
Adaptive Coding using Finite State Hierarchical Table Lookup Vector
Quantization with Variable Block Sizes�
Sanjeev Mehrotra, Navin Chaddha, and R.M. Gray

Information Systems Laboratory, Stanford University,
Stanford, CA 94305

Tel: (415) 723-2675 Fax: (415) 723-8473 Email: mehrotra@leland.stanford.edu

Abstract

In this paper we present an algorithm for performing
adaptive vector quantization with memory. By using mem-
ory between adjacent blocks which are encoded, we can take
advantage of the correlation between adjacent blocks of pix-
els to reduce redundancy. We use finite state vector quan-
tization to provide the memory. To further improve perfor-
mance by exploiting nonstationarities in the image, we use
variable block sizes in the encoding. This is done by using
a quadtree data structure to represent an encoding based on
using variable block sizes. To reduce encoding complexity,
hierarchical table lookup schemes are used to replace all the
full search encoders.

1. Introduction

One of the main problems with memoryless full search
vector quantization (VQ) is that the encoding complexity
grows exponentially with bit rate and vector dimension [1].
For example if r bits per pixel were used to represent a k
dimensional vector, then a codebook of size 2rk would be
needed. This would mean that a full search encoder would
have to compute 2rk distortions to find the minimum dis-
tortion codeword. However, the decoder would simply be
implemented as a table lookup. Therefore VQ typically can
only be used where a complex encoder can be implemented,
but a relatively low complexity decoder is required, such as
software decoding of video from a CD-ROM.

To maintain low codebook design and encoder complex-
ity, VQ can only be used with small vector dimensions if a
high bit rate is required. If large vector dimensions are used,
then only small codebooks can be used. However, this often
causes too much compression and subsequently too much
distortion. Therefore a lot of work has gone into achiev-�Work supported by NSF Graduate Research Fellowship, Kodak Fel-
lowship, and NSF Research Grant MIP-9311190

ing the performance of a large vector dimension VQ while
keeping a small vector dimension. These algorithms typi-
cally achieve better performance by taking advantage of re-
dundancy between adjacent blocks [5].

Even with small codebooks, full search VQ has high
complexity. Therefore, we must reduce the encoding com-
plexity at the expense of a slight decrease in performance.
To reduce encoding complexity, one can use table lookups
to perform the encoding. Since the tables can be built in ad-
vance, no arithmetic computations are required to perform
the encodings. To make table sizes manageable for large
vector dimensions, hierarchical table lookup vector quanti-
zation (HVQ) can be used [2, 3]. Once the complexity is
reduced using algorithms such as HVQ, VQ with memory,
such as FSVQ and PVQ, can be used to improve the perfor-
mance [4].

Another problem with VQ is that the use of a single quan-
tizer, in the absence of variable rate coding, allocates the
same number of bits to all pixels in the image. This is usu-
ally not good since images are nonstationary and have some
regions which can be highly compressed and other regions
with fine detail, such as edges, which cannot be compressed
well. To take advantage of nonstationarities in images, one
can use bit allocation approaches after identifying regions of
greater importance [8]. One such approach is to use variable
block size vector quantization [10, 9].

2. Hierarchical table lookup VQ

An obvious way to reduce encoding complexity is to pre-
compute the minimum distortion codeword for every pos-
sible input. Then the input vector can be used to directly
address a lookup table to determine the index of the near-
est codeword. Since this table can be built in advance, no
arithmetic computations would be required for the encod-
ing. However, since there are many possible input vectors,
the size of this table would be immense if the vector di-
mension were large and would only be possible with what

practically speaking would be an infinite amount of mem-
ory. For example, a 16 dimensional vector at 8 bits per pixel
would have 2128 possible input vectors. To fix this prob-
lem, we can use hierarchical table-lookup vector quantiza-
tion (HVQ). By performing the table lookups in a hierarchy,
larger vectors can be accommodated in a practical way, as
shown in 6.

Another big advantage of table lookup encoding is the
ease with which block transforms and complex distortion
measures, such as those using perceptual weighting, can be
incorporated. This is simply because these things can be in-
corporated into the table building process itself, rather than
in the encoding process. The encoding process will remain
exactly the same and the encoding computational complex-
ity will not increase at all. The details of HVQ can be found
in [3].

3. VQ with Memory

Vector quantization with memory allows us to take ad-
vantage of the correlation between adjacent blocks being en-
coded. This helps in reducing the bit rate needed to achieve
a particular distortion thus improving performance. Two
common types of VQ with memory are finite state vec-
tor quantization (FSVQ) and predictive vector quantization
(PVQ). In this paper we consider FSVQ.

FSVQ [7] improves performance by using multiple code-
books to achieve the performance of a larger codebook. It
uses many codebooks, called state codebooks, each corre-
sponding to a different state of the encoder. In FSVQ the
search for the minimum distortion codeword is limited to
searching the codewords in the current state codebook. The
current state is a function of the quantized versions of the
adjacent blocks. Since the state is a function of only previ-
ous states and previous indices (quantized blocks), the de-
coder can track the state of the encoder without any addi-
tional side information once the initial states are known. The
current state of the encoder is given bySn = f(Sn�1; yn�1)
where Sn is the state at time n and yn is the index output
by the encoder at time n. Then, the encoder uses the code-
book CS to encode the vector if the encoder is in state S.
Thus, the output index of the encoder at time n is given byin = �S(xn) = argminid(xn; �S(i)) where d is the dis-
tortion measure, �S is the encoder for state S, and �S is the
decoder for state S. In our setup, we use the side pixel val-
ues of the adjacent blocks to determine the state, as shown
in figure 6. The state is calculated by using VQ to classify
quantized versions of the adjacent pixel vectors. This helps
preserve edge and grayscale continuities since the current
codebook is selected based on the boundary pixel values. So
instead of having one codebook which contains global code-
words, FSVQ codebooks have codewords which are local to
the blocks which map to that state. Thus, there is less vari-

ance among the vectors, leading to better clustering and sub-
sequent lowering of the MSE.

4. Variable Block Size Encoding

To take advantages of nonstationarities in the image, we
use variable block sizes using a quadtree decomposition to
perform the encoding [10, 9]. This allows us to adaptively
allocate a different number of bits to each pixel depending
on the the statistics of the spatial region that we are encod-
ing. If we design quantizers for various block sizes, each
with the same number of codewords, then the larger vector
dimension quantizers will have a lower rate than the ones for
the the small block sizes. If regions of low detail are com-
pressed using large block sizes, and regions of fine detail
are encoded by breaking the large block into smaller blocks,
then we have adaptively allocated more bits to the impor-
tant regions. Although the quadtree segmentation informa-
tion will be sent using added side information, the gains re-
sulting from using multiple quantizers will more then make
up for this.

The objective of the algorithm is to encode the image op-
timally by using the quantizers available [9]. Suppose we
have quantizers available for encoding blocks of size 2l x2l, where l0�l�L. Then the optimal encoding for an image
is the optimal encoding for each of the 2L x 2L blocks in
the image. The optimum encoding for each block is deter-
mined recursively by comparing the encoding of the block
with the encoding of the block using four optimally encoded
subblocks.

To find the optimum encoding for a 2l x 2l block, we
first encode it using a 2l x 2l quantizer. Let Dl and Rl
be the distortion and rate for this quantization. Then, we
optimally encode the four subblocks resulting from this
block. Let Dl�1 and Rl�1 be the sum of the distortions
and rates for the four optimally encoded subblocks. IfDl + �Rl�Dl�1 + �Rl�1, then the optimal encoding of
the 2l x 2l block is the quantization using the 2l x 2l block,
else it is the optimal encoding of the four 2l�1 x 2l�1 blocks.� , the Lagrange multiplier, can be changed depending on
the compression desired. The larger the value of� , the more
compression we achieve. This comparison is done for all
levels of quantization available, l0 + 1�l�L. The optimal
encoding for the 2l0 x 2l0 block is simply the encoding of
the actual block since the block cannot be split any further
as there are no quantizers for smaller block sizes available.
The rate for the encodings includes one bit for each node in
the quadtree except the last level in the quadtree. A quadtree
will be used to represent the the segmentation map telling
the decoder how each block has been encoded as shown in
figure 6. If the node is a one, then the block is being split,
else if it is a zero then that block is being encoded using the
index sent. To decode a 2l by 2l block, the decoder simply

looks at the quadtree. If the node corresponding to the block
is a zero, then the decoder outputs a reproduction block us-
ing the codebook for that block size. If the node is a one,
then the decoder decodes each of the four subblocks by re-
cursively using the same procedure.

5. HVQ Quadtree Encoding with Memory

The combination of VQ with memory with quadtree en-
coding schemes is a natural one. If we look at the residuals
resulting from prediction using 4 x 4 blocks to predict (pre-
diction is done with absence of quantization), we find that
the residuals have large regions of constant intensity such as
the background, which can be easily compressed with large
block sizes and the only regions which need to be encoded
using small block sizes are the edges. By doing both of these
things we gain the PVQ advantage of a small codebook per-
forming as well as a large memoryless VQ codebook (be-
cause of the fact that the residuals have smaller variance) as
well as the quadtree advantage by exploiting the nonstation-
arities in the residual image. It also makes sense to com-
bine FSVQ with quadtree encoding since FSVQ is like PVQ
with a non-linear predictor. The encoder is essentially cod-
ing the difference between the block and the average values
of blocks mapping to that state.

To combine memory VQ with quadtree encoding, we
simply incorporate FSVQ into the quadtree encoding algo-
rithm. There are basically two ways in which we can accom-
plish this. One is to simply use the largest block size, a 2L
x 2L block, to incorporate the memory.

For FSVQ this would mean that the side pixels of the ad-
jacent quantized blocks of size 2L x 2L are used to deter-
mine the state of the current 2L x 2L block. Then, this block
can simply be encoded using the quadtree decomposition
described in the previous section using quantizers designed
for the state. This will be referred to as the quadtree FSVQ
with single classifier method. However, this method is not
as good at taking advantage of the full correlation between
blocks. This is because if the optimal encoding of a 2L x 2L
block involves the use of subblocks to encode, then it makes
better sense to encode the subblocks by using the adjacent
subblocks to determine the state of the subblocks rather than
by simply using the big blocks to determine the state. So
in this method not only is the encoding done recursively to
find the optimum encoding, but the state classification is also
done recursively. This will be called the recursive FSVQ
and quadtree decomposition method. In this method, to find
the optimal FSVQ encoding of a 2l x 2l block, we first en-
code the block using the state codebook using the adjacent2l x 2l quantized blocks to determine the state. This is then
compared with the optimal encoding of the subblock result-
ing from using nearby optimally encoded subblocks to deter-
mine the state of each of the subblocks. The only drawback

of this method is the increased complexity due to repeated
state classifications and the design of classifiers for each of
the possible block sizes. Both these methods are shown in
figure 6.

6. Simulation Results and Conclusion

In this section, we give simulation results for encoding
the 512 x 512 monochrome image Lena using the various
techniques described in this paper. The original image is
at 8 bpp (bits per pixel). All the codebooks were designed
using the GLA algorithm on 30 training images. The fi-
nal transmitted channel symbols were generated by mapping
the final indices using a code matched to their probabilities.
This gives us a variable rate code. Each codebook was de-
signed with 256 codewords. For quadtree decompositions
this means that a 16 x 16 quantizer corresponds to a com-
pression of 256:1 and a 2 x 2 quantizer corresponds to a com-
pression of 4:1.

In figure 5, we show PSNR curves for compression us-
ing VQ, FSVQ, VQ with optimal quadtree decomposition,
FSVQ with quadtree using a single classifier, and FSVQ
with the recursive classification and quadtree encoding. The
block size listed for the quadtree results is the largest block
size used in the quantization. The smallest block size for the
quadtree encoding is 2 x 2 for all cases. The various rates are
achieved by simply changing the value of � in the quadtree
encoding. For low values of � most of the blocks are be-
ing encoded as 2 x 2 and for high values of � , they are be-
ing encoded as the largest block size available. Although we
are using relatively large block sizes for the maximum block
size quantizer in the quadtree encoding, this is possible since
the codebooks are very small and HVQ is used.

As one can see from the graphs, FSVQ gains about 3 dB
over memoryless VQ. VQ with the optimal quadtree decom-
position performs about 2.2-2.6 dB better then regular mem-
oryless VQ but about 0.15 dB worse than FSVQ. The recur-
sive FSVQ with quadtree gives about a 4.4 dB improvement
over regular memoryless VQ at 0.4 bpp. It is interesting to
note that at the very low rates FSVQ seems to be performing
slightly worse then or comparable to regular VQ. This might
be because of the fact that at low rates, the distortions in the
adjacent blocks leads to faulty state calculations which hurts
the encoding of the current block.

Figure 6 shows the compressed image resulting from re-
cursive FSVQ with quadtree at a rate of 0.327 bpp at a PSNR
of 32.27 dB. Figure 7 shows the same image using standard
JPEG (unoptimized) at a comparable rate. As one can see,
the JPEG image has the same PSNR, but is more blocky than
the recursive FSVQ with quadtree image. Also shown in fig-
ure 8 is the corresponding segmentation map for the encod-
ing. From the segmentation map, it is relatively easy to see
how we are taking advantage of the nonstationarities in the

image to improve our encoding. Basically each block, re-
gardless of size, is being assigned 8 bits (i.e. 256 codewords
in the codebook). The blocks which correspond to regions
of detail are being encoded using small block sizes, thus al-
locating more bits to them than to the large block sizes.

References

[1] A. Gersho and R.M. Gray, Vector Quantization and
Signal Compression, Kluwer Academic Pub., Boston,
MA, 1992.

[2] P.-C. Chang, J. May and R.M. Gray, “Hierarchical
Vector Quantization with Table-Lookup Encoders,”
Proc. Intl. Conf. on Communications, Chicago, IL,
June 1985, pp. 1452-55.

[3] N. Chaddha, M. Vishwanath and P.A. Chou, “Hierar-
chical Vector Quantization of Perceptually Wieghted
Block Transforms,” Proc. Data Compression Confer-
ence, March 1995.

[4] N. Chaddha, P.A. Chou and R.M. Gray, “Constrained
and Recursive Hierarchical Table-Lookup Vector
Quantization,” Proc. Data Compression Conference,
March 1996.

[5] R. Arvind and A. Gersho, “Image Compression Based
on Vector Quantization with Memory,” Optical Engin-
erring, July 1987, vol. 26, pp. 570-580.

[6] H.-M. Hang and J.W. Woods, “Predictive Vector
Quantization of Images,” IEEE Trans. Communica-
tions, COM-33, Nov. 1985, pp. 1208-1219.

[7] J. Foster, R.M. Gray and M.O. Dunham, “Finite State
Vector Quantization for Images,” IEEE Trans. Infor-
mation Theory, May 1985, vol. IT-31, pp. 348-355.

[8] Y. Shoham and A. Gersho, “Efficient Bit Allocation for
an Arbitrary Set of Quantizers,” IEEE Trans. Acoust.
Speech Signal Processing, Sept. 1988, vol. 36, pp.
1445-1453.

[9] G.J. Sullivan and R.L. Baker, “Efficient Quadtree Cod-
ing of Images and Video,” IEEE Trans. Image Process-
ing, May 1994, vol 3, pp. 327-331.

[10] J. Vaisey and A. Gersho, “Image Compression with
Variable Block Size Segmentation,” IEEE Trans. Sig-
nal Processing, Aug. 1992, vol. 40, pp. 2040-2060.

k =20

r =0 8 8 8 8 8 88 8

8 8

8 8

8

8

K=8

Table 1 Table 1 Table 1Table 1
64 Kbytes 64 Kbytes 64 Kbytes 64 Kbytes

Table 2
64 Kbytes

64 Kbytes
Table 3

Table 2
64 Kbytes

81r =

r =2

Figure 1. A 3 stage HVQ encoder

= side pixels

Figure 2. Side pixels for incorporating mem-
ory

(a)

1

1

1 1

0 0 0

0 0

(b)

1 16 x 16 block

4 8 x 8 blocks

16 4 x 4 blocks

32 2 x 2 blocks

16

Figure 3. (a) Quadtree and (b) corresponding
block decomposition. Quadtree adds 9 bits of
side information (1 bit/node except leaves).

4 x 4
Optimally
Quantized
Block

4 x 4
Optimally
Quantized
Block

= side pixels

Optimally

8 x 8

Quantized Block

Optimally

8 x 8

Quantized Block

(a) (b)

Figure 4. Side pixels used for state calcula-
tion; In (a), the largest block size is used
to incorporate memory into the subblocks
whereas in (b), the adjacent subblocks are
used to incorporate memory into the sub-
blocks.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

15

20

25

30

35

40

Rate (bits per pixel)

P
S

N
R

 (
dB

)

o−−o VQ 4x4

.. FSVQ 4x4 (16 states)

... Quadtree alone 8x8

−− Recursive FSVQ with quadtree 8x8

Figure 5. PSNR results for FSVQ with
quadtree.

Figure 6. Lena compressed with recursive
FSVQ quadtree at .327 bpp with PSNR = 32.6
dB; 2x2 to 8x8 quantizers used.

Figure 7. Lena compressed at .33 bpp using
JPEG; PSNR = 32.6 dB.

Figure 8. Segmentation map for Lena shown
in figure 6.

