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Abstract
This paper proposes a robust and efficient way to temporally
align a set of unsynchronized meeting recordings, such as might
be collected by participants’ cell phones. We propose an adap-
tive audio fingerprint which is learned on-the-fly in a completely
unsupervised manner to adapt to the characteristics of a given
set of unaligned recordings. The design of the adaptive audio
fingerprint is formulated as a series of optimization problems
which can be solved very efficiently using eigenvector routines.
We also propose a method of aligning sets of files which uses
the cumulative evidence from previous alignments to help align
the weakest matches. Based on challenging alignment scenarios
extracted from the ICSI meeting corpus, the proposed alignment
system is able to achieve > 99% alignment accuracy at a 100
ms error tolerance.
Index Terms: alignment, audio fingerprinting, meeting record-
ings, adaptive

1. Introduction
Consider the following scenario. A group of participants have a
meeting in a large conference room. Whenever a person arrives
at the meeting, they place their cell phone on the table in front of
them and use it as a local audio recording device. Let’s say per-
son A arrives at time t = 0 minutes and begins recording. Per-
son B arrives at time t = 2. Person C joins remotely via skype
at t = 5, and he too simply places his cell phone in front of
him at his remote location. Person D arrives late at time t = 25
minutes and begins recording. Some people leave the meeting
early; others stay late. Some people don’t overlap. At the end
of the meeting, everyone has an audio recording. We would like
to take these unsynchronized, overlapping audio recordings and
generate a single high-quality “summary” recording of the en-
tire meeting. This paper proposes a method for accomplishing
this in an efficient and robust manner.

One main problem that must be solved is to align the files
in time. Figure 1 shows a graphical depiction of this prob-
lem. Once the files are temporally aligned, we can gener-
ate a “summary” recording by simply averaging the available
channels or applying a beamforming method. Using a sim-
ple cross-correlation approach to align the recordings would
be prohibitively expensive in this situation, where the audio
recordings are very long and the offsets might be on the or-
der of 25 minutes, as in the example above. For example, given
10 recordings that are each 1 hour long and sampled at 8kHz,
a simple pairwise cross-correlation approach that considers all
possible offsets would require about 3.7×1016 multiplications.
Using the file timestamps may not be a reliable way to align
files. The timestamps on the files might be corrupted or un-

Figure 1: Graphical depiction of an alignment scenario.

available, they might be modified in the process of copying files
between devices or compressing to mp3, or they might simply
not be accurate enough – the clocks on the recording devices
may be skewed or the file timestamps might have limited preci-
sion (e.g. only 2 seconds for timestamps on FAT drives).

Several works have explored the synchronization of con-
sumer videos of the same live event using audio information.
Most of these works apply an out-of-the-box audio fingerprint-
ing method to the videos in a pairwise manner. For example,
Shrestha et al. [1] apply the Philips fingerprint [2] to synchro-
nize live video recordings of the same event in a pairwise man-
ner. The Philips approach considers 33 logarithmically-spaced
bands below 2 kHz and performs 32 comparisons at each frame,
where each comparison considers whether the energy difference
in adjacent frequency bands increases or decreases in 2 consec-
utive frames. The 32 comparisons are represented compactly by
a single 32-bit integer. Kennedy and Naaman [3] likewise apply
the Shazam fingerprint [4] in a pairwise manner to synchronize
videos of live concert recordings. The Shazam approach identi-
fies the locations of spectral peaks in the spectrogram, considers
various pairings of spectral peaks, and encodes the frequencies
and time difference of each peak pair in a 32-bit fingerprint. Su
et al. [5] extend the work of Kennedy and Naaman by applying
a clustering technique to the pairwise match scores in order to
group videos into sets of coherent scenes.

There is a rich literature on audio fingerprinting methods.
Most prior work focuses on music identification. Some ap-
proaches use manually designed fingerprints based on spec-
tral maxima locations [4][6], subband energy differences [2][7],
wavelets [8], modulation frequency features [9] [10], spectral
flatness [11] [12], and spectral subband moments [13]. Other
approaches incorporate supervised learning into the fingerprint
design process, such as selecting the best filters among a set of
candidates through boosting [14][15] [16] or training a neural
network [17]. In addition to music identification, the TRECVID
content based copy detection task [18] also spurred research in
online audio copy detection [7] [19] [20] [21].



Our current work explores an application of audio finger-
printing which has hitherto not been explored: aligning unco-
ordinated audio recordings of meetings, such as might be col-
lected from participants’ cell phones. This application scenario
presents some unique challenges and requirements which lead
to novel developments of audio fingerprinting techniques. Our
work has two main contributions. First, we propose an adap-
tive audio fingerprint which is learned on-the-fly on each align-
ment scenario (i.e., each set of audio files to align). Several of
the above works incorporate supervised learning into the fin-
gerprint design process, but, to the best of our knowledge, this
is the first work which learns a fingerprint design in an unsu-
pervised manner. This allows the fingerprint to adapt to the
characteristics of each individual alignment scenario. Second,
we propose a method for aligning a group of files which uses
cumulative evidence. Rather than using an audio fingerprinting
method out-of-the-box in a pairwise manner, we propose a way
to align a group of files starting with the strongest matches first,
and using the cumulative evidence of previously aligned files to
help identify the weakest matches.

The paper is organized as follows. Section 2 describes the
main components of the proposed alignment system. Section
3 explains the experimental setup. Section 4 shares the results
and discussion. Section 5 concludes the work.

2. System Description
The alignment system will be described in three parts: the fin-
gerprint computation, the spectrotemporal filter design, and the
alignment algorithm.

2.1. Fingerprint Computation

Figure 2 shows a block diagram of the fingerprint computation
process. There are five steps, each described below.

Compute auditory spectrogram. We computed a log mel
spectrogram using 100 ms windows, 10 ms hop size, and 33 mel
bands between 200Hz and 2kHz. These settings are similar to
those used in previous audio fingerprinting works [2][14][8][7].

Apply spectrotemporal filters. We compute N features at
each frame by applying N different spectrotemporal filters. In
other words, each feature is a linear combination of the log mel
spectrogram values for the current frame and surrounding con-
text frames. Note that MFCCs are a special case of spectrotem-
poral filters in which the filter coefficients match the coefficients
of the DCT transform. Rather than using MFCCs, however, we
use filters that are learned in an unsupervised manner. We will
discuss how to learn these filters in the next subsection.

Compute deltas. We compute deltas on the spectrotemporal
features at a separation of T frames. If a feature at frame n is
xn, the delta feature will be ∆xn = xn − xn+T . The justifica-
tion for this step will be explained in the next subsection.

Compare threshold. Each of the N delta spectrotemporal
features is thresholded at 0, yielding a binary value.

Bit packing. The N binary values are packed into a single
32-bit integer which represents the fingerprint value for a single
frame. This compact binary representation will allow us to store
fingerprints in memory efficiently and to do reverse indexing to
quickly look up fingerprint matches.

2.2. Fingerprint Design

We formulated the filter design as a series of optimization prob-
lems. Our formulation grows out of 3 design principles.

Figure 2: Block diagram of the fingerprint computation.

Design principle 1: Compact. A good fingerprint should
represent information compactly. From an information theory
perspective, the ideal 32-bit fingerprint should have 32 bits of
entropy. Thus, each bit should be balanced (i.e. 0 half the time,
and 1 half the time) and the bits should be uncorrelated. Any
imbalance or correlation between bits represents inefficiency.

Design principle 2: Robust. A good fingerprint should be
robust to noise. In the context of our fingerprint design where
each bit represents a feature compared to a threshold, achieving
robustness corresponds to maximizing the variance of the fea-
ture distribution. To see this, note that the feature distribution
will be roughly bell-shaped (as a result of the central limit theo-
rem), and that the threshold will be set at the median of the dis-
tribution (to achieve balanced bits). If a particular feature value
falls close to the threshold, a small perturbation from noise may
cause the feature to fall on the other side of the threshold, re-
sulting in an incorrect bit. This situation can be minimized by
maximizing the variance of the feature distribution.

Design principle 3: Lightweight. A good fingerprint should
be lightweight to compute. We would like to avoid lots of dense
multiplications. In the context of our filter design, we will re-
strict our attention to additions and subtractions only.

Putting these three principles together, we can formulate
our fingerprint design in the following way. Consider the nth

audio frame in a set of training data, and let the log mel spectro-
gram values for the w context frames be denoted an ∈ <33w.
Let A ∈ <M×33w denote the matrix containing all such data
points an, where M is (approximately) the total number of
audio frames in the training set. Let xi ∈ <33w specify the
weights of the ith spectrotemporal filter, and let S ∈ <33w×33w

be the covariance matrix of the data in A. Finally, let l denote
the number of bits in the fingerprint. Then, for i = 1, 2, . . . , l,
we would like to solve

maximize xTi Sxi

subject to xi ∈ {−1, 0, 1}33w

xTi xj = 0, j = 1, . . . , i− 1.

Each resulting xi specifies the spectrotemporal filter weights for
the ith fingerprint bit. The threshold for the ith fingerprint bit
is set to the median of the features Axi.

Let’s unpack the above formulation. The first line can be
summarized as “maximize the variance.” To see this, note that
the variance of the featuresAxi can be expressed as 1

M
‖Ãxi‖22,

where the columns of Ã are zero mean. This objective is mo-
tivated by our second design principle (robust). The first con-
straint simply says, “addition and subtraction only.” The +1
and−1 correspond to addition and subtraction, and the 0 corre-
sponds to simply ignoring an element. This constraint is moti-
vated by our third design principle (lightweight). The last con-
straint says, “uncorrelated filters.” This constraint ensures that
the filters are mutually orthogonal. This constraint is motivated
by our first design principle (uncorrelated bits).



Figure 3: Projecting eigenvectors onto the {−1, 0, 1}2 lattice.

The above formulation is nice, but it is not tractable. The
feasible set has 333w possible values, which is too many to
use a brute force method. Additionally, the objective requires
maximizing a convex expression, which results in a nonconvex
problem, so standard relaxation techniques cannot be applied
naı̈vely. However, we can compute an approximate solution by
relaxing the first constraint to ‖xi‖22 = 1, and then projecting
the solution back onto the {−1, 0, 1}33w lattice. This approx-
imation can be solved exactly using an eigenvalue decomposi-
tion. Now, for i = 1, . . . , l, we solve

maximize xTi Sxi

subject to ‖xi‖22 = 1

xTi xj = 0, j = 1, . . . , i− 1.

(1)

This is the eigenvalue problem, for which very efficient meth-
ods exist. We project the solution back onto the original feasible
set by extending each eigenvector until it hits the surface of the
unit hypercube, and then rounding each element to −1, 0, or 1.
Figure 3 shows a graphical depiction of this process in <2. In
this case, the projected coordinates of the 2 eigenvectors remain
orthogonal. In general, this will not hold for higher dimensions,
though the projected coordinates will be largely uncorrelated
(since they are roughly in the same direction as the eigenvec-
tors). We simply accept these slight correlations as an accept-
able cost that buys us a computationally efficient solution.

If we threshold the spectrotemporal features directly, the
resulting fingerprint will not satisfy one very important charac-
teristic: invariance to volume changes. This is important be-
cause when a person speaks, the same signal will be picked up
by multiple recording nodes, but with varying attenuation levels
depending on the distance to the speaker. To make our finger-
print invariant to volume, we compute deltas on the spectrotem-
poral features. Delta features will have a distribution centered
around 0, so the median thresholds will all be set to 0. The fin-
gerprint bits thus indicate whether each spectrotemporal feature
is increasing or decreasing in time. This information is invariant
to volume level as long as the speakers’ locations are roughly
stationary over short time intervals. Since spectrotemporal fea-
tures for immediately adjacent frames will be highly correlated
and thus yield delta features with very low variance, we com-
pute deltas at a separation of 50 frames (.5 sec). This provides
a reasonable tradeoff between minimizing correlation between
features and ensuring the fingerprint is localized in time.

To recap, our fingerprint design is determined by: (1) de-
termining the covariance matrix S of spectrogram values in
w consecutive frames, (2) computing the top l eigenvectors
x1, . . . , xl, (3) projecting each xi onto {−1, 0, 1}33w to get
x?i , and (4) computing deltas on the features Ax∗i at a sepa-
ration of T frames. In addition to being compact, robust, and
lightweight, the derived fingerprint design will be adapted to the
data, invariant to changes in volume, and efficient to solve.

2.3. Alignment Algorithm

Now we describe the algorithm used to align a set of audio
recordings. There are four steps, each described below.

Step 1: Initialization. The initialization step has 3 com-
ponents. First, we learn the adaptive fingerprint design as de-
scribed above. Second, we compute fingerprints on all the data
and create a reverse index which maps each fingerprint value to
the list of files and offsets at which the fingerprint occurs. Third,
we select one channel to provide a universal time reference. All
other time indices will be computed relative to the beginning of
this “anchor” file.

Step 2: Find the best match. Using the anchor file as a
query, we find the audio recording and time offset that has the
strongest match. We compute a match score for every unaligned
audio recording Ui by accumulating a histogram of offsets ∆t,
where ∆t = offsetquery−offsetUi is the relative offset between
two matching fingerprints. There will be many matching finger-
prints at the true relative offset, so we take the maximum value
of the histogram counts as the match score. This approach is
adopted from [4].

Step 3: Fine alignment. We consider a range of possible
offsets around the best ∆t and compute a more fine-grained
match score for U∗, the unaligned audio recording with the best
(rough) match score. For each possible offset, we determine the
fingerprint bit agreement rate between U∗ and all of the cur-
rently aligned files. These bit comparisons can be computed
very efficiently using bit arithmetic. The offset ∆t∗ with high-
est bit agreement is the final alignment estimate for U∗.

Step 4: Repeat steps 2 and 3. We repeat step 2 using the
most recently aligned file as the query file. For all aligned files,
frame offsets are adjusted to represent the universal time index.
At each stage, we retain the histograms from previous steps and
simply add additional counts. In this way, we accumulate more
and more evidence to help align the weakest matches.

3. Experimental Setup
We ran experiments on data extracted from the ICSI meeting
corpus [22]. The original data set consists of multi-channel au-
dio recordings of 75 research group meetings, totaling approx-
imately 72 hours of meetings. The multi-channel recordings
include close-talking microphones and 6 omnidirectional table-
top microphones of varying quality. Typical meetings are about
an hour long, and the number of simultaneous channels ranged
from 9 to 15. The corpus is a suitable data set because it has di-
versity in both microphone location and microphone character-
istics, as would be the case if participants used their cell phones
as recording devices.

Given a set of meeting recordings, we can generate an align-
ment scenario by extracting a random segment from each chan-
nel. The length of these segments is selected randomly accord-
ing to a [0,600sec] uniform distribution, and we ensure that each
segment overlaps with at least one other segment by 30 seconds
or more. Since the above process is probabilistic, we can gen-
erate multiple alignment scenarios from a single meeting. We
generated 10 query scenarios from each of the 75 meetings, re-
sulting in a total of 750 alignment scenarios and approximately
8500 alignments. We used 37 meetings for debugging and de-
termining appropriate system hyper-parameters (note that we do
not require training, since our method works in an unsupervised
manner), and we used the other 38 meetings for testing. Note
that the queries we generated are probably more difficult and
challenging than a typical use case scenario, since users would



Figure 4: The tradeoff between accuracy and error tolerance for
the alignment system with four different fingerprints.

all tend to record a very substantial chunk of the meeting, with
an occasional user leaving the meeting early or entering very
late. However, generating more difficult query scenarios like
this will enable us to better characterize and test the robustness
of our system.

To evaluate our system, we compare each estimated align-
ment with the true alignment. Let e denote the difference
between the estimated and true alignment (e.g. in figure 1,
eB = ∆Bhyp − ∆Bref ). If |e| > γ, we consider that par-
ticular alignment to be incorrect. By considering a range of γ
values, we can characterize the tradeoff between accuracy and
error tolerance. Our accuracy versus error tolerance curves ag-
gregate the results over all alignment scenarios.

4. Results and Discussion
Figure 4 shows the tradeoff between accuracy and error toler-
ance for the alignment system with 4 different fingerprints:

1. Philips (2 context frames, 32-bit lookup)

2. Adaptive (2 context frames, 32-bit lookup)

3. Adaptive (2 context frames, 16-bit lookup)

4. Adaptive (32 context frames, 16-bit lookup)

We selected these four systems to tease out the effect of differ-
ent factors on the overall performance. The lowest curve shows
the performance of the Philips fingerprint, which serves as a
baseline comparison. The Philips fingerprint was described pre-
viously, and is the most highly cited work in the literature [2].
The gap between the first and second curves shows the benefit of
switching from the Philips design to the adaptive design, when
both are given the same amount of context frames and finger-
print bits. The gap between the second and third curves shows
the benefit of reducing the number of lookup bits in the adaptive
fingerprint. The gap between the third and fourth curves shows
the benefit of increasing the amount of context in the adaptive
fingerprint.

We can see that there is substantial improvement in switch-
ing from the Philips design to the adaptive design, improving

Figure 5: The top 16 learned filters from one alignment scenario
before projection (top) and after projection (bottom).

the accuracy at 100 ms tolerance from 66.5% to 89.3%. There
is also substantial improvement when reducing the number of
fingerprint bits from 32 to 16, boosting the accuracy at 100 ms
tolerance from 89.3% to 97.2%. (For a discussion of the optimal
number of bits, see [23].) There is an additional improvement
to 99.4% when increasing the amount of context from 2 to 32
frames, though at this point the results are nearly saturated, so it
is difficult to determine exactly how much robustness is gained.
With all of these improvements combined, the adaptive finger-
prints improve the accuracy from 66.5% to 99.4%.

Another question of interest is to examine what the learned
filters look like. Figure 5 shows the top 16 learned filters with 32
frames of context for one example alignment scenario. The top
two rows show the filters before projection, and the bottom two
rows show the filters after projection. The filters are arranged
first from left to right, and then from top to bottom.

There are three things to notice about the filters in figure 5.
First, the filters capture modulations in both time and frequency.
Some filters capture modulations in the temporal dimension
(e.g. 2,3,5,12), some in the spectral dimension (e.g. 4,6,13,15),
and others in both dimensions (e.g. 7,8,11,16). The important
thing to notice is that both types of modulations are important.
Thus, only considering 2 frames of context would significantly
hinder the fingerprint’s representational power, since 2 frames
would be insufficient to capture variations in time. Second, low
modulation frequencies seem to be most important. We see a
progression from slow modulations to fast modulations as we
progress to later and later filters. For example, filters 2, 3, 5,
and 12 capture faster and faster modulations in time. Third,
many of the projected filter coefficients are 0. So, in addition to
only requiring additions and subtractions, these filters have the
added benefit of being able to ignore many elements.

5. Conclusion
We have proposed an adaptive audio fingerprint which can be
learned on-the-fly to robustly and efficiently align a set of tem-
porally overlapping meeting recordings. We have also intro-
duced an algorithm for aligning sets of files which uses the
cumulative evidence of previous alignments to help align the
weakest matches. On a set of alignment scenarios extracted
from the ICSI meeting corpus, the proposed method demon-
strates significant improvement over the well-known Philips fin-
gerprint and is able to achieve > 99% alignment accuracy.
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