
Design and Implementation of an Extrusion-based Break-In Detector for
Personal Computers

Weidong Cui, Randy H. Katz, Wai-tian Tan
University of California, Berkeley and Hewlett-Packard Laboratories

{wdc,randy}@cs.berkeley.edu, dtan@hpl.hp.com

Abstract

An increasing variety of malware, such as worms, spy-
ware and adware, threatens both personal and business
computing. Remotely controlled bot networks of compro-
mised systems are growing quickly. In this paper, we tackle
the problem of automated detection of break-ins caused by
unknown malware targeting personal computers. We de-
velop a host based system, BINDER (Break-IN DEtectoR),
to detect break-ins by capturing user unintended malicious
outbound connections (referred to as extrusions). To in-
fer user intent, BINDER correlates outbound connections
with user-driven input at the process level under the as-
sumption that user intent is implied by user-driven input.
Thus BINDER can detect a large class of unknown malware
such as worms, spyware and adware without requiring sig-
natures. We have successfully used BINDER to detect real
world spyware on daily used computers and email worms
on a controlled testbed with very small false positives.

1 Introduction

An increasing variety of malware like worms, spyware
and adware threatens both personal and business comput-
ing. Remotely controlled bot networks of compromised
systems are growing quickly [28]. Many research ef-
forts [16, 21, 30] and commercial products [25, 37] prevent
break-ins by filtering either known malware or unknown
malware exploiting known vulnerabilities. To protect com-
puter systems from rapidly evolving malware, these solu-
tions have two requirements. First, a central entity must
rapidly generate signatures of new malware after it is de-
tected. Second, distributed computer systems must down-
load and apply these signatures to their local databases be-
fore they are attacked. However, these can leave com-
puter systems temporarily unprotected from newly emerg-
ing malware. In particular, worms can propagate much
more rapidly than humans can respond in terms of gener-
ation and distribution of signatures [22]. In this paper, we

take a different approach, focusing on fast automated mech-
anisms for detecting break-ins of new unknown malware af-
ter a break-in occurs, as a way of mitigating damage. As a
complement to existing prevention schemes, our approach
decreases the danger of information leak and protects com-
puters and networks from more severe damage.

A large class of malware makes malicious outbound net-
work connections either for self-propagation (worms) or to
disclose user information (spyware/adware). Our key ob-
servation is that outbound network connections from a com-
promised personal computer (used locally by a single user
at any time) can be classified into three categories: user in-
tended, user unintended benign, user unintended malicious
(referred to as extrusions. Extrusion is also defined as unau-
thorized transfer of digital assets in some other context.) In
this paper, we present the architecture, design, and evalu-
ation of BINDER (Break-IN DEtectoR), a host-based sys-
tem that detects break-ins of new unknown malware on per-
sonal computers by capturing their extrusions. The concept
of BINDER was presented in a prior short publication [2].
Here we elaborate on the concept, and focus on its imple-
mentation and evaluation. To the best of our knowledge,
BINDER is the first system to take advantage of user intent
for host-based intrusion detection.

Under the assumption that user intent is implied by user-
driven input. BINDER can infer user intent by correlating
outbound network connections (initiated by the local per-
sonal computer) with user-driven input (key strokes and
mouse clicks) at the process level. (We do not consider
inbound connections (initiated by a remote computer) be-
cause most of them are malicious, and firewalls are designed
to block such traffic.) Our key assumption is that outbound
network connections made by a process that receives user
input a short time ago is user intended. BINDER also treats
repeated connections as user intended as long as the first one
was user intended. By doing this, BINDER can handle the
case of automatic refreshing web pages and polling emails.
Among user unintended outbound connections, BINDER
uses a small whitelist to differentiate benign traffic from
malicious traffic. These benign outbound connections in-

clude system administration and checking software or secu-
rity updates. Our Windows prototype of BINDER has 15
whitelist rules. Thus BINDER can detect a large class of
malware such as worms, spyware and adware that (1) run
as background processes, (2) do not receive any user-driven
input, (3) and make outbound network connections.

By testing a Windows prototype both on multiple user
systems and in a testbed environment, we demonstrated that
BINDER is both effective and non-disruptive, successfully
detecting malware without significant false alarms. We ad-
mit that, due to limitations of today’s operating systems,
there are several ways for adversaries to evade BINDER.
These include actively subverting BINDER, hiding inside
other processes, faking user input, etc.

The remainder of this paper is organized as follows.
In Section 2, we compare BINDER with previous work
and highlight its contributions. We present the details of
BINDER’s extrusion detection algorithm in Section 3 and
describe its architecture and implementation in Section 4.
In Section 5, we demonstrate our evaluation methodology
and experimental results. We discuss BINDER’s limitations
and possible solutions in Section 6 and conclude the paper
in Section 7.

2 Related Work

Many research efforts [16, 21, 30] and commercial prod-
ucts [25, 37] have focused on preventing break-ins by filter-
ing known exploits or unknown ones exploiting known vul-
nerabilities. Complementary to these solutions, BINDER
can detect break-ins of unknown new malware before their
signatures are widely distributed.

In addition to signature-based filtering of inbound con-
nections, ZoneAlarm’s Program Control provides a control
over which program is allowed to start outbound connec-
tions. It requires users to construct a complete list of le-
gitimate network programs, which is beyond the capability
of an average user. Compared with ZoneAlarm, BINDER
controls outbound connections based on user intent. This
gives BINDER two advantages. First, BINDER can de-
tect compromised programs (like web browser programs)
that otherwise are allowed to make outbound connections
by ZoneAlarm because they are on its whitelist. Second,
BINDER has a much smaller whitelist, which makes it pos-
sible to automate the management of whitelist.

Anomaly-based intrusion detection [5, 10, 36] have been
studied for detecting unknown malware. The performance
of anomaly-based approaches is very limited in practice
due to its high false positive rate. BINDER leverages the
unique characteristic of personal computers—user intent—
to achieve minimal false alarms.

In the past few years, computer worms and spyware [20]
have been a menace to both personal computing [27] and

large networks [15]. Fast worm detection and contain-
ment becomes critical since worms can propagate much
more rapidly than human response [22]. Most research ef-
forts [7, 32, 33] have focused on random scanning worms.
Instead of targeting at one type of malware, BINDER is
simple and works across many kinds of malware such as
worms, spyware and adware on personal computers.

There have been research efforts on profiling user be-
havior for detecting masquerade attacks and the insider
threat [4, 11]. Instead of attempting to model user behavior,
BINDER leverages a simple assumption that user intent is
implied by user input, and outbound network connections
made by a process that receives user input a short time ago
is user intended. This enables BINDER to detect a large
class of malware and achieve minimal false alarms.

3 Algorithm Design

3.1 Overview

Our goal is to automatically detect break-ins of new un-
known malware on personal computers. BINDER’s design
should achieve:

• Minimal false positives: This is critical for any auto-
matic intrusion detection system.

• Generality: BINDER should work for a large class of
malware without the need for signatures, and regard-
less of how the malware infects the system.

• Small overhead: BINDER must not use intrusive
probing and adversely affect the performance of the
host computer.

Our key observation is that outbound network connec-
tions from a compromised personal computer can be clas-
sified into three categories: user intended, user unintended
benign, and user unintended malicious (referred to as extru-
sions). BINDER detects certain kinds of malware by cap-
turing their extrusions. (We will use connections and out-
bound connections interchangeably unless otherwise speci-
fied.)

In BINDER, we assume that user intent is implied by
user-driven activities and malware runs as standalone pro-
cesses. For those that hide under other processes by ex-
ploiting techniques proposed in [17], the current BINDER
prototype is unable to detect them. We look at this as one
of the limitations of today’s operating systems. We will dis-
cuss more detailed attacks, countermeasures and potential
solutions in Section 6.

In the rest of this section, we first demonstrate how user
intended connections may be initiated. Then, we describe
the extrusion detection algorithm. Finally, we discuss how
malware can be detected by this algorithm.

3.2 Inferring User Intent

To study how user intended connections may be initi-
ated, we consider three kinds of events: user events (user
input), process events (process start and process finish), and
network events (connection request, data arrival and domain
name lookup). It is natural for a user input or data arrival
event to trigger a new connection in the same process. For
example, one clicks a link in IE, then IE will make new con-
nections to download the requested web page. It is also nor-
mal to repeat a recent connection in the same process. For
example, email clients repeatedly pull emails from the same
email server. However, we also need to correlate events
between different processes. For example, when a newly
launched IE process makes outbound connections to down-
load the default home page, it is its parent process—usually
the shell process explorer.exe—that received the user in-
put. In general, a user intended connection must be trig-
gered by one of the rules below

• Intra-process rule: A connection of a process may be
triggered by a user input, data arrival or connection
request event of the same process.

• Inter-process rule: A connection of a process may be
triggered by a user input or data arrival event of another
process.

To verify if a connection is triggered by the intra-process
rule, we just need to monitor all user and network activi-
ties of each single process. However, we need to monitor
all possible communications among processes to verify if
a connection is triggered by the inter-process rule. In our
current design, we only consider communications from a
parent process to its child process and use the following
parent-process rule to approximate the inter-process rule.
In the future we plan to extend BINDER’s design to con-
sider more possible communications among processes.

• Parent-process rule: A connection of a process may be
triggered by a user input or data arrival event received
by its parent process before it is created.

3.3 Extrusion Detection Algorithm

The extrusion detection algorithm needs to decide if a
connection is user intended and if it is in the whitelist. The
whitelist covers three kinds of programs: system daemons,
applications automatically checking updates, and network
applications automatically started by the operating system.
Actual rules are specific to each operating system and may
become user specific. We discuss the whitelist for our Win-
dows prototype in Section 4. The main idea is to limit the
delay from a triggering event to a connection request event.

Note that, for data arrival events, we only consider those of
user intended connections. There are three possible delays
for a connection request made by process P.

• Dnew: The delay since the last user input or data ar-
rival event received by the parent process of P before
P is created.

• Dold: The delay since the last user input or data arrival
event received by P .

• Dprev: The delay since the last connection request to
the same host or IP address made by P .

Dold is the reaction time of a process and Dnew includes
the loading time of a process as well. For user intended con-
nections, Dold and Dnew are of the order of seconds while
Dprev is of the order of minutes. BINDER declares a con-
nection to be an extrusion unless at least one of Dold, Dnew

and Dprev is within their respective thresholds of D
upper
new ,

D
upper

old and D
upper
prev . In Section 5.2 we will discuss how to

choose these thresholds.
In the design of the extrusion detection algorithm, we

assume that BINDER can learn rules from previous false
alarms. Each rule includes an application name (the image
file name of a process) and a remote host name. The exis-
tence of a rule means that any connection to the host made
by a process of that application is not considered to be an
extrusion.

Given a connection request, the detection algorithm
works as follows:

• If it is in the rule set of previous false alarms, then quit;

• If it is in the whitelist, then quit;

• If Dprev exists and is less than D
upper
prev , then quit;

• If Dnew exists and is less than D
upper
new , then quit;

• If Dold exists and is less than D
upper

old , then quit;

• Otherwise, it is an extrusion.

After detecting an extrusion, BINDER can either drop
the connection or raise an alarm with related information
such as the process ID, the image file name, and the con-
nection information. Studying the tradeoff between differ-
ent reactions is beyond the scope of this paper.

3.4 Detecting Break-Ins

In this section, we discuss BINDER’s capability of de-
tecting break-ins of worms, spyware and adware because
they generate malicious connections. Unlike worms, spy-
ware and adware cannot propagate themselves and thus re-
quire user input to infect a computer system. Worms can be

classified as self-activated like Blaster [27] or user-activated
like email worms. The latter also requires user input to in-
fect a personal computer.

When the malware runs without user input, BINDER
easily captures its first outbound connection as an extrusion.
This is because the malware runs as background processes
and does not receive any user input. So Dold, Dnew and
Dprev of the connection do not exist.

When the malware receives user input for its break-in,
its connections shortly after the break-in may be masked
by user activity. Thus BINDER may not be able to cap-
ture these initial extrusions. However, BINDER can detect
the break-in later by observing the first non-user triggered
connection. Also, BINDER clears user input history after
a compromised personal computer is restarted. So even
for the malware that received user input for its break-in,
BINDER is guaranteed to capture its first connection as an
extrusion after the victim system is restarted.

4 System Implementation

4.1 BINDER Architecture

To capture extrusions, BINDER correlates information
across three sources: user-driven input, processes, and net-
work traffic. There are four components in BINDER: User
Monitor, Process Monitor, Network Monitor, and Extrusion
Detector. The first three components independently collect
information from the operating system (OS) passively in
real time and report user, process, and network events to
the Extrusion Detector. APIs for real-time monitoring are
specific to each operating system. We describe the imple-
mentation on Windows operating system in the second part
of this section. In the following, we explain the functional-
ity and interface of these components that are general to all
operating systems.

The User Monitor is responsible for monitoring user in-
put and reporting user events to Extrusion Detector. It re-
ports a user input event when a user clicks the mouse or hits
a key. A user input event has two components: the time
when it happens and the ID of the process that receives this
user input. This mapping between a user input and a process
is provided by the operating system. So the User Monitor
does not rely on the Process Monitor for process informa-
tion. Since a user input event has only the time information
and the Extrusion Detector only stores the last user input
event, BINDER avoids leaking user privacy information.

When a process is created or stopped, the Process Moni-
tor correspondingly reports to Extrusion Detector two types
of process events: process start and process finish. A pro-
cess start event includes the time, the ID of the process it-
self, its image file name, and the ID of the parent process.
A process finish event has only the time and the process ID.

The Network Monitor audits network traffic and reports
network events. For the interest of detecting extrusions, it
reports three types of network events: connection request,
data arrival and domain name lookup. For connection re-
quest events, the Network Monitor checks TCP SYN pack-
ets and UDP packets. A data arrival event is reported when
an inbound TCP or UDP packet with non-empty payload
is received from a normal outbound connections. Note that
the direction of a connection is determined by the direction
of the first TCP SYN or UDP packet of this connection. The
Network Monitor also parses DNS lookup packets. It asso-
ciates a successful DNS lookup with a following connection
request to the same remote IP address as returned in the
lookup. This is important because DNS lookup may take
significant time between a user input and the corresponding
connection request. By analyzing 2644 DNS lookup times
on one of the computers in our real world experiments (see
Section 5), we observed that about 8% DNS lookups take
more than 2 seconds. A connection request event has five
components: the time, the process ID, the local transport
port number, the remote IP address and the remote trans-
port port number. Note that the time is the starting time of
its DNS lookup if it has any or the connection itself. The
mapping between network traffic and processes is provided
by the operating system. A data arrival event has the same
components as a connection request event except that its
time is the time when the data packet is received. A do-
main name lookup event has the time, the domain name for
lookup, and a list of IP addresses mapping to it.

Except for domain name lookup results that are shared
among all processes, the Extrusion Detector organizes
events based on processes and maintains a data record for
each process. A process data record has the following mem-
bers: the process ID, the image file name, the parent process
ID, the time of the last user input event, the time of the last
data arrival event, and all the previous normal connections.
When a process start event is received, a process data record
is created with the process ID, the image file name and the
parent process ID. The time of the last user input event is
updated when a user input event of the process is reported.
Similarly, the time of the last data arrival is updated when
a data arrival event is received. A process data record is
closed when its corresponding process finish event is re-
ceived. All process records are cleared when the system is
shutdown. The size of the event database is small because
the number of simultaneous processes on a personal com-
puter is usually less than 100. Based on all the information
of user, process and network events, the Extrusion Detector
implements the extrusion detection algorithm.

4.2 Windows Implementation

We implement a prototype of BINDER for Windows
2000/XP. This is because computers running Windows op-
erating systems are the largest group attacked by most
malware [28]. Given current Windows systems’ limita-
tions [17], our Windows prototype does not provide a bul-
letproof solution for break-in detection although it does
demonstrate effectiveness of this technique on detecting
a large class of existing malware. Though this proto-
type is implemented in the application space, we assume
a BINDER system runs in the kernel space if it is adopted
in practice.

The User Monitor is implemented with Windows Hooks
API [13]. It uses three hook procedures, KeyboardProc,
MouseProc and CBTProc. KeyboardProc is used to cap-
ture keyboard events while MouseProc is used to capture
mouse events. MouseProc can provide the information
of which window will receive a mouse event. Since Key-
boardProc cannot provide the same information for a key-
board event, we use CBTProc to capture events when a
window is about to receive the keyboard focus. After deter-
mining which window will receive a user input event, the
User Monitor uses procedure GetWindowThreadProces-
sId to get the process ID of the window.

The Process Monitor is implemented based on the
built-in Security Auditing on Windows 2000/XP [14].
By turning on the local security policy of auditing
process tracking (Computer Configuration/Windows
Settings/Security Settings/Local Policies/Audit Pol-
icy/Audit process tracking), the Windows operating sys-
tem can audit detailed tracking information for process start
and finish events. The Process Monitor uses psloglist [18]
to parse the security event log and generates process start
and process finish events.

The Network Monitor is implemented based on TDIMon
[19] and WinDump [34] which requires WinPcap [35].
TDIMon monitors activity at the Transport Driver Interface
(TDI) level of networking operations in the operating sys-
tem kernel. It can capture all network events associated
with process information. Since TDIMon does not capture
complete DNS packets, The Network Monitor uses Win-
Dump for this purpose. Based on the information collected
by TDIMon and DNS packets captured by WinDump, the
Network Monitor reports network events to the Extrusion
Detector.

It is straightforward to implement the extrusion detec-
tion algorithm based on the information stored in the pro-
cess data record in the Extrusion Detector. Here we fo-
cus on the whitelisting mechanism in our Windows imple-
mentation. The whitelist in our current implementation has
15 rules. These rules cover three kinds of programs: sys-
tem daemons, software updates and network applications

automatically started by Windows. A rule for system dae-
mons has only a program name. Processes of the program
are allowed to make connections at any time. In our cur-
rent implementation, we have five system daemons includ-
ing System, spoolsv.exe, svchost.exe, services.exe and
lsass.exe. A rule for software updates has both a pro-
gram name and an update web site. Processes of the pro-
gram are allowed to connect to the update web site at any
time. In this category, we now have six rules that covers
Symantec, Sygate, ZoneAlarm, Real Player, Microsoft Of-
fice, and Mozilla. For network applications automatically
started by Windows when it starts, we currently have four
rules for messenger programs of MSN, Yahoo!, AOL, and
ICQ. These programs are allowed to make connections at
any time. In the future, we need to include a special rule
regarding wireless network status change. For example, an
email client on a laptop computer may start sending pre-
written emails right after the laptop is connected to the wire-
less network in a hot spot.

Managing the whitelist for an average user is very im-
portant. Rules for system daemons usually do not change
until the operating systems are upgraded. Since the num-
ber of softwares that require regular updates is small and do
not change very often, the rules for software updates can be
updated by some central entity adopting BINDER. Though
rules in the last category have to be configured individually
for each system, we believe some central entity can provide
help by maintaining a list of applications that fall into this
category. A mechanism similar to PeerPressure [31] may be
used to help an average user configure her own whitelist.

5 System Evaluation

We evaluated BINDER on false positives and false nega-
tives in two environments. First, we installed it on six Win-
dows computers used by different volunteers for their daily
work, and collected traces over five weeks since Septem-
ber 7th, 2004. Second, in a controlled testbed based on the
Click modular router [8] and VMWare Workstation [29],
we tested BINDER with the worm Blaster and 22 different
email worms collected on a departmental email server over
one week since October 7th, 2004.

5.1 Methodology

The most important design objective of BINDER is
to minimize false alarms while maximizing detected ex-
trusions. In our experiments, we used the number of
false alarms rather than the false positive rate to evaluate
BINDER. This is because users who respond to alarms are
more sensitive to the absolute number than a relative rate.
When BINDER detects extrusions, it is based on connec-
tions. However, when we count the number of false alarms,

Table 1. Summary of Collected Traces
User Machine OS Days User Events Process Events Network Apps TCP Conns

A Desktop WinXP 27 35270 5048 33 33480
B Desktop WinXP 26 80497 12502 35 15450
C Desktop WinXP 23 24781 7487 55 36077
D Laptop Win2K 23 99928 8345 28 9784
E Laptop WinXP 13 8630 2448 21 10210
F Laptop WinXP 12 20490 5402 20 7592

we do not use the number of misclassified normal connec-
tions directly. This is because a false alarm covers a series
of consecutive connection requests. Therefore, for misclas-
sified normal connections, we split them into groups and
count each group as one false alarm. When we evaluate
BINDER on false negatives, we check if and how fast it
can detect a break-in. The real world experiments are used
to evaluate BINDER for both false positives and false neg-
atives, while the experiments in the controlled testbed are
only for false negatives.

To evaluate BINDER with different values for the three
parameters D

upper

old , D
upper
new and D

upper
prev , we used offline,

trace-based analysis in all experiments.

5.2 Real World Experiments

To evaluate the performance of BINDER in a real world
environment, we installed it on six Windows computers
used by different volunteers for their daily work, and col-
lected traces over five weeks. We collected traces of user
input, process information, and network traffic from the six
computers. A summary of the collected traces is shown in
Table 1. On one hand, these computers were used for daily
work, so the traces are real-world. On the other hand, our
experimental population is small because it is difficult to
convince users to submit their working environment to ex-
perimental software. However, from the summary of the
collected traces in Table 1, we see that they have good di-
versity with respect to hardware, operating system, and user
behavior. For real world experiments, we discuss parameter
selection and then analyze the performance of our approach
on false positives and false negatives.

5.2.1 Parameter Selection

In this section, we discuss how to choose values for the
three parameters D

upper

old , D
upper
new and D

upper
prev . The goal

of parameter selection is to make the tightest possible up-
per bounds under the condition that the number of false
alarms is acceptable. We assume the rules of whitelisting
described in Section 4.2 are fixed. The performance met-
ric is the number of false alarms. Based on the real-world
traces, we calculate Dold, Dnew and Dprev for all connec-
tion request events for every user. Then we take the 90th,

95th and 99th percentile for all three parameters and cal-
culate the number of false alarms for each percentile. The
results are shown in Table 2.

From Table 2 we can see that D
upper

old , D
upper
new and

D
upper
prev must be different for different users because they

are dependent on computer speed and user pattern. Thus,
they should be selected on a per-user base. We can also
see that the performance of taking the 90th percentile is
not acceptable and the improvement from taking the 95th
percentile to the 99th percentile is small. Therefore, the pa-
rameters can be selected by choosing some value in the 95th
percentile according to user’s preference. For conservative
users, we should choose smaller values. The percentiles can
be obtained by training BINDER over a period of virus-free
time. Without training, these parameters can also be chosen
based on user’s preference. D

upper

old and D
upper
new can take

values between 10 and 60 seconds, while D
upper
prev can take

values between 600 and 3600 seconds. Note that D
upper

old

can be greater than D
upper
new because the reaction time from a

user input or data arrival event to a connection request event
is dependent on the instant running condition of a computer.

5.2.2 False Positives

Table 3. Break-down of false alarms accord-
ing to causes.

User Inter-Process Whitelist Collection Total
A 2 1 0 3
B 4 1 0 5
C 1 0 0 1
D 0 1 1 2
E 1 1 1 3
F 0 1 1 2

By choosing parameters correctly, we expect to achieve
minimal false alarms. From Table 2 we can see that there
are at most five false alarms for each computer by choosing
the 99th percentile. The false positive rate is 0.03%. We
manually check these remaining false alarms and find that
they are caused by one of the three reasons:

Table 2. Parameter selection for Dold, Dnew and Dprev

90% (s) 95% (s) 99% (s)
User Dold Dnew Dprev # of FAs Dold Dnew Dprev # of FAs Dold Dnew Dprev # of FAs

A 18 11 142 15 33 15 752 5 79 21 4973 3
B 15 12 64 23 28 21 260 7 79 22 3329 5
C 14 14 28 20 25 15 134 5 74 33 2272 1
D 16 81 213 3 33 81 715 3 85 81 4611 2
E 19 12 539 5 32 14 541 4 93 90 4216 3
F 14 8 80 10 27 13 265 5 79 31 3633 2

• Incomplete information of inter-process event sharing.
For example, four of the five false alarms of User B
are caused by this. We observe that PowerPoint calls
IE to connect to the same IP address while the parent
process of the PowerPoint process is Windows shell.
We hypothesize this is due to the usage of Windows
API ShellExecute.

• Incomplete whitelisting. For example, connections
made by Windows Application Layer Gateway Service
are treated as extrusions.

• Incomplete trace collection. BINDER was acciden-
tally turned off by user in the middle of trace collec-
tion. Users were given the control of turning on/off
BINDER in case they think BINDER is responsible
for bad performance, etc.

A break-down of the false alarms is shown in Table 3.
We can see that a better-engineered BINDER can elimi-
nate false alarms associated with the Whitelist and Collec-
tion columns in Table 3, resulting in much lower false posi-
tives. By extending BINDER to consider more inter-process
communications than those between parent-child processes,
we can decrease the false alarms associated with the Inter-
Process column.

5.2.3 False Negatives
In the real world experiments, among the six computers,
one was infected by the adware Gator [24] and CNSMIN
[12] and another one was infected by the adware Gator and
Spydeleter [23]. In particular, the second computer was
compromised by Spydeleter when BINDER was running.
BINDER successfully detected the adware Gator and CNS-
MIN because they do not have any user input in history. In
the following, we demonstrate how BINDER detected the
break-in of Spydeleter right after it compromised the victim
computer.

In Figure 1, we show a stripped list of events logged
during the break-in of the adware Spydeleter. Note that
all IP addresses are anonymized. Two related processes
not shown in the list are a process of explorer.exe with
PID 240 and a process of svchost.exe with PID 960.

After IE is opened, a user connects to a site with IP
12.34.56.78. The web page has code to exploit a vulner-
ability in mshta.exe which processes .HTA files. After
mshta.exe is infected by the malicious .HTA file that is
downloaded from 87.65.43.21, it starts a series of processes
of ntvdm.exe which provides an environment for a 16-bit
process to execute on a 32-bit platform. Then, a process of
ntvdm.exe starts a process of ftp.exe which makes a con-
nection request to 44.33.22.11.

Since the prototype of BINDER does not have complete
information for verifying if a connection is triggered ac-
cording to the inter-process rule (see Section 3), the connec-
tion made by mshta.exe is detected as an extrusion. This is
because its parent process is svchost.exe rather than iex-
plore.exe, though it is the latter process that triggers its
creation. If BINDER had complete information for inter-
process event sharing, it would detect the connection re-
quest made by ftp.exe as an extrusion. This is because both
the process of ftp.exe and its parent process of ntvdm.exe
does not have any user input or data arrival event in its
history. So Dold, Dnew and Dprev for the connection re-
quest made by ftp.exe do not exist. This connection is used
to download malicious code. Therefore, BINDER’s detec-
tion plus some appropriate actions could have stopped the
adware from infecting the computer. Note that the three
parameters of D

upper

old
, D

upper
new and D

upper
prev do not affect

BINDER’s detection of Spydeleter here.

5.3 Controlled Testbed Experiments

The number of break-ins in our real world experiments is
very limited. To evaluate BINDER’s performance on false
negatives, we need to test BINDER with more real world
malware in a controlled testbed. In this section, we describe
our controlled testbed and present experimental results on
22 email worms and the worm Blaster.

5.3.1 Controlled Testbed

The key challenge here is to repeat break-ins as real as pos-
sible but without unwanted damages. We tackle this prob-
lem by building a controlled testbed using the Click mod-
ular router [8] and VMWare Workstation [29]. We choose

1 10/02/2004 14:40:10, PID=2368, PPID=240, NAME="C:\...\iexplore.exe" (process start)
2 10/02/2004 14:40:15, PID=2368 (user input)
3 10/02/2004 14:40:24, PID=2368 (user input)
4 10/02/2004 14:40:24, PID=2368, LPORT=1054, RIP=12.34.56.78, RPORT=80 (connection request)
5 10/02/2004 14:40:24, PID=2368, LPORT=1054, RIP=12.34.56.78, RPORT=80 (data arrival)

......
6 10/02/2004 14:40:28, PID=2552, PPID=960, NAME="C:\...\mshta.exe" (process start)
7 10/02/2004 14:40:29, PID=2552, LPORT=1066, RIP=87.65.43.21, RPORT=80 (connection request)
7 10/02/2004 14:40:29, PID=2552, LPORT=1066, RIP=87.65.43.21, RPORT=80 (data arrival)

......
8 10/02/2004 14:40:34, PID=2896, PPID=2552, NAME="C:\...\ntvdm.exe" (process start)
9 10/02/2004 14:40:35, PID=2988, PPID=2896, NAME="C:\...\ ftp.exe" (process start)
10 10/02/2004 14:40:35, PID=2988, LPORT=1068, RIP=44.33.22.11, RPORT=21 (connection request)

......

Figure 1. A stripped list of events logged during the break-in of adware Spydeleter.

Click for its powerful modules [9] for Network Address and
Port Translation (NAPT). In addition, we implement a con-
tainment module in Click which can pass, redirect or drop
outbound connections according to predefined policies. The
advantage of using VMWare is that we can discard an in-
fected system and get a new one just by copying a few files.
VMWare also provides host-only private networks.

In the testbed, we have two Linux hosts running
VMWare Workstation. On the first host, we have a Win-
dows virtual machine (VM) in a host-only private network.
This VM is used for executing malicious code attached in
email worms. The Click router on this host includes a con-
tainment module and a NAPT module. The containment
policy on this router is: (1) allow DNS traffic pass through;
(2) redirects all SMTP traffic (to port 25) to another Linux
host. The second Linux host has a Linux VM running the
eXtremail server [3] in a host-only private network. The
email server is configured to accept all relay requests. The
Click router on this host also has a NAPT module that guar-
antees the email server can only receive inbound SMTP
connections. Thus, all malicious emails are contained in
the email server. This controlled testbed enables us to re-
peat the whole break-in and propagation process of email
worms.

5.3.2 Experiments with Email Worms

We obtained email worms from two sources. First, we
set up our own email server and published an email ad-
dress to USENET groups. This resulted in the email worm
W32.Swen.A@mm [26] being sent to us. Second, we were
fortunate to convince the system administrators of our de-
partment email server to give us 1843 filtered virus email
attachments which were collected over the week starting
on October 7th, 2004. We used Symantec Norton An-
tivirus [25] to scan these attachments and recognized 27
unique email worms. Among them, we used 21 email
worms because the rest of them were encrypted with a pass-
word. Thus, we tested 22 different real world email worms.

For each email worm, we manually start it on the Win-
dows virtual machine that has a file of 10 real email ad-
dresses used by authors, let it run for 10 minutes (with user
input in history), and then restart the virtual machine to run
another 10 minutes (without user input in history). We ana-
lyze BINDER’s performance using the traces collected dur-
ing the two 10 minute periods. We choose 10 minutes be-
cause they are long enough for email worms to scan hard
disk, find email addresses, and send malicious emails to
them.

Our results show that BINDER successfully detects
break-ins of all 22 email worms in the second 10 minute
period by capturing the very first malicious outbound con-
nection. In the rest of this section, we focus on BINDER’s
performance in the first 10 minute period.

Table 4. The impact of D
upper

old /Dupper
new on

BINDER’s performance of false negatives.

D
upper

old =

D
upper
new (sec)

10 20 30 40 50 60

Num of email
worms detected

22 21 21 19 17 15

According to our discussion on parameter selection,
D

upper

old
and D

upper
new usually take values between 10 and 60

seconds, while D
upper
prev usually takes values between 600

and 3600 seconds. Since our traces are 10 minute long, the
parameter D

upper
prev does not affect BINDER’s performance

on false negatives. So we study the impact of D
upper

old and
D

upper
new on BINDER’s performance of false negatives. In

Table 4, we show the number of email worms are detected
by BINDER when D

upper

old and D
upper
new take a same given

value between 10 and 60 seconds. We have only one email
worm (W32.Swen.A@mm) missed when we take 30 sec-
onds for D

upper

old and D
upper
new . This is because the first con-

nection is detected as user intended due to the user input
and all following connections repeat the first one.

5.3.3 Experiments with Blaster

We test BINDER with the worm Blaster [27]. In this ex-
periment, we run two Windows XP VMs A and B in a
private network. We run BINDER on VM B and run ms-
blast.exe on VM A. Blaster on VM A scans the network,
finds VM B and infects it. By analyzing the infection trace
collected by BINDER, we see that BINDER detects the first
outbound connection made by a process tftp.exe as an ex-
trusion. This is because the process itself and its parent pro-
cess of cmd.exe does not receive any user input. Thus we
can successfully detect Blaster in this case even before the
worm itself is transferred over by TFTP.

6 Countermeasures and Solutions

Our limited user study shows that BINDER limits the
number of false alarms to at most five over four weeks on
each computer. We also show that BINDER successfully
detects break-ins of the adware Gator, CNMIN, and Spy-
deleter, the worm Blaster, and 22 email worms. However,
BINDER is far from a complete system, rather its goal is to
verify that user intent can be a simple and effective detec-
tor of a large class of malware with a very low false positive
rate. We devote this section to discussions of potential coun-
termeasures against BINDER if its scheme is known to ad-
versaries. Though we try to investigate all possible attacks
against BINDER, we cannot argue that we have considered
all of its possible vulnerabilities.

• Direct attack: subvert BINDER on the compromised
system;

• Hiding inside other processes: inject malicious code
into other processes;

• Faking user input: use APIs provided by the operating
system to generate synthesized actions.

• Tricking the user to input: trick users to click on pop-
up windows or a transparent overlay window that in-
tercepts all user input.

• Exploiting the whitelist: replace the executables of
programs in the whitelist with a tweaked one;

• Exploiting user input in history: When a malicious
process is allowed to make one outbound connection
due to user input (e.g., a user opens a malicious email
attachment), it can evade BINDER’s detection by mak-
ing that connection to a collusive remote site to keep
receiving data. This would make BINDER think any
new connections made by this process are triggered by
those data arrivals.

• Covert Channels: A very tricky countermeasure is to
have a legitimate process make connections and use
them as a covert channel to leak information. For ex-
ample, spyware can have an existing IE process down-
load a web page of a tweaked hyperlink by using some
API provided by Windows shell right after a user clicks
on the IE window of the same process. A collusive
remote server can get private information from the
tweaked hyperlink.

Direct attack is a general limit of all end-host software
(e.g., antivirus, personal firewalls [37], virus throttles [33]
which attempt to limit outgoing attacks). A widespread
availability of Trusted Computing-related Virtual Machine-
based protection [6] or similar isolation techniques are nec-
essary to turn BINDER or any of these other systems into
robust production.

The countermeasures of hiding inside other processes,
faking user input, tricking users to input, and exploiting
whitelisting are inherent to the limitations of today’s op-
erating systems. The effectiveness of BINDER on malware
detection implies pressing requirements for next-generation
operating systems: isolation among processes, trustworthy
user input, reflection on user intent, etc. Possible incom-
plete solutions for these countermeasures are: monitor cor-
responding system APIs; verify the integrity of programs
listed in the whitelist. Even without a bulletproof solu-
tion for today’s operating system, we believe a deployed
BINDER system can raise the bar for adversaries signifi-
cantly.

For the countermeasure of exploiting user input in his-
tory, a possible solution is to add more constraints on how
a user intended connection may be triggered. This requires
more research work in the future. For the countermeasure
of covert channels, possible solutions are discussed in [1].

7 Conclusions and Future Work

In this paper, we present the design and implementation
of BINDER, a host-based system that detects break-ins of
worms, spyware and adware on personal computers by cap-
turing their extrusions. The main contributions of this paper
are:

• BINDER takes advantage of a unique characteristic
of personal computers—user intent. Our evaluations
show that user intent is a simple and effective detec-
tor for a large class of malware with a very low false
positive rate.

• The controlled testbed based on the Click modular
router and VMWare enables us to repeat the whole
break-in and propagation process of email worms
without worrying about unwanted damage.

In the future, we plan to study the advantage of shar-
ing extrusion information among distributed BINDER sys-
tems.

References

[1] K. Borders and A. Prakash. Web tap: Detecting covert web
traffic. In Proceedings of the 11th ACM Conference on Com-
puter and Communication Security, October 2004.

[2] W. Cui, R. H. Katz, and W. tian Tan. Binder: An extrusion-
based break-in detector for personal computers. In Proceed-
ings of 2005 USENIX Annual Technical Conference, April
2005.

[3] eXtremail. extremail server. http://www.extremail.com/.
[4] T. Goldring. User profiling for intrusion detection in win-

dows nt. In Proceedings of the 35th Symposium on the In-
terface, 2003.

[5] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detec-
tion using sequences of system calls. Journal of Computer
Security, 6(3):151–180, 1998.

[6] Intel. Intel virtualization technology, 2005.
[7] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast

portscan detection using sequential hypothesis testing. In
2004 IEEE Symposium on Security and Privacy, May 2004.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Transactions
on Computer Systems, 18(3):263–297, August 2000.

[9] E. Kohler, R. Morris, and M. Poletto. Modular components
for network address translation. In Proceedings of OPE-
NARCH’02, June 2002.

[10] W. Lee and S. Stolfo. A framework for constructing features
and models for intrusion detection systems. ACM Transac-
tions on Information and System Security, 3(4), November
2000.

[11] R. A. Maxion and T. N. Townsend. Masquerade detection
using truncated command lines. In Proceedings of the Inter-
national Conference on Dependable Systems and Networks,
June 2002.

[12] T. Micro. ADW CNSMIN.A.
http://www.trendmicro.com/vinfo/virusencyclo
/default5.asp?VName=ADW CNSMIN.A.

[13] Microsoft. Windows Hooks API.
http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/winui/winui/windowsuserinterface
/windowing/hooks.asp.

[14] Microsoft. Windows Security Auditing.
http://www.microsoft.com/technet/security/prodtech
/win2000/secwin2k/09detect.mspx.

[15] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,
and N. Weaver. Inside the slammer worm. IEEE Magazine
of Security and Privacy, August 2003.

[16] V. Paxson. Bro: a system for detecting network intruders
in real-time. Computer Networks, 31(23-24):2435–2463,
1999.

[17] rattle. Using process infection to bypass windows software
firewalls. http://www.phrack.org/show.php?p=62&a=13,
2004.

[18] M. Russinovich and B. Cogswell. Pstools.
http://www.sysinternals.com/ntw2k/freeware
/pstools.shtml.

[19] M. Russinovich and B. Cogswell. Tdimon.
http://www.sysinternals.com/ntw2k/freeware
/tdimon.shtml.

[20] S. Saroiu, S. D. Gribble, and H. M. Levy. Measurement and
analysis of spyware in a university environment. In Proceed-
ings of the First Symposium on Networked Systems Design
and Implementation, March 2004.

[21] Snort. Snort, The Open Source Network Intrusion Detection
System. http://www.snort.org/.

[22] S. Staniford, V. Paxson, and N. Weaver. How to own the in-
ternet in your spare time. In Proceedings of the 11th Usenix
Security Symposium, August 2002.

[23] Suzi. How to get rid of spy deleter.
http://netrn.net/spywareblog/archives/2004/03/12
/how-to-get-rid-of-spy-deleter/.

[24] Symantec. Adware.Gator.
http://securityresponse.symantec.com/avcenter/
venc/data/adware.gator.html.

[25] Symantec. Symantec Norton Antivirus.
http://www.symantec.com/.

[26] Symantec. Symantec Security Re-
sponse - Alphabetical Threat Index.
http://securityresponse.symantec.com/avcenter/
venc/auto/index/indexA.html.

[27] Symantec. W32.Blaster.Worm.
http://securityresponse.symantec.com/avcenter/
venc/data/w32.blaster.worm.html.

[28] Symantec. Symantec Internet Security Threat Report.
http://enterprisesecurity.symantec.com/content.cfm?
articleid=1539, September 2004.

[29] VMWare. Vmware workstation 4.5.
http://www.vmware.com/.

[30] H. J. Wang, C. Guo, D. R. Simon, and A. Zugenmaier.
Shield: Vulnerability-driven network filters for preventing
known vulnerability exploits. In Proceedings of ACM SIG-
COMM, August 2004.

[31] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang.
Automatic misconfiguration troubleshooting with peerpres-
sure. In Usenix OSDI, San Francisco, CA, December 2004.

[32] N. Weaver, S. Staniford, and V. Paxson. Very fast contain-
ment of scanning worms. In Proceedings of the 13th Usenix
Security Symposium, August 2004.

[33] M. M. Williamson. Throttling viruses: Restricting propa-
gation to defeat malicious mobile code. Technical Report
Technical Report HPL-2002-172, HP Labs Bristol, 2002.

[34] WinDump. Windump. http://windump.polito.it/.
[35] WinPcap. Winpcap. http://winpcap.polito.it/.
[36] Y. Zhang and V. Paxson. Detecting stepping stones. In Pro-

ceedings of the 9th USENIX Security Symposium, August
2000.

[37] ZoneAlarm. http://www.zonelabs.com/.

