Conference,
2006.

[9] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996.

[10] B. Horne, L. Matheson, C. Sheehan, and R. Tarjan. Dynamic self-checking
techniques for improved tamper resistance. In Proceedings of the 1st ACM
Workshop on Digital Rights Management, volume 2320 of Lecture Notes in
Computer Science, pages 141–159. Springer-Verlag, 2002.

[11] M. Limayem, M. Khalifa, and W. Chin. Factors motivating software piracy:
A longitudinal study. In 20th Int’l Conf. Information Systems, pages 124–
131, 1999.

[12] B. Lynn, M. Prabhakaran, and A. Sahai. Positive results and techniques
for obfuscation. In Eurocrypt, 2004.

[13] Microsoft Corporation. Phoenix compiler framework, 2008.

[14] A. Varadarajan and R. Venkatesan. Limited obliviousness for data struc-
tures and efficient execution of programs. Technical report, Microsoft Re-
search, 2006.

[15] G. Wurster, P. van Oorschot, and A. Somayaji. A generic attack on
checksumming-based software tamper resistance. In The 26th IEEE Sym-
posium on Security and Privacy, pages 127–138, 2005.

13


