
Modeling Imperative String Operations with Transducers

Pieter Hooimeijer

University of Virginia

pieter@cs.virginia.edu

David Molnar

Microsoft Research

dmolnar@microsoft.com

Prateek Saxena

UC Berkeley

prateeks@cs.berkeley.edu

Margus Veanes

Microsoft Research

margus@microsoft.com

Abstract

We present a domain-specific imperative language, Bek,
that directly models low-level string manipulation code fea-
turing boolean state, search operations, and substring sub-
stitutions. We show constructively that Bek is reversible
through a semantics-preserving translation to symbolic fi-
nite state transducers, a novel representation for transduc-
ers that annotates transitions with logical formulae. Sym-
bolic finite state transducers give us a new way to marry
the classic theory of finite state transducers with the recent
progress in satisfiability modulo theories (SMT) solvers. We
exhibit an efficient well-founded encoding from symbolic fi-
nite state transducers into the higher-order theory of alge-
braic datatypes. We evaluate the practical utility of Bek as a
constraint language in the domain of web application saniti-
zation code. We demonstrate that our approach can address
real-world queries regarding, for example, the idempotence
and relative strictness of popular sanitization functions.

Categories and Subject Descriptors D.2.4 [Software
Engineering]: Software/Program Verification—Validation;
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking; F.3.1 [Logics and Meanings]: Specifying
and Verifying and Reasoning about Programs—Mechanical
verification

General Terms Algorithms, Languages, Theory, Verifi-
cation

1. Introduction

A large fraction of security vulnerabilities (including SQL in-
jection, cross-site scripting, and buffer overflows) arise due
to errors in string-manipulating code. Developers frequently
use low-level string operations, like concatenation and sub-
stitution, to manipulate data that must follow a particular
high-level structure, like HTML or SQL. This leads to prob-

[Copyright notice will appear here once ’preprint’ option is removed.]

lems if the code fails to adhere to that intended structure,
causing the output to have unintended consequences.

The growing rate of security vulnerabilities, especially in
web applications, has sparked interest in techniques for vul-
nerability discovery in existing applications. A number of
approaches have been proposed to address the problems as-
sociated with string manipulating code. Several static anal-
yses aim to address cross-site scripting or SQL injection
by explicitly modeling sets of values that strings can take
at runtime [5, 16, 22, 23]. These approaches use analysis-
specific models of strings that are based on finite automata
or context-free grammars. More recently, there has been
significant interest in constraint solving tools that model
strings [2, 10, 12, 14, 18, 20, 21]. String constraint solvers
allow any client analysis to express constraints (e.g., path
predicates) that include common string manipulation func-
tions.

Neither existing static approaches nor string constraint
solvers are currently well-equiped to model low-level imper-
ative string manipulation code. In this paper, we aim to ad-
dress this niche. Our approach is based on the insight that
many security-critical string functions can be modeled pre-
cisely using finite state transducers over a symbolic alpha-
bet. We present Bek, a domain-specific language for mod-
eling string transformations. The language is designed to be
(a) sufficiently expressive to model real-world code, and (b)
sufficiently restricted to allow precise analysis using trans-
ducers. Bek can model real-world sanitization functions,
such as those in the .NET System.Web library, without ap-
proximation. We provide a translation from Bek expressions
to the theory of algebraic datatypes, allowing Bek expres-
sions to be used directly when specifying constraints for an
SMT solver, in combination with other theories.

Key to enabling the analysis of Bek expressions is a new
theory of symbolic finite state transducers, an extension of
standard form finite transducers that we introduce formally
in this paper. We develop a theory of symbolic transducers,
showing its integration with other theories in SMT solvers
that support E-matching [6]. We describe a tractable encod-
ing of symbolic finite transducers into the theory of alge-
braic data types and prove its well-foundedness (i.e., given
sufficient resources, any given query yields a finite-length
proof) using model-theoretic insights. We introduce the con-
cept of join composition, which enables us to preserve the
key property of reversibility (i.e, given an output, produce
corresponding inputs) that is crucial for checking sanitizer

1 2010/7/19

correctness. Finally, we present a translation of Bek expres-
sions into symbolic finite transducers.

To evaluate our approach, we show that several pop-
ular sanitization procedures can be ported to Bek with
little effort. Each such port matches the behavior of the
original procedure without any need for conservative over-
approximation. We use a prototype implementation of Bek

that uses the Z3 SMT solver [24] as the back end interpreter.
During our experiments, we were able to generate witnesses
for a previously-known vulnerability. We demonstrate that
the prototype can resolve queries that are of practical in-
terest to both users and developers of sanitization routines,
such as “do two sanitizers exhibit deviant behaviors on cer-
tain inputs,” “do multiple applications of a sanitizer intro-
duce errors,” or “given an possibility of attack output, what
is the maximal set of corresponding inputs that demonstrate
the attack?”

The primary contributions of this paper are:

• We formally describe a domain-specific language, Bek,
for string manipulation. We describe a syntax-driven
translation from Bek expressions to symbolic finite state
transducers.

• We formalize symbolic finite state transducers and their
reduction to the theory of algebraic datatypes, including
the intersection and composition operations.

• We show that Bek can encode real-world string manip-
ulating code used to sanitize untrusted inputs in Web
applications. Within this domain, we demonstrate sev-
eral applications that are of direct practical interest.

The rest of this paper is structured as follows. We provide a
motivating example in Section 2. Sections 3–5 describe our
approach. Section 3 describes Bek in terms of its large step
operational semantics. Section 4 provides language-theoretic
definitions and presents the translation from Bek expres-
sions to transducers. In Section 5, we formalize a theory of
symbolic finite transducers based on the theory of algebraic
datatypes. We present our case studies in Section 6. Finally,
we discuss closely related work in Section 7 and conclude in
Section 8.

2. Motivating Example

We put our work in context using a code fragment from
version 2.6.0 of wu-ftpd, a file transfer server, written in
C, that has a known format string vulnerability. Figure 1
shows a fragment of code for handling SITE EXEC commands
from wu-ftpd. The SITE EXEC portion of the file transfer
protocol allows remote users to execute certain commands
on the local server. The cmd string holds untrusted data
provided by such a remote user; an example benign value
is "/usr/bin/ls -l *.c". This code is an indicative example
of string processing in the wild: it tries to accomplish several
tasks at once, it relies on character-level imperative updates
to manipulate its input, and control flow depends on string
values.

The variable PATH points to a directory containing ex-
ecutable files that remote users are allowed to invoke
(e.g., "/home/ftp/bin"). To prevent the remote user from
invoking other executables via pathname trickery (e.g.,
cmd == "../../../bin/dangerous"), lines 5–15 sanitize the
command string by skipping past all slash-delimited path
elements. However, skipping past all slashes does not have
the desired effect: "/bin/echo ’10/5=2’" should become
"/echo ’10/5=2’" and not "5=2’"; slashes should only be

void site_exec (char *cmd)
{

char buf [MAXPATHLEN], *slash , *t;
/* sanitize the command string */

5char *sp = (char*) strchr (cmd , ’ ’);
if (sp == 0) {

while ((slash = strchr (cmd , ’/’)) != 0)
cmd = slash + 1;

}
10else {

while (sp &&
(slash = (char*) strchr (cmd , ’/’)) &&
(slash < sp))

cmd = slash + 1;
15}

for (t = cmd; *t && !isspace (*t); t++)
if (isupper (*t)) *t = tolower (*t);

/* build the command */
int pathlen = strlen (PATH);

20int cmdlen = strlen (cmd);
if (pathlen + cmdlen +2 > sizeof (buf))

return ;
sprintf (buf , "%s/%s", PATH , cmd);
/* ... execute buf , store results ... */

25fprintf (remote_socket , cmd);
}

Figure 1. Source code using hand-written sanitization and
checks to avoid a buffer overrun (successfully, line 21) and
a format string vulnerability (unsuccessfully, line 25), and
enforce path-related policies (successfully).

removed from the command, not from the arguments. The
strchr invocation on line 5 is used to check if any spaces
are present (line 6). If so, a more complicated version of
the slash-skipping logic is used (lines 10–15) that only ad-
vances cmd past slashes before the first space. Lines 18–
22 build the command that will be executed (e.g., com-
pleting the transformation from "/usr/bin/ls -l *.c" to
"/home/ftp/bin/ls -l *.c") by using sprintf to concatenate
the trusted directory, a slash, and the suffix of the user
command. The check on line 21 prevents a buffer overrun
on the local stack-allocated variable buf by explicitly adding
together the two string lengths, one byte for the slash, and
one byte for C’s null termination, and comparing the result
against the size of buf.

More tellingly, while the code correctly avoids buffers
overruns and implements its path-based security policy, it
is vulnerable to a format string attack. Since the user’s
command is passed as the format string to fprintf (line
25), if it contains sequences such as %d or %s they will
be interpreted by printf’s formatting logic. This typically
results in random output, but careful use of the uncommon
%n directive, which instructs printf to store the number of
characters written so far through an integer pointer on the
stack, can allow an adversary to take control of the system.
An exploit for just such an attack against exactly this code
was made publicly available [4].

3. Modeling Low-Level String Operations

In this section, we give a high-level description of a small im-
perative language, Bek, of low-level string operations. Our
goal is two-fold. First, it should be possible to model Bek

expressions in a way that allows for their analysis using ex-
isting constraint solvers. Second, we want Bek to be suf-
ficiently expressive to closely model real-world code (such
as the wu-ftpd example of Section 2). This section defines

2 2010/7/19

Bool Constants B ∈ {T,F}
Char Constants d ∈ Σ
Int Constants n ∈ N

String Literals const ∈ Σ∗

Bool Variables b, . . .

Char Variables c, . . .
String Variables t

Expressions strexpr ::= iter[cseq in strexpr] (init) {clist}
| (strexpr) from posexpr

| (strexpr) upto posexpr

| strexpr · const | const · strexpr
| t

cseq ::= c | c, cseq

init ::= b := B, init | ε
clist ::= case clist | case
case ::= case(bexpr) {cstmt}

cstmt ::= cstmt cstmt | pass;
| b := boolexpr;
| yield(chexpr);

Positions posexpr ::= pterm

| (pterm) � n � ∈ {+,−}
pterm ::= last const

| first const

Booleans bexpr ::= bexpr ∨ bexpr | bexpr ∧ bexpr

| ¬(bexpr) | chexpr = chexpr
| bexpr = bexpr | B | b

Characters chexpr ::= c | d | $

Figure 2. Concrete syntax for Bek. Well-formed Bek ex-
pressions are functions of type string -> string; the lan-
guage provides basic constructs to filter and transform the
single input string t.

Bek, presents its forward operational semantics, and pro-
vides examples. In the sections that follow, we demonstrate
that Bek can be integrated into existing constraint solvers.

Figure 3 describes the language syntax. We define a single
string variable, t, to represent an input string, and a number
of expressions that can take either t or another expression as
their input. The from and upto constructs represent search
operations that truncate their input starting at (or ending
with) the occurrence of a constant search string. Without
the integer argument, the results of both from and upto
include the matched search constant.

Example 1. The following expression searches for the last
occurrence of foo in its input, returning everything following
the match (if any).

(t) from (last foo)− 1;

If applied to the string foofoo, the output would be
ofoo. If we replaced last with first, the result would also
be ofoo, since there is no earlier occurrence of foo that has
one preceeding character in the string. �

The iter construct is designed to model loops that tra-
verse strings while making imperative updates. Given a
string expression (strexpr), a sequence of character binders
(cseq), and an optional initial boolean state (init), an iter-
block provides a sliding window over its input. For the ith (0-
based) iteration, the character binders c1, . . . , cn are bound
to characters wi through wi+n−1 in the input. If some wj do
not exist (i.e., we have reached the end of the input), then
the corresponding character binder is assigned the special
symbol $. The case statements inside the block can yield
zero or more characters, and update the boolean state (af-
fecting future iterations).

Example 2. The following expression represents a basic
sanitizer that escapes single and double quotes (but only

〈∅, init〉 ⇓ EB t is fresh

〈∅, se〉 ⇓ 〈E′, r′〉 E(2) = EB [t 7→ r′]

〈E(2), iter[c1, . . . in t] () {clist}〉 ⇓ 〈E(3), r〉

〈E, iter[c1 . . . in se] (init) {clist}〉 ⇓ 〈∅, r〉
Itr

E(s) = []

〈E, iter[c1 . . . in s] () {clist}〉 ⇓ 〈∅, []〉

E(s) = w1 :: w′ t is fresh

EC = E[c1 7→ E(s)(1)] . . . 〈EC , clist〉 ⇓ 〈E(2), r〉
〈E(2)[t 7→ w′], iter[c1, . . . in t] () {clist}〉 ⇓ 〈E′, r′〉

〈E, iter[c1, . . . in s] () {clist}〉 ⇓ 〈E′, r · r′〉

〈E, case〉 ⇓ 〈E′, r〉

〈E, case clist〉 ⇓ 〈E′, r〉

〈E, case〉 ⇓ Skip

〈E, clist〉 ⇓ 〈E′, r〉

〈E, case clist〉 ⇓ 〈E′, r〉
Cases

〈E, be〉 ⇓ T

〈E, cst〉 ⇓ 〈E′, r〉

〈E, case(be){cst}〉 ⇓ 〈E′, r〉

〈E, be〉 ⇓ F

〈E, case(be){cst}〉 ⇓ Skip

Figure 3. Selected operational semantics for the iter con-
struct, which provides a sliding window over the value of a
string expression. Boolean state (declared using init in Itr)
is available across iterations, but local to the iter block for
which it is declared. For each iteration, only the body of the
topmost matching case is evaluated (Cases). Case state-
ments may update the boolean state, and yield zero or more
characters (not shown).

if they are not escaped already). An iter block declares
a single-character window (c1) and a single boolean state
variable b1, which is initially false.

iter[c1 in t] (b1 = F) {
case(¬(b1) ∧ (c1 = ′ ∨ c1 = ′′)) {

b1 := F; yield(\); yield(c1);
} case(c1 = \) {

b1 := ¬(b1); yield(c1);
} case(T) {

b1 := F; yield(c1);
}

}

The boolean variable b1 is used to track whether the previous
character seen was an unescaped slash. For example, in the
input \\′′ the double quote is not considered escaped, and
the transformed output is \\\′′. If we apply the expression to
\\\′′ again, the output is the same. An interesting question
is whether this holds for any output string. In other words,
we may be interested in whether a given Bek expression is
idempotent.

If implemented wrongly, double applications of such san-
itization functions has resulted in duplicate escaping which
have opened real systems to command injection of script-
injection attacks in the past. Checking idempotence of cer-
tain functions is practically useful. The transducer transla-
tion presented in Section 4 can be used to prove such prop-
erties about Bek expressions (including idempotence). �

3 2010/7/19

Figure 3 presents the operational semantics for the iter
construct. We define the evaluation relation:

⇓ ⊆ (context× strexpr)× (context× string)

where a context E maps variables to values. The iter judg-
ments update the environment to carry boolean state across
iterations and to update the character binders for each it-
eration. Each iteration consumes the first character w1 of
the current remaining string. The case block conditions are
checked in sequence; the first case to match is executed. If
none of the case conditions match, we assume an implicit
case (not shown) that outputs the empty string and makes
no change to the state. We write E(s)(n) for the nth char-
acter in the value of string variable s. If n ≥ len(E(s)), then
E(s)(n) = $. We define $ to be a special character symbol
that is uncomparable to in-domain characters.

Any well-formed derivation under these inference rules
starts with the base case: 〈E, t〉 ⇓ 〈∅, E(t)〉, where E is
assumed as the initial assignment to t. The out state is
used only by the evaluation rules for iter. We elide the
judgments for the search operations from and upto and the
concatenation-with-a-constant operations; they are defined
directly in terms of their input string, yielding only the
corresponding output string. Note that, in Figure 3, we
ignore any state E′ produced by the evaluation of nested
string expression se (Itr judgment), and we always emit
the empty mapping. In other words, the execution of an
iter block is free of external side-effects. It follows that all
toplevel strexpr judgments are side-effect free.

4. Translation to Finite Transducers

We now turn to the translation of Bek expressions to fi-
nite state transducers. For a given Bek expression P , we
write M [[P]] for the corresponding finite transducer. We
use this construction to show that Bek programs are re-
versible: given a Bek expression P and an output string y,
we can compute the maximal set R = {x | P (x) = y}, and
R is regular for any such computation. The presentation is
structured as follows. In Section 4.1, we provide transducer-
related definitions. Section 4.2 exhibits the high-level trans-
lation from Bek to finite transducers. Finally, in Section 5,
we extend the definitions of Section 4.1 to a formal encod-
ing of symbolic finite transducers. This allows for an imple-
mentation that integrates Bek-program-induced constraints
directly with other constraints.

4.1 Definitions

We work in the context of a fixed multi-sorted universe of
values, where each sort σ is (corresponds to) a sub-universe.
The basic sorts that we need are the Boolean sort bool,
with the values t and f , and the sort bv

n of n-bit-vectors,
for n ≥ 1. We also need the sort tuple〈σ0, . . . , σn−1〉, for
n ≥ 1, of n-tuples of elements of sorts σi for i < n. The
sorts are associated with built-in (predefined) functions and
built-in theories. For example, there is a built-in Boolean
function (predicate) < : bv7 × bv

7 → bool that provides a
strict total order of all 7-bit-vectors that matches with the
standard lexicographic order of ASCII characters. For each
n-tuple sort there is a constructor and a projection function
πi : tuple〈σ0, . . . , σn−1〉 → σi, for i < n, that projects the
i’th element from an n-tuple.

For each sort σ, list〈σ〉 is the list sort with element sort
σ. Lists are algebraic data types. There is an empty list ε :
list〈σ〉 and for all e : σ and l : list〈σ〉, [e | l] : list〈σ〉. The
accessors are hd : list〈σ〉 → σ and tl : list〈σ〉 → list〈σ〉

with their usual meaning. We also adopt the convention that
[a, b, c] stands for the list [a | [b | [c |ε]]] and we write l1 · l2 for
the concatenation of l1 with l2. When convenient, we will
use length-bounded lists in the context of finite sets (such
as the alphabet of an automaton).

Words are represented by lists. Typically, characters have
sort bvn for some fixed n > 0, e.g., if words represent strings
of ASCII characters, in which case constant characters are
written as ‘a’ assuming for example ASCII encoding. In
general however, characters may have compound sorts such
as tuple〈bv7,bv7,bool〉, although finite, e.g., unbounded
lists will not be considered as characters.

We assume basic familiarity with classical automata the-
ory [13]. In this paper we use finite (state) transducers. A
finite transducer is a generalization of a Mealy machine that,
in addition to its input and output symbols, has the special
symbol ε denoting the empty word making it possible to
omit characters in the input and output words. We use the
following formal definition of a finite transducer. The defini-
tion is known as the standard form of a finite transducer [17,
p. 69].

Definition 1. A Finite Transducer A is defined as a six-
tuple (Q, q0, F,Σ,Γ, δ), where Q is a finite set of states,
q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, Σ
is the input alphabet, Γ is the output alphabet, and δ is the
transition function from Q× (Σ ∪ {ε}) to 2Q×(Γ∪{ε}).

We indicate a component of a finite transducer A by using
A as a subscript. Instead of (q, b) ∈ δA(p, a) we often use the

more intuitive notation p
a/b
−→A q, or p

a/b
−→ q when A is clear

from the context. Given words v and w we let v · w be the
concatenated word. Note that v · ε = ε · v = v.

Given qi
ai/bi−→A qi+1 for i < n we write q0

v/w
−→A qn where

v = a0 · a1 · . . . · an−1 and w = b0 · b1 · . . . · bn−1. A induces
the binary relation [[A]] ⊆ Σ∗

A × Γ∗
A as follows for which we

use infix notation

v[[A]]w
def

= ∃q ∈ FA (q0A
v/w
−→ q)

Given two binary relations R1 and R2, we write R1 ◦ R2

for the binary relation {(x, y) | ∃z (R1(x, z) ∧ R2(z, y))}. A
useful composition of finite transducers A and B is the join
composition of A and B, that is a finite transducer A ◦ B
such that [[A ◦B]] = [[A]] ◦ [[B]].

Definition 2. Let A and B be finite transducers. The join
composition of A and B is the finite transducer

A ◦ B
def

= (QA ×QB , (q
0
A, q

0
B), FA × FB ,ΣA,ΓB , δA◦B)

where δA◦B is defined as follows

(p, q)
a/c
−→A◦B (p′, q′)

def

=

∃b (b 6= ε ∧ p
a/b
−→A p′ ∧ q

b/c
−→B q′)

∨(p
a/ε
−→A p′ ∧ c = ε ∧ q = q′)

∨(q
ε/c
−→B q′ ∧ a = ε ∧ p = p′)

The first case (disjunct) in the definition of δA◦B means
that some character b is output in state p of A while input in
the state q of B, thus consuming b in the composed transition
that inputs a and outputs c (note that a or c may be ε). The
second case means that A outputs nothing while inputting
a, thus B stays in the same state. The third case means
that B inputs nothing while outputting c, thus A stays in
the same state. The following property is well-known.

Proposition 1. Let A and B be finite transducers. Then
[[A ◦ B]] = [[A]] ◦ [[B]].

4 2010/7/19

Similarly to parallel composition of finite automata, the
join composition of finite transducers can be done incremen-
tally using depth first search, avoiding the introduction of
states that cannot be reached from the initial state, called
unreachable states. Moreover, all states in a finite transducer
from which no final state can be reached, called dead states,
can be elmininated through backwards reachability. Both
optimizations may significantly decrease the size of the re-
sulting composite transducer while preserving equivalence
in terms of the denoted relation.

4.2 Translating Bek Expressions

The evaluation order for Bek programs is relatively straight-
forward; each string expression depends either on the input
variable t or on another string expression. There are no side
effects, with the exception of the boolean state available in
the iter construct, and that that boolean state is limited in
scope to the iter block in which it is defined. This informs
our approach: we define the translation function M [[·]] re-
cursively, using the composition operator ◦ on transducers to
model nested string expressions. This leads to a singleM [[·]]
for each type of strexpr; we give the high-level definition in
Figure 4.

The Slide function is central to the translations for the
first, upto, and iter constructs. For a given finite sort σ,
Slideσ takes an integer parameter and produces a transducer:

(Q, q0, F, σ, tuple〈σ ∪ {$}, ..., σ ∪ {$}︸ ︷︷ ︸
n

〉, δ)

so that any input of sort σ is split into partially overlapping
n-tuples.

Example 3. We consider a toy example to illustrate how
the Slide operation can be implemented using concrete trans-
ducers. Figure 5 shows the full transducer for Slide{a,b}(2)
(where {a, b} can be modeled using sort bv1). Given an in-
put sequence [abba], transducer output is

[〈a,b〉
〈b, b〉

〈b,a〉
〈a, $〉]

Given a search request (t) from (first b)−1 applied to this
string, we can output the first a when we see the first pair
〈a, b〉. Searches that involve last are handled analogously,
but there we rely on the nondeterminism of the transducer
(i.e., once we see a match we must not see it again). �

Intuitively, we use this conversion to provide look-ahead
for the search operations first and upto, and to provide
the sliding window for iter blocks. For the search opera-
tion translations (e.g., the definition of FF in Figure 4), we
assume implicit special handling of the $ symbol, so that
that symbol never appears in the output of such an opera-
tion. Similarly, we ignore yield statements if the character
value is $. We omit a full algorithmic description of Slide.
In practice, a concrete instantiation of Slide-transducers is
infeasible because the state space grows exponentially with
n; we discuss our symbolic representation in Section 5.

The Iter function converts iter blocks into a correspond-
ing finite transducer. Figure 6 describes a collecting seman-
tics that defines this transducer. We introduce a judgment
of the form:

F, P ` expr : F ′, P ′

which states that, given an initial transducer F and a
possibly-open boolean term P , the given expression expr

M [[t]] = Ident

M [[strexpr · w]] = M [[strexpr]] ◦ (Ident · Const(w))

M [[w · strexpr]] = M [[strexpr]] ◦ (Const(w) · Ident)

M [[(se) from (first w) � n]] = M [[se]] ◦ FF(w, 0 � n)

M [[(se) from (last w) � n]] = M [[se]] ◦ FL(w, 0 � n)

M [[(se) upto (first w) � n]] = M [[se]] ◦ UF(w, 0 � n)

M [[(se) upto (last w) � n]] = M [[se]] ◦ UL(w, 0 � n)

M [[iter[cs in se] (init) {cl}]] = M [[se]] ◦ Iter(cs, init, cl)

Ident = ///.-,()*+�������� {x/x | x∈Σ}ee

Const(w1 :: w′) = ///.-,()*+
w1 ///.-,()*+�������� · Const(w′)

Const([]) = ///.-,()*+��������

FF(w,n) = Slidebv7(x)

◦ ///.-,()*+��������

{v/ε | πy(v)... 6=w}

YY

{v/πz(v) | πy(v)...=w}

**/.-,()*+��������

{v/πz(v)}

YY

such that x =

{

len(w)− n if n ≤ 0

max(len(w), n+ 1) if n > 0

y =

{

−n if n ≤ 0

0 if n > 0
z =

{

0 if n ≤ 0

n if n > 0

Figure 4. The definition of M [[·]], the translation of Bek

expressions to corresponding finite transducers. The func-
tions FL,UF,UL are symmetric with FF. Slide, described in
the text, returns a sliding window representation of its in-
put to accomodate multi-character search and replacement.
The integers x, y, and z represent the width of the window,
the relative position of the “needle” in the window, and the
relative positioning of the desired output, respectively.

yields the updated transducer F ′ and new term P ′. The
Itr judgment relates the collecting semantics to the output
of the function Iter. To construct the transducer, we pro-
ceed as follows. We start with an initial transducer that has
one state for each possible boolean assignment in the Bek

expression (e.g., 24 states if init declares 4 distinct vari-
ables). We assume a mapping from concrete boolean states
b to transducer states qb. The transducer’s start state is the
state qb such that b = Red(init), where Red reduces boolean
Bek expressions to possibly-open propositional terms. We
compose this automaton on the left with a Slide transducer
to produce a sliding window of the appropriate width.

We process the case blocks in syntactic order (Cases).
Recall that the semantics for case blocks require that we
execute the first matching case (exclusively). We write F ∪
G to denote the transducer F extended with the set of

5 2010/7/19

76540123q3

a/aa

��

b/ab ��
ε/a$

��

76540123q1

a/aa 22

b/ab 11 76540123q4

ε/b$

��b/bb

��

a/ba

��

//76540123'&%$!"#qs

a/ε 55

b/ε

��

76540123q5

a/aa

EE

ε/b$

22

b/ab

HH

76540123'&%$!"#q9

76540123q2

a/ba 22

b/bb

33 76540123q6

b/bb

EE
a/ba

]]

ε/a$

99

Figure 5. Finite transducer for Slide{a,b}(2). For a length
n and a finite sort σ, Slideσ(n) transforms its input to an n-
tuple output sort tuple〈σ ∪ {$}, . . . , σ ∪ {$}〉. The outputs
represent a sliding window of the inputs. Note that these
transducers grow very rapidly in the size of σ and n; we
discuss how to avoid concrete instantiation in Section 5. For
clarity, the diagram elides edges from q1 and q2 to q9.

F, P ` case1 : F (2), P (2)

F (2), P (2) ` case2 : F ′, P ′

F, P ` case1 case2 : F ′, P ′ Cases

F ′ = F ∪ {qb1
bc/cc
−→ qb2 | bc = Red(be ∧ ¬P)(b1)

∧ cc = Yields(cst)(bc)
∧ b2 = Symex(cst)(bc)}

P ′ = P ∨ be

F, P ` case(be){cst} : F ′, P ′

F (2) = Slidebv7(len(cs))
◦ (Q, qRed(init), Q,bv

7,bv7, δ)
P ′ = false

F (2), P ′ ` cases : F ′, P
F = UnList(F ′)

` Iter(cs, init, cases) = F
Itr

Figure 6. Collecting semantics for constructing transduc-
ers that model iter blocks. We represent the boolean states
of the Bek expression using transducer states; we write qb
for the states in which boolean expression b is satisfiable.
We write Red(b)(b′) for the partial application of b as an
open propositional term to b. Yields produces a list sort of
character constraints. Symex processes case statements and
converts them to an open propositional term.

transitions G. We use P to hold the disjunction of the case
conditions we have already seen, and for each following case,
we require that that disjunction be false.

We define the edges that must be added in terms of
logical conditions. In particalar, for the current case block,

we add edges qb1
bc/cc
−→ qb2 for each qb1 given the following

constraints:

1. bc defines a feasible character condition. In other words,
there exists at least one character so that, starting at in
boolean state b1, the case condition be is true.

2. cc corresponds to the list of yields in the current case.
Each ci in the character binder is replaced with the ap-
propriate projection πi(v), where v refers to the current
input vector. We write Yield to indicate the extraction of
list constraints from the case body.

3. b2 is the result of executing the boolean assignments in
the current case, given initial boolean state b1 and the
case condition be. We write Symex for the conversion of a
sequence of boolean assignments to an open propositional
term.

Finally, having added the appropriate edges for each case
block, we must convert the output alphabet from Yield’s list
sort back to individual characters. Note that the maximum
length of these lists is bounded by the maximum number of
yield statements per case. The UnList operation is similar
to Slide (e.g., Figure 5). As with Slide, we avoid instantiating
the UnList transducers directly, instead relying on axiomatic
definition in the theorem prover.

The presentation of the Iter function would be signifi-
cantly more complex if we discussed it strictly in terms of
concrete character transitions. In the following section, we
formalize the notion of symbolic finite transducers. This con-
cept yields several direct benefits. First, we can avoid instan-
tiating prohibitively large transducers like those for Slide
and UnList by using specialized axioms instead. Second, the
symbolic encoding allows us to use the logical definition of
Figure 6 directly without much further work.

5. Symbolic Finite Transducers

In this section we develop the theory of symbolic finite trans-
ducers. The theory lends itself to efficient symbolic analysis
using state-of-the-art satisfiability modulo theories (SMT)
solvers, and can be integrated through E-matching [6] with
other theories supported by such solvers.

We first develop a mathematical theory of (symbolic)
finite transducers and prove it to be well-defined for the
class of well-founded finite transducers. The theory relies on
the combination of the theory of algebraic data types [15],
in particular lists, with the theory of uninterpreted function
symbols that builds on the notion of model expansion from
model theory [8].

We then discuss how algorithms can be built on top
of the symbolic representation of finite transducers with
a particular emphasis on symbolic join composition that
is used in the translation of Bek to finite transducers, as
discussed above.

Finally, we map that theory to a background theory of
an SMT solver in terms of universally quantified transducer
axioms. We discuss how such axioms work in general and
how they are implemented using the SMT solver Z3, that is
currently the only SMT solver that provides built-in support
for the given combination of theories.

5.1 Symbolic finite transducer theory

In the following, let A = (Q, q0, F,Σ,Γ, δ) be a fixed finite
transducer. We assume that all input characters have the
same sort sort(Σ) and all output characters have the same

6 2010/7/19

q0 q0 q1
{x/ε | x ∈ Σ}

{x/x | x ∈ Σ} {x/ε | x ∈ Σ}

Figure 7. Finite transducer realizing the prefix operation
of words in Σ∗ where Σ = Γ.

sort sort(Γ). We use the following definitions to combine all
possible input/output pairs of characters between any fixed
pair (p, q) of states in Q. These definitions play an important
role in a symbolic representation of transitions and in the
defintion of the theory of A that is introduced below. Let
δ(p, , ,q)(x, y), δ(p,ε, ,q)(y), δ(p, ,ε,q)(x), δ(p,ε,ε,q) be predicates,
where x : sort(Σ) and y : sort(Γ) are free variables, such
that, where Σ and Γ are viewed as unary predicates:

δ(p, , ,q)(a, b) ⇔ Σ(a) ∧ Γ(b) ∧ p
a/b
−→ q

δ(p, ,ε,q)(a) ⇔ Σ(a) ∧ p
a/ε
−→ q

δ(p,ε, ,q)(b) ⇔ Γ(b) ∧ p
ε/b
−→ q

δ(p,ε,ε,q) ⇔ p
ε/ε
−→ q

Note that the predicates can always be represented as ex-
plicit disjunctions by combining individual characters, but
this would often defeat the purpose of getting a more suc-
cinct and more efficient representation for analysis by using
built-in functions and implicit symbolic representations.

Definition 3. We say that A is symbolic if δ is represented
by predicates of the above form.

Example 4. Consider the finite transducer in Figure 7.
The predicate δ(q0, , ,q0)(x, y) can be defined as x = y. Both
δ(q0, ,ε,q1)(x) and δ(q1, ,ε,q1)(x) can be defined as t. �

We adapt the notion of IDs and step relations from [13]
to finite transducers. An ID is an Instantaneous Description
of a possible state of a finite transducer together with an
input word and output word starting from that state. The
formal definition is as follows.

Definition 4. An ID of A is a triple (v, q, w) where v ∈ Σ∗,
q ∈ Q, and w ∈ Γ∗. The step relation of A is the binary
relation À over IDs induced by δ.

([a |v], p, [b |w]) À (v, q, w) ⇔ δ(p, , ,q)(a, b)

([a |v], p, w) À (v, q, w) ⇔ δ(p, ,ε,q)(a)

(v, p, [b |w]) À (v, q, w) ⇔ δ(p,ε, ,q)(b)

(v, p, w) À (v, q, w) ⇔ δ(p,ε,ε,q)

The following proposition is an immediate consequence
of the definitions.

Proposition 2. v[A]w ⇔ ∃q ∈ F ((v, q0, w) `∗
A (ε, q, ε)).

The overall idea behind the theory Th(A) introduced
next is to precisely characterize [[A]]. The definition is es-
sentially an axiomatic formalization of À.

Definition 5. Let A be as above. For each p ∈ Q, let

Accp : list〈sort(Σ)〉 × list〈sort(Γ)〉 → bool

be a predicate symbol of Th(A) called the acceptor for p.
Th(A) contains the following axiom for each Accp:

Accp(v : list〈sort(Σ)〉, w : list〈sort(Γ)〉) ⇔

(v = ε ∧ w = ε ∧ p ∈ F) ∨∨
q∈Q((v 6= ε ∧ w 6= ε ∧

δ(p, , ,q)(hd(v),hd(w)) ∧Accq(tl(v), tl(w)))

∨(v 6= ε ∧ δ(p, ,ε,q)(hd(v)) ∧Accq(tl(v), w))

∨(w 6= ε ∧ δ(p,ε, ,q)(hd(w)) ∧Accq(v, tl(w)))

∨(δ(p,ε,ε,q) ∧ Accq(v, w)))

The acceptor for A, denoted by AccA, is the acceptor for q
0.

Note that the acceptor axioms above are written in a
very general form and have not been simplifed. Obviously,
false disjuncts can simply be eliminated, e.g., when p /∈ F ,
or when there is no transition from p to q of a certain
kind, as illustrated in the following example. The example
also illustrates another simplification that can be used to
eliminate some reqursive cases.

Example 5. Consider the transducer, say Prefix, in Fig-
ure 7. Assume that both the input and the output alpha-
bets contain all characters of sort sort(Σ) (e.g. bv7). Then
Th(Prefix) contains the following two axioms.

Accq0(v, w) ⇔ (v = ε ∧ w = ε) ∨

(v 6= ε ∧ w 6= ε ∧ hd(v) = hd(w) ∧

Accq0(tl(v), tl(w))) ∨

(v 6= ε ∧ Accq1(tl(v), w))

Accq1(v, w) ⇔ (v = ε ∧ w = ε) ∨

(v 6= ε ∧ Accq1(tl(v), w))

The second axiom is equivalent to Accq1(v, w) ⇔ w = ε. �

The final simplification in Example 5, say sink-simplifica-
tion, can always be applied to acceptor axioms for final
states q when Σ contains all characters of sort(Σ), δ(q, x) =
{(q, ε)} for all x ∈ Σ and δ(q, ε) = ∅, in which case

Accq(v, w) ⇔ w = ε

Thus, any input v : list〈sort(Σ)〉 is accepted, i.e., the input
characters do not have to be individually restricted to Σ
since this is imposed by the sort, while the output must be
the empty word (list). Symmetrical simplification rule can
be applied for output sink states.

We write sat(ϕ) for satisfiablity of formula ϕ (modulo
the built-in theories), i.e., sat(ϕ) means that there exists
a model M that provides an interpretation for all the un-
interpreted function symbols in ϕ such that M |= ϕ. Note
that the uninterpreted function symbols in Th(A) are the
acceptors. Also, given a theory T , we write

∧
T for

∧
ϕ∈T ϕ.

The correctness criterion that we need Th(A) to fulfill is
sat(

∧
Th(A)∧AccA(v, w)) if an only if v[[A]]w. To this end,

we need to consider finite transducers whose step relation is
well-founded.

Theorem 1. If À is well-founded then v[[A]]w if and only
if sat(

∧
Th(A) ∧AccA(v, w)).

Proof. Assume À is well-founded. Thus, since Q is finite,
there exists a well-ordering �Q over Q such that

p �Q q ⇒ ¬((ε, q, ε) `+
A (ε, p, ε)).

7 2010/7/19

Define the lexicographic order � over Σ∗ × Γ∗ ×Q as :

(v, w, q) � (v′, w′, q′)
def

= |v| > |v′| ∨

(|v| = |v′| ∧ |w| > |w′|) ∨

(|v| = |v′| ∧ |w| = |w′| ∧ q �Q q′)

The following statement follows by induction over � using
Definition 5. For all p ∈ Q, v ∈ Σ∗, and w ∈ Γ∗:

∃q ∈ F ((v, p,w) `∗
A (ε, q, ε)) ⇔ sat(

∧
Th(A) ∧Accp(v, w))

Finally, let p = q0 and use Proposition 2.

The following proposition provides a useful condition
over the structure of A that is equivalent to À being well-
founded; the proposition reflects the role of �Q in the proof
of Theorem 1. An ε-loop is a nonemty path of ε-moves

p
ε/ε
−→ q that starts and ends in the same state.

Proposition 3. À is well-founded ⇔ A is ε-loop-free.

The practical significance of the proposition is that there
is an efficient algorithm that given A in symbolic form
constructs an equivalent ε-loop-free finite transducer from A
in symolic form (provided that disjunction over predicates
is supported efficiently).

While full ε-move elimination may cause quadratic in-
crease in the number of symbolic transitions (by eliminating
sharing), ε-loop elimination does not increase the number of
symbolic transitions. For symbolic analysis, full ε-move elim-
ination may reduce the performance considerably, similar to
the case of symbolic finite automata [21].

The following definition provides the key idea behind
the ε-loop elimination algorithm. Recall the definition of
ε-closure, denoted here by ε(q), as the closure of {q}, for
q ∈ Q, by ε-moves [13] (where stated for finite automata, but
is similar for finite transducers). Similarly, define �(q) as the

closure of {q} by ε-moves in reverse. Let q̃
def

= ε(q)∩�(q) (note

that {q} ⊆ q̃) and lift the notion to sets: P̃
def

= {p̃ | p ∈ P}.

Definition 6. Let Ã
def

= (Q̃, q̃0, F̃ ,Σ,Γ, δ̃) where

δ̃(p̃, , ,q̃) def

=
∨

p∈p̃,q∈q̃ δ
(p, , ,q)

δ̃(p̃, ,ε,q̃) def

=
∨

p∈p̃,q∈q̃ δ
(p, ,ε,q)

δ̃(p̃,ε, ,q̃) def

=
∨

p∈p̃,q∈q̃ δ
(p,ε, ,q)

δ̃(p̃,ε,ε,q̃)
def

=
∨

p∈p̃,q∈q̃,p̃ 6=q̃ δ
(p,ε,ε,q)

Note that if A is already ε-loop-free (such as the trans-

ducer in Figure 7) then A and Ã are isomorphic. The al-

gorithm for constructing Ã can be implemented as a graph
algorithm that collapses ε-loops into single nodes and joins
the labels with disjunction. The algorithm is linear in the
number of nodes plus edges (symbolic transitions), which
may be an order of magnitude smaller than the number of
concrete transitions. The actual complexity depends on the
complexity of computing disjunctions (that is, without sim-
plifications, an O(1) operation in most SMT solvers).

The following theorem follows from Definition 6 and by
using techniques similar to the proof of equivalence between
nondeterministic finite automata and nondeterministic finite
automata with epsilon-moves (see [13]).

Theorem 2. Ã is ε-loop-free and [[A]] = [[Ã]].

Theorem 1 fails if we omit the condition that À is well-
founded as shown by the following example.

Example 6. Consider the transducer ee: ε/ε .

Thus, [[ee]] = {(ε, ε)} and Th(ee) is

{Accee(v, w) ⇔ (v = ε ∧ w = ε) ∨Accee(v, w)}.

For example let M be a model such that M |= Accee(v, w)
for all v and w, then M |= Th(ee), but v[[A]]w does not hold
for all v and w. �

The following theorem follows from Theorem 1, Propo-
sition 3, and Theorem 2, and outlines the algorithm in a
nut-shell for creating a soft-theory plug-in for A for an SMT
solver, that in our case is Z3 [7].

Theorem 3. v[[A]]w ⇔ sat(
∧
Th(Ã) ∧AccÃ(v, w))

When asserting Th(Ã) as a soft theory to an SMT solver,
the first assumption is that the solver actually supports lists
as a built-in algebraic data type, which, unlike the acceptors,
cannot be defined through uninterpreted functions, since the
theory of algebraic data types is not first-order definable [15].
Note that the proof of Theorem 1 would fail without this as-
sumption, where � is defined in terms of lengths of words,
which is well-defined since the notion of counting the ele-
ments of a list is well-defined.

5.2 Symbolic finite transducer algorithms

The built-in theory integration of state-of-the-art SMT
solvers can be exploited, to some degree, for directly encod-
ing finite transducer algorithms symbolically. One particular
algorithm that we need is join composition of finite trans-
ducers. The following propostion shows a direct encoding of
join composition.

Proposition 4. Assume sort(ΓA) = sort(ΣB). Then

sat(
∧

Th(Ã)∪Th(B̃)∧∃z (AccÃ(v, z)∧AccB̃(z, w))) if and
only if v[[A ◦ B]]w.

Proof. The folowing statements are equivalent:

1. sat(
∧

Th(Ã) ∪ Th(B̃) ∧ ∃z (AccÃ(v, z) ∧ AccB̃(z, w)))

2. ∃z s.t. sat(
∧

Th(Ã) ∧ AccÃ(v, z)) and sat(
∧

Th(B̃) ∧
AccB̃(z, w))

3. ∃z s.t. v[[A]]z and z[[B]]w.

The equivalence between 1 and 2 holds by disjointness of the
uninterpreted function symbols (acceptors) of the theories.
The equivalenve between 2 and 3 follows from Theorem 3.
Finally, use Proposition 1.

While absence of ε-moves is preserved for example by
parallel composition of finite automata, this is not the case
for join composition of finite transducers.

Example 7. Consider the transducers e : ε/ and

e: /ε that have no ε-moves, and where the input

and output aphabets are, say bool. Then e ◦ e = ee with
ee as in Example 6. It is therefore interesting to note that
Th(e)∪Th(e) is well-defined by Proposition 4. Note that,
with sink-simplification, as explained after Example 5, the
axioms for Th(e) and Th(e) are Acce (, w) ⇔ w = ε and
Acc e(v,) ⇔ v = ε, respectively. �

In general, we can take acceptors for regular [21] and con-
text free [20] languages an combine them with finite trans-
ducer acceptors and use SMT to solve them. For example,

8 2010/7/19

suppose L is a regular language with a theory Th(L) defin-
ing the acceptor AccL such that AccL(v) iff v ∈ L, and A is
a finite transducer then {w | ∃v (AccL(v) ∧ AccA(v, w))} is
the relational image of L under A.

While such direct encodings have certain advantages,
such as generality, they cannot easily cope with unsatisfi-
able solutions when the acceptors are recursive and accept
infinite languages. For example, a symbolic join composition
algorithm that first constructs A◦B may discover that A◦B
is empty, while the direct use of Th(A) ∪ Th(B) does not
terminate. There are many nonobvious algorithmic tradeoffs
that arise with the symbolic algorithms for finite transduc-
ers, similar to the case with finite automata [9], that are a
subject of ongoing research.

5.3 Implementation with SMT solvers

The general idea behind the encoding of Th(A) of a well-
founded finite transucer A as a theory of an SMT solver, is
similar to the encoding of language acceptors [20]. We use
particular kinds of axioms, all of which are equations of the
form

∀x̄(tlhs ⇔ trhs) (1)

where FV (tlhs) = x̄ and FV (trhs) ⊆ x̄. The left-hand-
side tlhs of (1) is called the head of (1) and the right-
hand-side trhs of (1) is called the body of (1) While SMT
solvers support various kinds of patterns in general for
triggering axioms, here we assume that the pattern of an
equational axiom is always its head. The acceptor symbols
are declared to the SMT solver as uninterpreted Boolean
function symbols with the given sorts. In our encoding of
Th(A), each acceptor axiom in Th(A) is represented by two
axioms, one for the case Accp(ε, w) and one for the case
Accp([x |v], w), motivated by our application domain where
proofs are triggered by input words.

Such axioms are asserted as equations that are expanded
during proof search. Expanding the formula up front is prob-
lematic since the equational axioms are in general mutually
recursive and a naive a priori exhaustive expansion would
in most cases not terminate, while straight-forward depth-
bounded expansions are impractical as the size of the ex-
pansion is easily exponential in depth. Well-foundedness of
A guarantees termination of the expansion process during
proof search.

We use some features that are specific to Z3, including the
integrated combination of decision procedures for algebraic
data-types, integer linear arithmetic, bit-vectors and quanti-
fier instantiation. We also make use of incremental features
so that we can manipulate logical contexts while explor-
ing different combinations of constraints. Working within a
context enables incremental use of the solver. A context in-
cludes declarations for a set of symbols, assertions for a set
of formulas, and the status of the last satisfiability check (if
any). There is a current context and a backtrack stack of
previous contexts. Contexts can be saved through pushing
and restored through popping. This feature is used for imple-
menting the satisfiability checks performed during symbolic
join composition of finite transducers.

6. Implementation and Case Study

Our implementation contains roughly 5000 lines of C# code
implementing the basic transducer algorithms and Z3 inte-
gration, and 1000 lines of F# code for translation from Bek.
The work builds, in part, on the earlier Rex project where
basic automata axioms were introduced [21]. Rex provides

a lot of the boilerplate for the current project, in particular
the language acceptors for regular expressions, that are built
directly using the internal .NET parser for regexes.

6.1 Sliding Window Axioms

One of the algorithmic difficulties we encountered, when
dealing with creating transducers from Bek, is related to
maintaining a sliding window of characters (providing a
look-ahead in the input string) or for outputting multiple
characters in an iter block, which in some cases may lead
to an explosion of the transducer state space for general
purpose Bek programs. For example, assuming a look-ahead
of 4 characters in the output string and a relatively small
alphabet size of 20 characters already led to a transducer
with over 200000 states.

A technique that enabled us to scale the approach on
a collection of micro-benchmarks, was to use additional ax-
ioms and combine them with the acceptor axioms. In partic-
ular, when outputting a list of strings (that are represented
as lists of bounded length) we use an axiom for folding such
lists back to lists of singleton characters that are then fed to
another transducer acceptor or an automaton acceptor. For
example, for upper bound 3, the following axiom is used

fold(x:list〈list〈σ〉〉, y:list〈σ〉) ⇔ (x = ε ∧ y = ε) ∨
(x 6= ε ∧ hd(x) 6= ε ∧ tl(hd(x)) = ε ∧
y 6= ε ∧ hd(hd(x)) = hd(y) ∧ fold(tl(x), tl(y))) ∨
hd(x) has exactly 2 characters case ∨
hd(x) has exactly 3 characters case

E.g., fold([[a, b], [c, d, e], [f]], [a, b, c, d, e, f]). Using axioms of
this kind, we connect several acceptors in a chain (avoiding
the state space explosion), as in ϕ:

∃x y z (AccA(x, y) ∧ fold(y, z) ∧AccB(z)),

where A is a transducer generated from a sanitizer, and
B is an acceptor for a regex pattern of disallowed output
strings. Then ϕ is satisfiable iff the sanitizer has a bug,
i.e., when there exists an input x that may produce an
unwanted output. Moreover, the actual model generation
with Z3 yields concrete witnesses for the existential variables
and if no model is found then the sanitizer is correct with
respect to B.

6.2 Macrobenchmarks

We then applied our framework to the analysis of code from
real Web programs. A basic sanitization function in the Web
context is “HTMLEncode,” which takes a string and “es-
capes” characters such as angle brackets. This sanitization
function has been re-implemented multiple times for differ-
ent Web programs and libraries. Do all these implementa-
tions compute the same function? If not, is the set of char-
acters escaped by one a superset of the characters escaped
by another? These questions are important because failing
to escape some characters can directly lead to a cross-site
scripting attack by an adversary who can use the unescaped
character to change a web browser’s behavior.

To answer these questions, we translated five different
implementations of the HTMLEncode function to the Bek

language by hand. Our implementations were from the Sys-
tem.Web DLL version 2.0.0.0, an internal Microsoft product,
and three versions of the AntiXSS library distributed by
Microsoft. We used the free Reflector decompilation tool to
extract C# code from the compiled binary and then trans-
lated the resulting code to Bek. The translation process took

9 2010/7/19

rougly a day of work, the majority of which was spent un-
derstanding the original implementations.

The original sanitizer implementations themselves were
28, 63, 64, 111, and 147 lines of C# code. We discovered
that all five implementations of HTMLEncode could be eas-
ily represented as a simple Bek iteration over single charac-
ters of the input string. Each iteration had 256 cases, one
for each potential character value. We used metaprograms in
Perl to output the C# constructor code needed by our im-
plementation to create parse trees for Bek programs; these
metaprograms ranged from 66 to 126 lines. Our results show
that Bek is expressive enough to handle this crucial Web san-
itizer and that the translation effort does not incur undue
programmer time or overhead. We then focused on charac-
ters common in cross-site scripting attacks designed to foil
sanitization. We can easily check whether such characters
can be legal outputs of a sanitizer simply by transforming its
Bek program to a symbolic finite state transducer, asserting
that the output of the transducer is equal to the character
in question, and then using our framework to solve for an
input that yields the character.

Our framework discovered that the single quote character
is a legal output of the System.Web HTMLEncode imple-
mentation. This is a security bug in the System.Web imple-
mentation, because the single quote character can be used
in some HTML contexts to close string literals and open the
way for a browser to treat subsequent strings as Javascript.
The System.Web implementation, which also happens to
be the most difficult to understand C# implementation of
HTMLEncode, simply fails to transform single quotes under
any circumstances. While this was difficult for us to deter-
mine by visual inspection of the C# code, our framework
was able to solve for an example input exhibiting the prob-
lem in less than a second. We discovered that the problem
was previously known independent of our work [3].

Our framework also showed that there are no strings of
five characters or less that result in single quotes in a le-
gal output from the other four sanitizer implementations.
The “five characters or less” is a restriction we specified on
the search by specifying a recursion depth of five for our
fold axioms. We noticed that these four implementations
of HTMLEncode have the property that they do not drop
characters from the input on any path. Therefore, our frame-
work’s results are sufficient to show that no legal output of
these sanitizers can contain single quotes.

We encountered performance problems, however, when
scaling our framework to check for longer substrings in the
output, such as strings found on the XSS Cheat Sheet web
site. These longer substrings require specifying a deeper re-
cursion depth for our fold axioms, because otherwise the
search will not consider strings long enough to yield the de-
sired substring. Unfortunately, this deeper recursion depth
also yields a larger search space. We were not able to syn-
thesize new inputs exhibiting potential cross-site scripting
attacks for any of our Bek implementations, with a max-
imum of 5 minutes for each invocation of the underlying
constraint solver.

In the case of the sanitizers we considered, it would be
possible to directly encode all five implementations as reg-
ular transducers. This would allow bypassing the need for
special Z3 axioms. Of course, some sanitizers, such as the
wu-ftpd sanitizer we showed in Section 2, can not be cap-
tured this way. Exploring the performance and expressibility
tradeoffs of a larger scale practical study is future work.

7. Related Work

Saner combines dynamic and static analysis to validate
sanitization functions in web applications[1]. Saner creates
finite state transducers for an over-approximation of the
strings accepted by the sanitizer using static analysis of
existing PHP code. In contrast, our work focuses on a
simple language that is expressive enough to capture existing
sanitizers or write new ones by hand, but then compile to
symbolic finite state transducers that precisely capture the
sanitization function. Saner also treats the issue of inputs
that may be tainted by an adversary, which is not in scope
for our work. Our work also focuses on efficient ways to
compose sanitizers and combine the theory of finite state
transducers with SMT solvers, which is not treated by Saner.

Minamide constructs a string analyzer for PHP code,
then uses this string analyzer to obtain context free gram-
mars that are over-approximations of the HTML output by
a server[16]. He shows how these grammars can be used to
find pages with invalid HTML. Our work treats issues of
composition and state explosion for finite state transducers
by leveraging recent progress in SMT solvers, which aids
us in reasoning precisely about the transducers created by
transformation of Bek programs.

Wasserman and Su also perform static analysis of PHP
code to construct a grammar capturing an over-approximation
of string values. Their application is to SQL injection at-
tacks, while our framework allows us to ask questions about
any sanitizer [22]. Follow-on work combines this work with
dynamic test input generation to find attacks on full PHP
web applications [23]. Our focus is specifically on sanitizers
instead of on full applications; we emphasize precision of the
analysis over scaling to large amounts of code.

Christensen et al.’s Java String Analyzer is a static anal-
ysis package for deriving finite automata that characterize
an over-approximation of possible values for string variables
in Java[5]. The focus of their work is on analyzing legacy
Java code and on speed of analysis. In contrast, we focus
on precision of the analysis and on constructing a specific
language to capture sanitizers, as well as on the integration
with SMT solvers.

Our work is complementary to previous efforts in ex-
tending SMT solvers to understand the theory of strings.
HAMPI [14] and Kaluza [19] extend the STP solver to han-
dle equations over strings and equations with multiple vari-
ables. Rex extends the Z3 solver to handle regular expression
constraints [21], while Hooimeijer et al. show how to solve
subset constraints on regular languages [11]. We in contrast
show how to combine any of these solvers with finite au-
tomata whose edges can take symbolic values in the theories
understood by the solver.

8. Conclusions

We have shown that combining SMT solvers with finite state
transducers is a powerful way to reason precisely about the
sanitization functions used for enforcing security guarantees.
We introduced a special purpose language for capturing such
sanitizers and showed that it is expressive enough to model
real implementations of sanitizers. Future work points to a
rich interplay between our style of symbolic finite transduce
translation to logical formulas, improvement in the ability
of SMT solvers to reason about string constraints, and the
expressivity of language required to capture the special cases
of transducers seen in practical sanitization examples.

10 2010/7/19

References

[1] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic,
E. Kirda, C. Kruegel, and G. Vigna. Saner: Composing
static and dynamic analysis to validate sanitization in web
applications. In SP ’08: Proceedings of the 2008 IEEE
Symposium on Security and Privacy, 2008.

[2] N. Bjørner, N. Tillmann, and A. Voronkov. Path feasibility
analysis for string-manipulating programs. In TACAS’09,
volume 5505 of LNCS, pages 307–321. Springer, 2009.

[3] N. Calinoiu. Httputility.htmlattributeencode security and
rendering issues, 2005. Bug ID 103332, Microsoft Connect
Visual Studio Feedback.

[4] CERT. CERT advisory CA-2001-33 multiple vulnerabilities
in WU-FTPD, 2001.

[5] A. S. Christensen, A. Møller, and M. I. Schwartzbach.
Precise Analysis of String Expressions. In SAS, pages 1–18,
2003.

[6] L. de Moura and N. Bjørner. Efficient E-matching for SMT
solvers. In CADE-21: Proceedings of the 21st International
Conference on Automated Deduction, volume 4603 of LNAI,
pages 183–198. Springer, 2007.

[7] L. de Moura and N. Bjørner. Z3: An Efficient SMT Solver.
In TACAS’08, LNCS. Springer, 2008.

[8] W. Hodges. Model theory. Cambridge Univ. Press, 1995.

[9] P. Hooimeijer and M. Veanes. An evaluation of automata
algorithms for string analysis. Technical Report MSR-TR-
2010-90, Microsoft Research, July 2010.

[10] P. Hooimeijer and W. Weimer. A decision procedure for
subset constraints over regular languages. In PLDI, pages
188–198, 2009.

[11] P. Hooimeijer and W. Weimer. A decision procedure for
subset constraints over regular languages. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, pages
188–198, New York, NY, USA, 2009. ACM.

[12] P. Hooimeijer and W. Weimer. Solving string constraints
lazily. In ASE 2010: Proceedings of the 25th IEEE/ACM
International Conference on Automated Software Engineer-
ing, 2010.

[13] J. E. Hopcroft and J. D. Ullman. Introduction to Automata
Theory, Languages, and Computation. Addison Wesley,
1979.

[14] A. Kiezun, V. Ganesh, P. J. Guo, P. Hooimeijer, and M. D.
Ernst. HAMPI: a solver for string constraints. In ISSTA
’09, pages 105–116. ACM, 2009.

[15] A. Mal’cev. The Metamathematics of Algebraic Systems.
North-Holland, 1971.

[16] Y. Minamide. Static approximation of dynamically
generated web pages. In WWW ’05: Proceedings of the
14th International Conference on the World Wide Web,
pages 432–441, 2005.

[17] G. Rozenberg and A. Salomaa, editors. Handbook of Formal
Languages, volume 1. Springer, 1997.

[18] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,
and D. Song. A symbolic execution framework for javascript.
Technical Report UCB/EECS-2010-26, EECS Department,
University of California, Berkeley, Mar 2010.

[19] P. Saxena, D. Akhawe, S. Hanna, S. McCamant, F. Mao,
and D. Song. A symbolic execution framework for javascript.
In IEEE Security and Privacy, 2010.

[20] M. Veanes, N. Bjørner, and L. de Moura. Solving extended
regular constraints symbolically. Technical Report MSR-
TR-2009-177, Microsoft Research, 2009.

[21] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic
Regular Expression Explorer. In ICST’10. IEEE, 2010.

[22] G. Wassermann and Z. Su. Sound and precise analysis of
web applications for injection vulnerabilities. In PLDI’07:
Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation, pages
32–41. ACM, 2007.

[23] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Ina-
mura, and Z. Su. Dynamic test input generation for web
applications. In ISSTA, 2008.

[24] Z3. http://research.microsoft.com/projects/z3.

Appendix: Symbolic Join Composition

We start by providing some supporting definitions. We then
describe the algorithm that, given two symbolic finite trans-
ducers A and B constructs a transducer AB such that
[[AB]] = [[A]] ◦ [[B]]. Finally, we provide a correctness argu-
ment for the algorithm.

Definition 7. An input/output condition with sort σ/γ is
a formula IO(x:σ, y:γ).

Definition 8. Let IO1(x:σ, y:ρ) and IO2(y:ρ, z:γ) be in-
put/output conditions. The join of IO1 with IO2, IO1◦IO2,
is the input/output condition ∃y (IO1 ∧ IO2) with sort σ/γ.

Definition 9. Let C(x:σ) be a predicate and let IO(x:σ, y:γ)
be an input/output conditon. Then C ◦ IO is the predicate
∃x (C(x) ∧ IO(x, y)).

Definition 10. Let C(y:γ) be a predicate and let IO(x:σ, y:γ)
be an input/output conditon. Then IO ◦ C is the predicate
∃y (IO(x, y) ∧ C(y)).

Definition 11. Given an input/output condition IO(x, y)
we let [[IO]] denote the binary relation {(xM , yM) | M |=
IO}. Given a predicate C with a single free variable x we
let [[C]] denote the set (unary relation) {xM |M |= C}.

We assume that sat(ϕ) is a Boolean value that is t iff
ϕ is satisfiable, meaning that there exists a model M that
assigns values to all the uninterpreted function symbols in
ϕ such that M |= ϕ, where each free variable of ϕ is treated
as an uninterpreted constant symbol.

The intuition behind the following definition is that it
symbolically represents δA for a given start state p and a
given end state q, i.e., the transition label associated with a
pair of states (p, q) is the four-tuple:

〈δ(p, , ,q)
A , δ

(p, ,ε,q)
A , δ

(p,ε, ,q)
A , δ

(p,ε,ε,q)
A 〉

Definition 12. A transition label ` with sort σ/γ, is a four-
tuple 〈IO(x:σ, y:γ), I(x:σ), O(y:γ), e〉 of predicates,

• IO(`)
def

= IO is the input/output condition of `;

• I(`)
def

= I is the input condition of `;

• O(`)
def

= O is the output condition of `;

• ε(`)
def

= e, e ∈ {t, f}, is the ε-condition of `;

` is feasible if one of sat(IO), sat(I), sat(O), or e is t.

The following operations are used in the join algorithm.

Definition 13. Let `1 and `2 be transition labels.

`1 = 〈IO1(x, y), I1(x),O1(y), e1〉

`2 = 〈IO2(y, z), I2(y),O2(z), e2〉

Then ` = `1 ◦`2, the join of `1 with `2, is the transition label

〈IO(x, z), I(x),O(z), sat(O1 ∧ I2)〉

11 2010/7/19

where

IO =

{
f , if sat(IO1 ◦ IO2) = f ;
IO1 ◦IO2 , otherwise.

I =

{
f , if sat(IO1 ◦ I2) = f ;
IO1 ◦ I2 , otherwise.

O =

{
f , if sat(O1 ◦ IO2) = f ;
O1 ◦ IO2, otherwise.

Note that the ε-conditions of `1 and `2 do not affect the
definition of `. However, the ε-condition of ` is determined
by whether the output condition of `1 is consistent with the
input condition of `2 or not.

Definition 14. Let `1 and `2 be transition labels

`1 = 〈IO1(x, y), I1(x),O1(y), e1〉

`2 = 〈IO2(x, y), I2(x),O2(y), e2〉

Then ` = `1 + `2, the sum of `1 and `2, is the transition
label 〈IO1 ∨ IO2, I1 ∨ I2, O1 ∨O2, sat(e1 ∨ e2)〉.

Recall that a formula ϕ is existential if ϕ is equivalent
to a formula ∃x̄ψ where ψ is quantifier free. We say that
a transition label ` is existential if all conditions of ` are
existential.

Proposition 5. Sums and joins of labels are existential if
the arguments are existential.

Definition 15. We say that A is clean if all transition lables
in A are feasible.

Proposition 5 is central for efficient implementation of
sat(ϕ) during the construction of join of transition labels
using an SMT solver, in order to maintain cleanness of the
resulting finite transducer of the join algorithm.

Each symbolic transducer A is assumed to be represented

so that ∆A(p) yields the set of all pairs 〈δ(p,q)A , q〉 from the
state p ∈ QA, where

δ
(p,q)
A = 〈δ

(p, , ,q)
A , δ

(p, ,ε,q)
A , δ

(p,ε, ,q)
A , δ

(p,ε,ε,q)
A 〉.

The join algorithm is described as a DFS algorithm. Sym-
bolic transitions of AB are maintained using a dictionary ∆
from QAB×QAB to transition labels. Updating ∆ with k 7→ `
stands for either adding the new entry k 7→ ` to ∆, if k is
not a key in ∆, or updating ∆(k) to ∆(k) + `, otherwise.

Input: The input to the algorithm is a pair of clean finite
transducers A and B such that sort(ΓA) = sort(ΣB).

Output: The output of the algorithm is a clean finite trans-
ducer AB such that [[AB]] = [[A]] ◦ [[B]].

Initialize: Let S = (〈q0A, q
0
B〉) be a stack of AB states.

Let Q = {〈q0A, q
0
B〉} be a set of AB states.

Let ∆ = ∅ be a dictionary from AB states to labels.

s(q)
def

= If q /∈ Q then add q to Q and push q to S;

Explore: While S is nonempty:

Pick a state: Pop p = 〈p1, p2〉 from S.

For each: 〈`1, q1〉 ∈ ∆A(p1) and 〈`2, q2〉 ∈ ∆B(p2):

If feasible(`1 ◦ `2): let q = 〈q1, q2〉; s(q);

Update ∆ with (p, q) 7→ `1 ◦ `2;

If ε(`1) = t or sat(I(`1)): let q = 〈q1, p2〉; s(q);

Update ∆ with (p, q) 7→ 〈f , I(`1), f , ε(`1)〉;

If ε(`2) = t or sat(O(`2)): let q = 〈p1, q2〉; s(q);

Update ∆ with (p, q) 7→ 〈f , f , O(`2), ε(`2)〉;

Finish: Let AB = (Q, 〈q0A, q
0
B〉, Q ∩ FA × FB ,ΣA,ΓB ,∆).

[Cleanup:] Remove dead states from AB . A dead state is
a noninitial state from which no final state is reachable.

The final cleanup step is optional with respect to the in-
tended semantics but may reduce the size of AB consider-
ably. Note that the algorithm does not require A or B to be

ε-loop-free. Also, ÃB construction is need for Th(ÃB). The
ε-loop elimination algorithm uses the sum operation over
labels and does not require satisfiability checking of labels,
since label-sums cannot produce infeasible transition labels
from feasible ones.

Correctness argument Termination of the algoritm fol-
lows from the standard argument of DFS, i.e., in this par-
ticular case, an element is pushed to the stack S only if it
is not in Q, i.e., has not already been in S, and the number
of elements is bounded by the size of QA × QB. Obviously,
termination is contingent upon termination of satisfiability
checking, that is being assumed. The partial correctness of
the algorithm, AB is clean and [[AB]] = [[A]] ◦ [[B]], follows
from the following arguments. First, cleanness is implied by
that in each update of ∆ with (p, q) 7→ `, ` is feasible and fea-
sibility is preserved by sums. Second, S represents a frontier
of reachable states, the algorithm computes the closure Q of
all reachable states. The order of picking elements from S is
irrelevant. Once a state p is chosen, all possible combinations
of outgoing transitions from p are added. When a transition
(p, q) 7→ ` is added, it follows from Definition 2 that ` rep-

resents δ
(p,q)
A◦B , where the additional input-only and output-

only moves correspond to the separate cases in Definition 2.
It follows that [[AB]] = [[A ◦ B]] and thus [[AB]] = [[A]] ◦ [[B]]
by Proposition 1.

12 2010/7/19

