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Abstract

We study the power of ascending auctions in a scenario in which a seller is selling a collection
of identical items to anonymous unit-demand bidders. We show that even with full knowledge of
the set of bidders’ private valuations for the items, if the bidders are ex-ante identical, no ascending
auction can extract more than a constant times the revenue of the best fixed price scheme.

This problem is equivalent to the problem of coming up with an optimal strategy for blowing
up indistinguishable balloons with known capacities in order to maximize the amount of contained
air. We show that the algorithm which simply inflates all balloons to a fixed volume is close to
optimal in this setting.
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1 Introduction

Ascending price auctions based on a mechanism due to Moulin [?] have been a major building block in
the design of revenue-competitive mechanisms in the computer science literature []. Such mechanisms
are used to design objects called profit extractors, which given a target revenue (often computed using
random sampling) and a set of bidders, try to extract this amount from the bidders in an incentive-
compatible manner.

A natural question (which was the initial motivation for the present work) is whether the Moulin
mechanism at the heart of this paradigm is the best choice; in other words, are there other mechanisms
that can raise considerably higher revenues? We address this question by studying ascending auctions
that treat bidders anonymously. As we will argue in Section 2, these conditions are both reasonable and
necessary. We start by formulating the problem as a balloon popping puzzle. The connection between
this puzzle and ascending auctions as well as other implications of our results for online auction design
will be explained in the next section.

The balloon popping problem. Suppose that n indistinguishable balloons, yet to be blown up, are
laid out on a table in front of you. Your challenge is to blow up the balloons to a maximum total
volume. Before you start, you are told that the capacities of the balloons are 1, 1

2 , 1
3 , . . . , 1

n . Of course,
if you knew which balloon was which, you’d be able to blow each balloon up to its capacity for a total
volume of Hn, the n-th Harmonic number. Unfortunately, you are told that the balloons have been
laid out on the table in a random order, and if you blow up a balloon beyond its capacity, it will pop.
What is the best strategy for blowing up the balloons in order to maximize the total volume? What
total volume is achievable?

To get a feel for the problem, consider the following strategies:

Strategy 1: Blow all the balloons up to 1/k for some k.

Strategy 2: Initialize V to {1, 1/2, . . . , 1/n}, the set of possible balloon capacities still
under consideration. For each balloon successively, blow it up to the maximum value v in
V and, if the balloon pops at volume 1/i, set V = V −{1/i}, otherwise set V = V −{v}.

In Strategy 1, all the balloons of capacity 1/i, 1 ≤ i ≤ k will end up at a volume of 1/k and all other
balloons will pop, since their capacity will be exceeded. Thus, the final total volume of the remaining
balloons will be 1. However, in Strategy 2, you benefit by allowing different balloons to contribute
different amounts to the total volume. In fact, it is not hard to see that the balloon with capacity 1/k
gets filled to capacity precisely if it appears after all the balloons of larger capacity, which happens
with probability 1/k. Thus, the expected final total volume is

∑
1≤k≤n

1
k2 which is π2/6 ≈ 1.64 in

the limit as n goes to infinity.
Unfortunately, Strategy 2 is not optimal either. However, it is not too far off. Our main result is the

following:

Theorem 1 Suppose the capacities of the balloons are v1 ≥ v2 ≥ . . . ≥ vn. No balloon popping
strategy can achieve an expected total volume more than α maxi ivi, where α ≤ 4.331.

2 Motivation

The balloon popping problem is motivated by our desire to understand how much revenue can be raised
by an ascending auctions with anonymous bidders for selling digital goods. Digital goods auctions,
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also known as unlimited supply auctions, have been the subject of extensive research in the computer
science literature []1. Most of the work in this literature has focused on designing mechanisms whose
revenue is competitive with respect to the maximum revenue that can be raised by an omniscient
auctioneer who is restricted to offer the good at the same price to all bidders. However, it is not clear
that this is a reasonable restriction, and whether without this restriction, the auctioneer can achieve a
considerably higher revenue.

One must be careful in formulating this question, as for any set of utilities, it is possible to craft
a mechanism that extracts the full surplus if the agents happen to have the predicted set of utilities.
Therefore, we cannot hope to find a mechanism that achieves the highest revenue among all incentive-
compatible mechanisms for every set of utilities. In the economic literature, this problem is often
overcome by assuming a distribution on the set of utilities, and looking for a mechanism that achieves
the highest expected revenue among all mechanisms for this particular distribution (see, for exam-
ple, [14, 6, 2, 7]). In this paper, we take a different approach: we restrict the set of mechanisms
we are considering by two properties, namely treating bidders anonymously and being an ascending
mechanism (which as we will argue are both reasonable and necessary), and show that on every set
of utilities, a fixed price scheme achieves a revenue that is at least a constant fraction of the revenue
generated by any mechanism satisfying these properties.2

The first property is anonymity. Bidders are anonymous if an auctioneer is unable to distinguish
between them before they start bidding (i.e., each bidder is equally likely to have each value a priori).
Our assumption that bidders are anonymous is natural for many auctions on the Internet, and is mo-
tivated by applications in which it is difficult, prohibitively costly, or legally restricted to verify the
identities of the bidders or discriminate among them based on their identities. Also, note that with-
out the anonymity assumption, for any set of utilities, there is an auction that extracts the full surplus
by charging each bidder her utility. Clearly, a fixed price scheme cannot achieve a revenue within a
constant factor of the full surplus.

We will also restrict our attention to the class of ascending auctions, which are mechanisms in
which the published prices can only rise over time (such as the English auction). Ascending auctions
are particularly interesting and widely studied for several reasons. First, they represent a very intuitive
way to sell items: increase the prices for the overly eager bidders or for the over-demanded items.
Second, there is empirical evidence that they are appealing to bidders and increase the “trust” of the
bidders in the auctioneer because it is easy for the bidders to understand what is happening and why.
In addition, the bidders reveal less information than they do with a truthful mechanism. Finally, they
are widely used in many real-life settings ranging from the FCC spectrum auctions and auctions for
US Treasury Bills to most online auctions like eBay, eBid, and Yahoo! Auctions.

However, in the case of interdependent values, one might imagine that a seller could use the value
dependencies to deduce optimal prices for the buyers, and indeed, Cremer and McLean [7] prove that
there is an auction mechanism that extracts the full buyers’ surplus when values are interdependent for
a range of priors, including some where the buyers are anonymous (i.e., values are drawn according to
a symmetric joint distribution). Cast in this light, our results imply that in the same settings considered

1As noted by other papers on the subject (see, for example, []), multi-unit auctions and auctions with constant marginal
cost of producing an additional unit of supply can be easily reduced to digital goods auctions. Also, even though there is
formal reduction, most of the approaches applied for designing digital goods auctions have been generalized to settings with
budget constraints [?, ?].

2From a mechanism design point of view, the fixed price mechanism can be implemented either directly, if the mechanism
designer has information about the distribution of the utilities, or using competitive auctions of [] which can be implemented
as ascending auctions.
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by Cremer and McLean, ascending auctions can not extract significantly more revenue than the ex-post
optimal uniform pricing, and in particular, there are instances where such mechanisms can only extract
an O(1/ log n) fraction of the total buyers’ surplus.

In contrast to the competitive auction framework, profit maximization problems in the economics
literature are typically approached by assuming that the privately known values vi are drawn according
to a publicly known distribution. When buyers have independent and identically distributed values, a
sequence of work [14, 6, 2] shows that for a general class of cost functions (including the fixed cost
case considered here), the maximum profit is extracted by a uniform price.

However, in the case of interdependent values, one might imagine that a seller could use the value
dependencies to deduce optimal prices for the buyers, and indeed, Cremer and McLean [7] prove that
there is an auction mechanism that extracts the full buyers’ surplus when values are interdependent for
a range of priors, including some where the buyers are anonymous (i.e., values are drawn according to
a symmetric joint distribution). Cast in this light, our results imply that in the same settings considered
by Cremer and McLean, ascending auctions can not extract significantly more revenue than the ex-post
optimal uniform pricing, and in particular, there are instances where such mechanisms can only extract
an O(1/ log n) fraction of the total buyers’ surplus.

Our focus here is on a setting of a monopolistic auctioneer who wishes to sell a set of identical
goods to bidders with unit demand. Each bidder has a privately known value for the good. In an
ascending auction, as in a balloon popping mechanism, the auctioneer maintains at all times a current
price vector whose i’th component represents the current price being offered to the i’th remaining
bidder. (The current price associated with a bidder obviously corresponds to the current volume of a
balloon.) The auctioneer is allowed to arbitrarily raise the prices for any bidder. In doing so, however,
he risks the possibility that a price will be raised above a bidder’s private value for the item, denoted
by vi for the i’th bidder, in which case that bidder will withdraw from the auction. At some point of
the auctioneer’s choosing, he closes the auction and sells to the active bidders at the current prices.

A simple strategy for the auctioneer is to just charge a fixed price to all bidders. The auctioneer
may hope, however, that he will be able to price discriminate – sell identical goods to different buyers
at different prices. With discriminatory pricing, a seller can often achieve a much higher revenue than
that achievable by uniform pricing.

We endow the ascending auctions we study with a great deal of information – the precise set
of bidders’ values vi. It is not hard to imagine that highly accurate distributional information could
be collected via market research. However, because of our anonymity assumption, the bidders are
presumed to have a random permutation of these values. Note however that this only makes our result
stronger; the result still applies for the case when such accurate information is not available.

Our bound on the maximum total volume any balloon popping strategy can achieve can be viewed
as a negative result about the power of ascending auctions with respect to profit maximization. Even
with full knowledge of the set of bidders’ values, no ascending auction can extract a profit more than
that of the best fixed price profit by more than a small constant factor. (Of course, the best fixed price
profit is trivially achievable by an ascending auction when the set of bidder values is known – simply
choose vi such that ivi is maximized and charge all bidders vi.)

There is a fairly vast literature on ascending auctions, focused largely on their power with respect to
the goal of maximizing efficiency. Notably, Blumrosen and Nisan [5] recently undertook a systematic
study of this question (with respect to the goal of maximizing efficiency). The current paper begins
the study of the power of ascending auctions with respect to the goal of profit maximization.

There are a few other perspectives on this result also worth noting.
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2.1 Competitive auction design

In the computer science literature, Goldberg, Hartline, and Wright [10] initiated the study of com-
petitive auction design in which the goal is to guarantee a revenue approximately equal to that of an
omniscient, but constrained, auctioneer. The best-known algorithms for profit maximization in the
competitive auction framework work by reducing the profit maximization problem to the profit extrac-
tion problem [9, 11, 8]. Loosely speaking, the profit extraction problem is to:

Design a truthful auction that, given a target profit R, on each input, extracts a profit of R
whenever “possible”, where “possible” means that some natural profit metric of the input
is at least R.

The most well-known and widely-used profit extractor to date is based on the Moulin mechanism
with equal cost shares. It extracts a revenue of R whenever R ≤ maxp |{vi : vi ≥ p}| · p, and is
implementable by a simple ascending auction. In fact, all known profit extractors in the literature can
be implemented as ascending auctions (though no precise characterization or equivalence is known).
Our result shows that the Moulin mechanism with equal cost shares is essentially the best (up to a
constant factor) possible ascending auction mechanism for profit extraction for selling identical items
to unit-demand bidders, even in the presence of perfect market research.

2.2 Online auction design

Several recent papers [1, 3, 4, 12] have studied the design of revenue maximizing auctions for settings
in which bidders arrive one at a time online, as happens, for example, in the popular online travel
agency, priceline.com. (See [15] for a short introduction). In these models, in between bidder
arrivals the auctioneer computes an offer price for the next bidder using previously submitted bids.
When a new bidder arrives, he is allocated the good if his bid exceeds the current offer price, and pays
the current offer. Such an auction is obviously truthful (the bidder has no incentive to lie about his
value). For such a model, there are auction designs which are guaranteed to achieve a constant fraction
of the optimal fixed price revenue (e.g., [3]).

Perhaps the most interesting aspect of our proof is a reduction of the balloon popping problem to an
online version of the balloon popping problem that corresponds precisely to the model just described.
This reduction shows that precise distributional knowledge cannot improve existing online auction
results, for bidders that arrive in a random order, by more than a small constant factor.

3 Model

We draw an analogy between ascending auctions and algorithms for inflating balloons, called balloon
popping mechanisms. A balloon popping mechanism takes as input a set of identical balloons and their
capacities {vi}. We label the balloons’ capacities in decreasing order, i.e. vi ≥ vi+1 for 1 ≤ i ≤ n.
We assume that the balloons themselves are ordered according to a random permutation π unknown to
the mechanism, so that the capacity of balloon i is vπi .

As the balloons are identical, the mechanism can not distinguish capacities of individual balloons.
Still, we wish to design a mechanism which inflates balloons in a way that maximizes the amount of
contained air. Let s be an n-dimensional vector where the i’th component is either P , indicating that
balloon i has popped, or a nonnegative real number si, indicating that balloon i’s current size is si. We
initialize s to the all 0 vector.
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Definition 2 An offline balloon popping mechanism for capacities {vi} is defined by a function Blow(s),
which outputs either Stop or a pair (i, b), which indicates that b units of air, for some positive number
b, should be blown into balloon i. The vector s gets updated appropriately: if the output of Blow is
Stop, then s is unchanged and the process ends. Otherwise, entry i of s is replaced by P if balloon
i pops (which happens if si + b > vπi) or by si + b otherwise. Let S be the final set of indices such
that si 6= P . The payoff or revenue of the balloon popping mechanism is

∑
i∈S si at the first time the

output is Stop.

Notice that the mechanism as defined is memoryless. It is easy to see, however, that there is no
loss of generality in describing the mechanism this way.

Corresponding to online auctions, we also define online balloon popping mechanisms. These
online mechanisms process balloons sequentially in a fixed order (say, 1, 2, . . . , n) and are granted
the additional knowledge of a balloon’s capacity once they have completed processing that balloon
regardless of whether or not the balloon popped. (This corresponds precisely to an agent submitting
his bid in an online auction.)

Definition 3 An online balloon popping mechanism is defined by a function Blow({vπ1 , . . . , vπi−1})
that outputs a non-negative number b, indicating that b units of air should be blown into balloon i.
If b ≤ vπi , let si = b. Otherwise, let si = 0. The payoff or revenue of the online balloon popping
mechanism is

∑
i si.

Note that with the above definition, it is not a priori clear whether online or the offline balloon
popping mechanisms are stronger, since the online mechanisms are given the additional knowledge of
the values of the balloons that are processed and not popped, while the offline mechanisms are given
the flexibility to get back to an already-inflated balloon and inflate it further.

4 The main result

We now recall the main theorem:

Theorem 4 Suppose the capacities of the balloons are v1 ≥ v2 ≥ . . . ≥ vn. No balloon popping
strategy can achieve an expected total volume more than α maxi ivi, where α ≤ 4.331.

The theorem is proven in three steps. First, we observe that we can upper bound α by assuming
that (v1, . . . , vn) = (1, 1

2 , . . . , 1
n). We call this latter vector of capacities the harmonic capacities.

Then we show that for any capacity vector, the expected maximum volume achievable by an offline
balloon popping mechanism is upper bounded by that of the optimal online balloon popping mecha-
nism. Finally, we obtain an expression for the maximum expected volume that can be achieved by the
optimal online balloon popping mechanism and upper bound that expression using Chernoff bounds
for the harmonic capacities.

We begin with step 1:

Lemma 5 Let v1 ≥ v2 ≥ . . . ≥ vn be a set of balloon capacities. Without loss of generality, assume
that maxi ivi = 1. Then the maximum expected volume achievable by a balloon popping mechanism
on (v1, v2, . . . , vn) is at most the maximum achievable on harmonic capacities.
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Proof. Since maxi(ivi) = 1, we have that vi ≤ 1/i for all i. First observe that there is never any point
in blowing up any balloon to a value which lies strictly in between vj and vj+1 for some j. Consider
any balloon popping mechanism tailored to the set {vi}. Simulate it on the harmonic capacities as
follows: whenever a balloon is blown up to vi, blow up the corresponding balloon in the harmonic
case to 1/i. Since the probability of success on any particular blow is the same, and the volume
obtained is greater for the harmonic capacities, the claim is proved.

4.1 Reduction to online balloon popping

Next, we prove that the revenue of an offline balloon popping mechanism can be bounded by that of
the optimal online balloon popping mechanism.

First, we show that the revenue of the optimal online balloon popping mechanism can be charac-
terized by a simple formula.

Lemma 6 Let T be a random subset of {v1, . . . , vn} and let {y1, y2, . . . , yk} be the order statistics of
the set T (so y1 is the largest element of T , y2 is the second largest element of T and so on). Define
the random variable g(T ) to be

g(T ) =
maxj(jyj)

|T | . (1)

Then the revenue of the optimal online balloon popping mechanism is

n∑

k=1

ET [g(T )]. (2)

where the expectation in the k-th term in the summation is over a random subset T of {v1, . . . , vn} of
size k.

Proof. Let OPT be an optimal balloon popping mechanism. Consider the (n − k + 1)’th step of
OPT , i.e., when there are exactly k balloons remaining. The set of capacities of these balloons is
denoted by T = {y1 ≥ y2 ≥ . . . yk}. Clearly, T is a random k-subset of {v1, . . . , vn}. At this step,
OPT inflates balloon n − k + 1 to the volume yj for some j. Therefore, the probability over the
random permutation π that the this balloon survives is exactly j/|T |, and the contribution to the total
payoff given that it survives is yj . Thus, the expected revenue of OPT at this step is jyj

|T | , which is at
most g(T ). Therefore, by the linearity of expectation, the expected revenue of the optimal mechanism
is at most

∑n
k=1 ET [g(T )], where the expectation is over a random subset T of {v1, . . . , vn} of size k.

On the other hand, it is easy to see that the online mechanism that inflates the (n − k + 1)’th balloon
to the volume yj for a j that maximizes jyj has an expected revenue equal to

∑n
k=1 ET [g(T )].

Now consider the optimal offline balloon popping mechanism. Initially, the set of values of the
balloons is the set {v1, . . . , vn}, and in each step, if a balloon pops, we know its value. Therefore,
at any moment we know the set of values of the remaining balloons. Let x1, x2, . . . denote the set of
remaining values in decreasing order, and S = {x1, x2, . . .}. We can restrict the algorithm to always
inflate the balloons to one of the levels in S. For balloon j, if it is already inflated to level x`j , we
say that `j is the current lower bound for this balloon. (Note the slight abuse of notation here – `j is
actually the index of the element in S whose value is a lower bound on balloon j. Nonetheless, we
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will refer to both `j and x`j
as the lower bounds for balloon j.) Let ` denote the vector (`1, . . . , `|S|)

of current lower bounds, sorted in decreasing order. The set S and the lower bounds summarize all
the information that the algorithm has at this moment. Importantly, each permutation that is consistent
with these lower bounds on the capacities is equally likely.

For example, if S = {1/3, 1/7, 1/10} and there are two balloons (wlog the first two) that have been
inflated to 1/7 and one balloon that has been inflated to 1/10, then the lower bound vector (`1, `2, `3)
is (2, 2, 3). In this case, the permutations (1/3, 1/7, 1/10) or (1/7, 1/3, 1/10) are equally likely.

Any balloon popping algorithm can be broken down into minimal steps in which a balloon with
current lower bound x`k

is blown up to x`k−1. In addition wlog we can maintain the invariant that the
balloons are ordered in order of decreasing lower bounds: on a step in which the optimal algorithm
chooses to blow up a balloon with current lower bound x`k

to x`k−1, we will pick the leftmost balloon
of lower bound x`k

to blow into. Since the distribution of capacities for balloons with the same lower
bound is identical, we lose nothing by doing this. This selection ensures that the balloons remain
sorted in decreasing order of lower bounds.

Let Rev(S, `) denote the maximum expected revenue starting from a position indicated by (S, `).
We also define a function f(S, `) (that we will prove is an upper bound for Rev(S, `)) as follows.

Fix a permutation (xπ1 , xπ2 , . . . , xπ|S|) of the elements of S that is consistent with the lower
bounds ` (i.e., xπi ≥ x`i for all i). Define Sj(π) to be the subset of balloons {j, . . . , |S|} in the
permutation π whose capacity is at least x`j , i.e.,

Sj(π) = {xπi |i ≥ j and xπi ≥ x`j}).
We define

h(π, `) =
|S|∑

j=1

g(Sj(π)).

where g is the function defined in Equation 1. Finally, we let

f(S, `) = Expπ[h(π, `)],

where the expectation is over the random choice of a permutation π from the set of all permutations
of S satisfying xπj ≥ x`j for all j. Intuitively, f(S, `) is the revenue the optimal online mechanism
would get if it had the same information regarding lower bounds as the offline mechanism. We prove
the following theorem.

Theorem 7 For every set S and every non-increasing vector of lower bounds `, we have

Rev(S, `) ≤ f(S, `). (3)

Proof. We prove this statement by induction on
∑

j `j . Consider the first move of the optimal al-
gorithm at (S, `). This move is either to stop and extract the revenue of

∑
j x`j , or to blow up the

k’th balloon to x`k−1, for some k (which either pops this balloon or raises its lower bound from `k to
`k − 1). In the former case, the inequality follows from the fact that for any set T , g(T ) is at least the
minimum value in T , and Sj(π) always contains at least one element of value x`j or more. Thus, in
every permutation π, h(π, `) ≥ ∑

j x`j .
Now, assume that the best move of the optimal algorithm is to blow the k’th balloon to x`k−1

(hence changing its lower bound from `k to `k−1). In this case, the k’th balloon pops with probability
pfail, and survives with probability psuccess. Therefore,

Rev(S, `) ≤ pfailRev(S \ {x`k
}, `∗−k) + psuccessRev(S, `− 1k),
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where 1k denotes a vector with a 1 in the k’th entry and zero everywhere else, and `∗−k denotes the
vector ` with the k’th element removed and other elements adjusted so that if an element j had a lower
bound of x`k

in `, it now has a lower bound of x`k−1 (since x`k
is no longer among the set of remaining

values), and all other elements have the same lower bound. By the induction hypothesis, we have

Rev(S, `) ≤ pfailf(S \ {x`k
}, `∗−k) + psuccessf(S, `− 1k)

= pfailExpπ′ [h(π′, `∗−k)] + psuccessExpπ′ [h(π′, `− 1k)],

where the first expectation is over the set of permutations π′ of S \ {x`k
} that satisfy the lower bounds

in `∗−k, and the second expectation is over permutations π′ of S satisfying the lower bounds in ` −
1k. Equivalently, the random choice of π′ in the first expectation can be done by picking a random
permutation π of S satisfying the lower bounds in ` and satisfying xπk

= x`k
, and letting π′ =

π−k. Similarly, the random choice of π′ in the second expectation can be done by picking a random
permutation π of S satisfying the lower bounds in ` and satisfying xπk

> x`k
, and letting π′ = π. Also,

notice that pfail and psuccess are precisely the probabilities of the events xπk
= x`k

and xπk
> x`k

.
By this observation, the above inequality can be written as follows:

Rev(S, `) ≤ Expπ[h(π′, `′)], (4)

where the expectation is over the random choice of a permutation π of S satisfying the lower bounds
in `, and

(π′, `′) =
{

(π−k, `
∗
−k) if xπk

= x`k

(π, `− 1k) if xπk
> x`k

.

By Equation 4, the definition of f , and linearity of expectation, to prove inequality 3 it will suffice to
show:

Expπ[h(π, `)− h(π′, `′)] ≥ 0. (5)

By the definition of h, for a fixed permutation π, we have

h(π, `)− h(π′, `′) =
{

g(Sk(π)) if xπk
= x`k

g(Sk(π))− g({xπi |i ≥ k and xπi ≥ x`k−1}) if xπk
> x`k

.
(6)

Equation (6) follows from the fact that for any permutation π such that xπk
= x`k

, g(Sj(π)) =
g(Sj(π′)) for any 1 ≤ j < k, and g(Sj(π)) = g(Sj−1(π′)) for any j > k, whereas for any permutation
π such that xπk

> x`k
, g(Sj(π)) = g(Sj(π′)) for any 1 ≤ j < k, and g(Sj(π)) = g(Sj(π′)) for any

j > k.
We now partition the set of permutations π of S satisfying the lower bounds in ` into several

groups as follows: each group corresponds to one permutation π∗ satisfying the lower bounds in `,
with xπ∗k = x`k

. Let Tπ∗ = {xπ∗i |i ≥ k and xπ∗i ≥ x`k
}. For each element xπ∗r of Tπ∗ , we add a

permutation to π∗’s group which is obtained by swapping π∗r and π∗k (note that by the definition of
Tπ∗ , this permutation satisfies the lower bounds `). This specifies the set of all permutations in π∗’s
group.

Observe that each permutation of S satisfying lower bounds ` appears in exactly in one of the
groups defined above. This follows from the assumption that the mechanism keeps the lower bounds
in non-increasing order, and therefore at the moment that the mechanism inflates the k’th balloon to
x`k−1, every balloon before this balloon must have a lower bound of x`k−1 or higher. Therefore, for
every permutation π satisfying the lower bounds `, there is exactly one i ≥ k such that xπi = x`k

.
Swapping πi and πk, we obtain the unique permutation π∗ that has π in its group.
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Therefore, in order to show that the expectation in Equation 5 is non-negative, it is enough to show
that for every group, the expectation taken over permutations in that group satisfying the lower bounds
is non-negative. Consider a group represented by the permutation π∗, and let t = |Tπ∗ |. By Equation 6
and the definition of π∗’s group, the sum of the terms h(π, `) − h(π′, `′) for permutations π in this
group is at most:

g(Tπ∗) + (t− 1)(g(Tπ∗)− g(Tπ∗ \ {x`k
}))

By the definition of g, we have g(Tπ∗ \ {x`k
}) ≤ t

t−1g(Tπ∗). Therefore, the above summation is at
least

g(Tπ∗)
(

1 + (t− 1)(1− t

t− 1
)
)

= 0.

This completes the proof of the induction step.

Corollary 8 The expected payoff of the optimal offline balloon popping mechanism is at most that of
the optimal online balloon popping mechanism.

Proof. Setting S to {v1, . . . , vn} and ` to the vector all of whose entries are equal to n (meaning that
the initial lower bounds on the capacities of all balloons are 1/n), we see the maximum revenue in the
offline balloons problem can be bounded by that of the optimal online balloons algorithm, Equation 2
above.

4.2 Bounding the optimal payoff

Finally, we show a constant upper bound on the expression we obtained in Lemma 6.

Theorem 9 The revenue of the optimal online balloon popping mechanism is at most 4.331.

Proof. We need to bound the expectation of the random variable

g(T ) =
maxj(jyj)

|T |

for a random subset T = {y1, . . . , yk} of the set Hn = {1, 1
2 , . . . , 1

n}, such that y1 ≥ y2 ≥ . . . ≥ yk.
Equivalently, if we let ni denote |{j ∈ T : yj ≥ 1/i}|, we have

g(T ) = max
i

ni

i|T | .

It is immediate that
g(T ) ≤ 2 max

s

n2s

2s|T | .

We wish to show that if T is random k-subset of Hn, then the expected value of |T |g(T ) is close to
k
n log n

k . To handle the max operator above, we shall use the inequality E[max(X,Y )] ≤ E[X]+E[Y ]
repeatedly, to derive:

E[|T |g(T )] ≤ 2(
∑

s≤s∗
E[

n2s

2s
] + E[max

s>s∗
n2s

2s
]).

We shall use this inequality for a suitable s∗.

9



Toward this end, let Br
i be the event that ni/i is at least rk/(n − k). We first bound the prob-

ability of Br
i . Let the set T be drawn at random by picking elements z1, . . . , zk one by one uni-

formly at random from the set of remaining elements, and let Xj be the indicator variable 1(zj ≥ 1
i ).

Clearly for each j, Xj is one with probability at most i
n−k . Thus the random variables X1, . . . , Xk

are stochastically dominated by random variables Y1, . . . , Yk, where each Yi is one with probability
exactly i/(n− k). Thus the random variable X =

∑
j Xj is stochastically dominated by Y =

∑
j Yj .

Note that E[Y ] = ik/(n− k).
Let r > 1 be arbitrary. Then by Chernoff bounds [13], the probability that

∑
Yj ≥ rik/(n − k)

is at most (er−1/rr)(ik/(n−k)). Since Y stochastically dominates X = ni, we have that Pr[Br
i ] <

(er−1/rr)(ik/(n−k)). Next we simply use the union bound:

Pr[∃s > s∗ s.t. Br
2s ] ≤

∑

s>s∗
Pr[Br

2s ]

≤
∑

s>s∗
(er−1/rr)(k/(n−k))2s

We shall choose s∗ to be dlog(n/k)e > log(n−k
k ). For this choice of s∗, the summation becomes∑

j≥1(e
r−1/rr)2

j
. Thus we have

Pr[∃s > s∗ s.t. Br
2s ] ≤ min(1,

∑

j≥1

(er−1/rr)2
j
)

The expected value of maxs>s∗
n2s

2s is thus at most

E[max
s>s∗

n2s

2s
]] ≤

∫

r≥0
(

k

n− k
)Pr[max

s>s∗
n2s

2s
≥ rk/(n− k)]dr

≤ (
k

n− k
)
∫

r≥0
min(1,

∑

j≥1

(er−1/rr)2
j
)dr

≤ (
2.31k

n− k
)

where the last inequality is obtained by numerically estimating the integral.
Also note that for any s, the expected value of n2s

2s is at most k/n. Thus

E[|T |g(T )] ≤ 2(
∑

s≤s∗
E[

n2s

2s
] + E[max

s>s∗
n2s

2s
])

≤ 2(s∗(k/n) +
2.31k
n− k

)

≤ (2k/n)(dlog(n/k)e+ 2.464)

whenever k < n
16 . Moreover, note that for any k, |T |g(T ) ≤ |Hn|g(Hn) = 1.

By Lemma 6, the total expected revenue is thus bounded by

n∑

k=1

ET [g(T )] ≤
n
16∑

k=1

(
2
n

) (dlog(n/k)e+ 2.464) +
n∑

k= n
16

+1

1
k
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≤
n
16∑

k=1

(
2
n

) (dlog(n/k)e+ 2.464) + ln 16

≤ 2.464
8

+

n
16∑

k=1

(
2
n

)dlog(n/k)e+ ln 16

≤ 3.081 +
2
n

dlog( n
16

)e−1∑

j=0

2j+1∑

l=2j

dlog(n/l)e

≤ 3.081 +
2
n

dlog( n
16

)e−1∑

j=0

2j(dlog ne − j)

≤ 3.081 +
2
n

log n∑

t=dlog ne−dlog( n
16

)e
t2(log n−t)

≤ 3.081 + 2
log n∑

t=4

t2−t

≤ 3.081 + 1.25 = 4.331

Hence the claim.

5 Conclusions

In this paper, we have shown that no balloon popping mechanism for blowing up indistinguishable,
randomly permuted balloons with varying capacities can obtain a total expected volume more than
4.331maxi ivi for any capacities. This upper bound is not tight. For the harmonic capacities, we know
that the lower bound of π2/6 that we presented is not tight either—it is easy to raise the expected payoff
beyond π2/6 algorithm by a small constant3 On the other hand, numerical calculations using Lemma 6
and Theorem 7 suggests that the right upper bound is probably not more than 2 (for example, for
n = 1000, sampling 105 random permutations yields a numerical estimate of ≈ 1.89 for the optimal
online revenue). It would be interesting to pin down the precise constant for the harmonic capacities.

Note that by a simple application of the Yao minimax principle, we can conclude that no random-
ized balloon popping mechanism can obtain a total expected volume more than 4.331maxi ivi for any
capacities either (on an adversarially chosen ordering of the bidders).

The balloon popping problem is motivated by our desire to understand the limitations of ascending
auctions in terms of auctioneer profit maximization. It would be very interesting to extend these kinds
of results to more complex ascending auctions, such as ascending combinatorial auctions.

Acknowledgments. We would like to thank Ryan O’Donnell for suggesting the π2/6 algorithm.

3For example, consider the following simple modification to Strategy 2 from the introduction: If, at the time that a balloon
is successfully blown up to volume 1, the balloon of capacity 1/2 has popped but the balloons of capacity 1/3 and 1/4 have not
– call this event A – then blow up successive balloons to a capacity of 1/4 until two balloons have successfully been blown
up to this volume. Then revert back to Strategy 2. If event A does not occur, simply continue with Strategy 2. Conditioned
on event A, the payoff from the two balloons of capacity 1/3 and 1/4 is 1/2. On the other hand, if we continued with Strategy
2, our payoff from these two balloons would be 1/3 + 1/8 < 1/2. Since event A happens with constant probability, this
modification to strategy 2 increases the total payoff by a constant.
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