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Abstract. The analysis of charge exchange recombination spectra represents a very &allengin% 
problem due to the presence of many overlapping spectral lines. Conventional approaches 
are based on iterative least-squares optimization and suffer from the two difficulties of low 
speed and the need for a good initial approximation to the solution. This [suer problem 
necessitates considerable human supervision of the analysis procedure. In this paper we show 
how neural network techniques allow charge exchange data to be analysed very rapidly, to 
give an approximate solution without the need for supervision The network approach is well 
suited to the fast intershot analysis of large volumes of data, and can readily be implemented in 
dedicated hardware for real-time applications. The neural network can aIso be used to provide 
the initial guess for the standard least-squares algorithm when high accuracy is required. 

1. Introduction 

Charge exchange recombination spectroscopy (CXRS or CHERS) provides a powerful 
technique for the analysis of ion temperatures, densities and rotation velocities in plasma 
physics experiments. Interaction of a beam of neutral particles with the plasma leads to 
transfer of electrons to the hot ions with subsequent radiative decay of the excited states. 
The corresponding spectral lines exhibit Doppler broadening due to the finite temperature, 
and wavelength shift due to bulk plasma rotation. A complete charge exchange spec” 
can often be very complex due to the presence of many overlapping lines, only some of 
which arise from the charge exchange process. An example spectrum from the JET tokamak, 
together with its decomposition into component lines, is shown in Bgure 1; 

The conventional approach to the analysis of CXRS spectra, outlined in section 2, 
involves the least-squares fitting of a parametrized functional form to the observed data 
Such an approach yields good accuracy and has been in widespread use for several years. 
It suffers, however, from two principal drawbacks. The first arises from the fact that the 
least-squares fitting process involves the iterative minimization of an error function and 
is therefore computationally intensive, and hence relatively slow. This can result in a 
significant computational problem for diagnostics with high spatial, temporal and spectral 
resolution operating on long timescale plasmas, as is typical of current systems as well 
as next generation designs, and would preclude its use in real-time feedback applications 
such as bum control. The second drawback stems from the fact that the iterative approach 
requires an initial guess for the parameters of the functional form, and if this guess is not 
sufficiently accurate then the algorithm may fail to converge in a reasonable time, or may 
converge to a local minimum, or may suffer from problems due to the swapping of spectral 
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Figure 1. An example charge exchange spec!” 
from JET, together with its component lines ob- 
tained by the conventional least-squares technique. 

D 

lines (arising from convergence to the wrong global minimum). The provision of a suitable 
initial guess generally involves human intervention and this can severely limit the quantity 
of data which can be analysed as well as wasting valuable diagnosticians’ time. It is not 
uncommon for a substantial fraction of the logged data to go unanalysed as a result of this 
problem. 

In this paper we report on a novel approach to the analysis of charge exchange data 
based on neural network techniques. It has already been shown that neural networks provide 
a practical approach to the analysis of simple spectra (Bishop and Roach 1992). Here we 
apply neural networks to the much more complex problem of the analysis of charge exchange 
spectra. We show that this technique can analyse a charge exchange spectrum without the 
need for an initial guess, and can therefore operate automatically without requiring human 
supervision. ’ Furthermore, the network algorithm does not involve iterative procedures 
and is therefore intrinsically very fast. The improvement in speed over the conventional 
approach is typically two orders of magnitude. A detailed account of our approach is given 
in section 3, and some preliminary results are given in section 4. 

Finally, the advantages and limitations of the neural network technique are discussed in 
detail in section 5. 

2. The conventional approach 

In order to establish notation, and to provide the necessary background, we give here a brief 
overview of the conventional approach to the analysis of charge exchange recombination 
spectra. This is necessarily a somewhat superficial treatment but will serve to establish the 
basic principles and features. A more complete discussion can be found in von Hellermann 
and Summers (1992). 
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The raw charge exchange spectrum is composed of a number of spectral lines which 
have finite widths and which typically are strongly overlapping. In addition, there may be a 
significant background contribution arising from bremsstrahlung. The data are collected as 
a set of photon counts I ( & )  in bins at successive wavelengths Ak, and are subject to random 
errors arising from the photon statistics. In most cases the principal goal is to determine 
the amplitude, location and width of one or more charge exchange lines, thereby allowing 
the ion density, toroidal velocity and temperature respectively to be calculated. If the lines 
were isolated this would be a straightforward problem to solve, but the presence of many 
overlapping lines leads to a very complex and difficult data analysis problem. 

In the conventional analysis technique, a particular functional representation is chosen 
for the charge exchange spectrum. This would typically take the form of a sum of functions, 
one for each spectral line. Thus, if it is believed that the spectrum can be adequately 
represented in terms of N lines, the intensity of the spectrum at wavelength A would be 
written as 

where IO represents the background of continuum radiation. Each spectral line is described 
by a function &(A) which is characterized by a small number of parameters whose values 
must be determined from the data In the simplest case, each line would be represented by 
a Gaussian function 

where A', Ab, and ui represent respectively the amplitude, location and width of the line. 
In practice, the effects of instrument functions and calibration factors must also be taken 
into account in defining I&.). For each new spectrum, the values of these parameters are 
determined by seeking the best fit between the parametrized form I&) and the measured 
spectrum Zexp(A). Closeness of fit is generally measured in terms of a sum of squares error, 
or x2. given by 

where Ak is the wavelength of the kth bin, and is the experimental uncertainty associated 
with the data in bin k. 

We can regard xz as a function of the spectral parameters A', Ab, and d whose values 
can be determined by seeking a minimum of x2. The dependence of x2 on the parameters 
is typically highly non-linear, and iterative algorithms must be employed. For lineshape 
functions which have a simple analytic form, such as the Gaussians in (2), the derivatives 
of x2 with respect to the parameters may be obtained as analytic expressions whose values 
can be determined numerically. It then becomes possible to use conventional gradient based 
optimization techniques, such as conjugate gradients, to minimize x2. These make use of 
an initial guess for the values of the parameters, and then iteratively adjust their values 
using the gradient infohation. The standard iterative approach to the analysis of charge 
exchange spectra is summarized in schematic form in figure 2. An example of the analysis 
of a spectrum by this method is shown in figure 1. 
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Figure 2. A schematic illustration of the conventional 
approach to the analysis of a charge exchange specmum. 

parameter . parameterised The algorithm must iterate around the loop many times U) 
values spectrum generate a converged solution. 

There will generally be several sets of values for the parameters all of which correspond 
to minimum ,yz solutions. These represent solutions in which the roles of different l i e s  have 
been interchanged. This represents a potential problem since it will lead to the parameter 
values being interpreted in the wrong way. The particular solution which is obtained will 
depend on the choice of initial values for the parameters, and the algorithm will only 
converge to the correct minimum if the initial guess is already sufficiently close to that 
minimum. In practice, a more severe problem is that the iteration fails to converge to a 
satisfactory solution within a reasonable period of time. Again, this can be attributed to the 
initial guess being too far from the desired solution. 

A further complication arises from atomic physics considerations which result in 
constraints relating various spectral line parameters. These constraints must be taken 
into account in formulating the iterative algorithm in order to achieve satisfactory results. 
Their inclusion can, however, increase the robustness of the algorithm since information 
to determine a given parameter may be available from several parts of the spectrum. This 
can help to reduce the problem of parameter swap discussed above, but is generally still 
insufficient to allow for fully automatic analysis of charge exchange spectra. 

3. The neural network approach 

As we have seen, the conventional approach to the analysis of charge exchange spectra 
suffers from two principal difficulties. First, it corresponds to the solution of a nonlinear 
multivariate optimization problem and is therefore computationally intensive and hence 
slow. Second, convergence to the correct solution requires a sufficiently accurate initial 
guess for the parameters, which in tum requires significant levels of human supervision. 
Here we introduce a complementary approach to the analysis of such data which is able to 
provide a practical solution to these two problems. The ultimate goal is a fully automatic 
system for the routine analysis of charge exchange~spectra 

Neural network algorithms draw their inspiration from studies of the detailed structure 
of the brain. However, they can also be regarded as a natural extension of conventional 
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pattern recognition techniques. An introductory review of neural networks, and a survey 
of some typical applications in physics and engineering, can be found in Bishop (1993). 
They have already been used with considerable success in several applications in fusion 
research (Bishop and Roach 1992, Allen and Bishop 1992, Bishop et ~l 1993, Lister and 
Schnurrenberger 1991, Bishop et a1 1992). 

In this paper we show how a particular type of network, known as the multilayer 
perceptron (MLP), can be applied to the automatic analysis of charge exchange spectra. 
The MLP can be regarded as a class of nonlinear functions which map a set of input 
variables to a set of output variables. The number of input and output variables is generally 
determined by the problem being solved. The particular function which the MLP implements 
is determined both by the architecture of the network and by the values of a set of parameters 
known as weights. It can be shown that the MLP provides a universal procedure for 
generating nonlinear mappings between multi-dimensional spaces in the sense that, for a 
sufficiently large network, there will exist a choice of weight values such that the network 
mapping approximates any given functional mapping to arbitrary accuracy. Procedures for 
determining the appropriate architecture for a network are reviewed in Bishop (1993). 

The determination of the optimum values for the weights in a neural network is known 
as network training and depends on the provision of a suitable set of training data. This 
data ,comprises a large number of examples of the desired mapping, i.e. examples of 
input vectors and their corresponding output vectors. Network training is a computationally 
intensive process. Once the network is trained, however, it can process new data very 
rapidly. Detailed accounts of ,the structure of the MLP, and of various techniques used for 
MLP training, can be found in Bishop and Roach (1992) and Bishop (1993). 

The analysis of a charge exchange spectrum can be reformulated as a nonlinear mapping 
problem. Inputs consist of the spectral data expressed as the amplitude of the spectrum in 
each wavelength bin. Generally, some initial pre-processing is applied to the data, as 
discussed in section 4. This input data must be bansformed to a set of output variables 
which comprise the parameters of the constituent spectral lines. The required mapping can 
be performed using an MLP neural network. Training of the network requires a data set 
of charge exchange spectra for which the corresponding spechal line parameter values are 
known. This data set can be provided with the aid of the standard least-squares technique. 
We can therefore consider the neural network approach as three separate stages: 

( I )  Collect a suitable set of charge exchange spectra and determine the corresponding 
values of the spectral line parameters using the standard iterative least-squares approach. 
This may necessitate some degree of human supervision, both to ensure satisfactory 
convergence of the algorithm, and for careful validation of the results. 

(2) Use the data set from step 1 to train a network. In practice the data set is split 
into training and test sets which allows an optimization of the network architecture to be 
performed. This is achieved by training several networks with different topologies and 
selecting the one with the smallest test error procedure. .A more systematic version of this 
is known as cross-validation (Bishop 1993). 

(3) The trained network can now be used to process new spectra, and thereby determine 
the spectral parameter values. The network is said to be operating in feedforward mode 
since the outputs are calculated as an explicit function of the inputs. This is illustrated 
schematically in figure 3. There is no iteration involved in this process which is therefore 
typically very fast. 

The data set of charge exchange spectra needs to be sufficiently large in two senses. 
First, it should span the range of parameter values which are likely to be encountered 
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Fimre 3. A schematic illustration of the neural network analysis of a 
charge exchange spstrum. The processing is performed in a single step 
and is therefore very fast 

values 

during stage 3. This is necessary because the network  mapping^ effectively ‘interpolates’ 
between training points and cannot be expected to give satisfactory results if presented 
with substantially novel data. This point is discussed further in section 5. Second, the 
network training procedure must be ‘overdetermined‘ in that the number of training examples 
should be sufficiently large in relation to the number of degrees of freedom in the network. 
Additionally, the data set snould be large enough to allow division into mining and test 
sets while still satisfying these two criteria. 

4. Preliminary results 

In order to illustrate the neural network approach to charge exchange analysis we present 
some preliminary results from the analysis of spectra from the JET tokamak. A data 
set of around 3000 fully analysed BeIV/CIII spectra has been assembled (see figure 1 
for an example). Each spectrum contains up to 11 significant transitions together with 
an approximately uniform background due to bremssuahlung. Since each spectral line is 
characterized by its amplitude, location and width, this represents a total of 34 parameters 
(including the amplitude of the background) to be determined for each spectrum. Atomic 
physics constraints reduces the number of independent parameters to 18. 

The raw spectra consist of amplitude measurements at 600 equally spaced wavelengths. 
This itself raises a difficulty since the input data effectively lives in a 600 dimensional 
space. A simplistic approach of presenting all of this data to a network with 600 inputs 
would give poor results for three reasons. First, the network would be very large and would 
therefore need long training times. Second, very large data sets would be needed to ensure 
that the training represented an overdetermined problem as discussed in section 3. Third, 
the accuracy of the predictions made by the network would tend to deteriorate severely 
as a result of the ‘curse of dimensionality’, a well known problem in pattem recognition 
(Bishop 1993). As the dimensionality of the input space grows, the difficulty of building an 
effective pattem recognition system, or in this case a nonlinear mapping system, increases 
dramatically (Duda and Hart 1973). We have addressed this problem initially by techniques 
such as the selection of a subset of the bins as inputs, and by using several networks 
each dealing with subsections of the spectrum. This latter approach is not ideal, since the 
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Figure 4. Plot of a wnventional (solid) and 
neural network (dashed) fit ta a JET charge 
exchange specwm. The circles indicate every 
fifth S p e c h a l  data point 300 400 500 600 
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Figure 5. Plot of the residual ermr between 
ihe neural network and conventional spectral 
reconstructions, expressed as a fraction of 
the conventional spectrum amplitude. for the 

300 400 500 600 700 spectrum shown in figure 4. 

presence of the atomic physics constraints implies that information to determine a particular 
parameter may be available from more than one part of the spectrum and so a given network 
may not have access to all relevant information. The largest network trained had 50 inputs, 
15 hidden units and 6 outputs. More sophisticated approaches to this problem are under 
development, as will be discussed in the next section. 

The neural network outputs generally show 
good agreement with the corresponding conventional results, with ion temperatures being 
determined to around 30% accuracy. It is anticipated that there is still significant scope 
for improvements in the results as a consequence of the adoption of more sophisticated 
preprocessing techniques. Figure 4 shows an example of the neural network and 
conventional fits to a complete spectrum. The circles show every fifth data point from 
the experimental spectrum. The reconstructed spectrum, obtained from the neural network 
predictions for the spectral line parameters, is shown by the dashed curve, and the 

Initial results are very encouraging. 
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corresponding spectrum obtained by the conventional approach is shown by the solid curve. 
Since the two curves are nearly coincident, we have plotted the residual difference between 
,them, expressed as a fraction of the conventional spectrum amplitude, in figure 5. These 
results were obtained using four networks to extract different sets of parameters. The 
network approach (without optimization) requires 15 ms to process a new specr" as 
compared with an average of 500 ms for the conventional algorithm (both running on the 
JET IBM mainframe). 

C M Bishop er a1 

5. Discussion 

We have shown how neural network techniques can be applied to the problem of analysing 
charge exchange spectra. Such an approach allows a spectrum to be analysed without 
human supervision, and also greatly improves the speed of analysis. Input spectral data 
is mapped, via an explicit functional transformation, directly onto the desired spectral line 
parameters. The network could equally well be trained to generate physical quantities such 
as temperatures, densities and rotation velocities directly at the outputs. Note, however, that 
it is generally helpful to provide at least some simple normalization of the data prior to its 
use in network training (Bishop 1993). 

In general, we do not expect the network to achieve as high an accuracy as the 
conventional least-squares approach. Nevertheless, the speed of the network makes it ideally 
suited to processing large volumes of data very rapidly for intershot analysis. Furthermore, 
the solution generated by the network can be used as an initial guess for the iterative 
code. This would allow the iterative code to run essentially without human guidance since 
the network provides a reasonably accurate starting condition. Such a hybrid technique 
would avoid the principal difficulty of the standad approach, namely the need for human 
intervention to provide the initial guess. In addition, by starting from a good initial set 
of parameter values we would expect the iterative algorithm to converge in fewer steps, 
leading to improved speed. (For situations where a succession of very similar spectra are 
to be analysed, the result of fitting one spectrum can be used to provide the initial guess for 
the next spectrum). This hybrid method provides an automatic analysis procedure which 
also achieves high accuracy. 

Since the basic elements of the neural network algorithm involve vector-matrix 
operations they can be implemented very efficiently on vector and pipelined processors 
thereby giving very fast data throughput. For extremely high processing speeds, as would be 
required for real-time applications such as bum control, the neural network is ideally suited 
to implementation in special purpose highly parallel analogue hardware. Such hardware has 
already been developed for the neural network approach to equilbrium feedback control on 
the COMPASS tokamak (Bishop et al 1992). 

As we have already indicated, there are two key issues associated with the neural 
network approach to the analysis of charge exchange spectra. The first of these stems from 
the high dimensionality of the raw data and manifests itself in the 'curse of dimensionality' 
familiar in pattern recognition problems. The solution is to preprocess the data to reduce 
its dimensionality, a technique known as feature extraction. The values of the features can 
be taken as inputs to the network which is then trained in the usual way. Selection of the 
most appropriate features to extract is an important problem which has a direct bearing on 
the performance of the complete system, and work on this is underway. 

The second key issue regarding the neural network technique concems the capability of 
the network to deal adequately with data which is significantly different from that on which 
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it was trained. In general we expect the network to perform well only when presented with 
data which is similar to that used during training. For a system which is to run automatically 
it is necessary to provide some form of validation to ensure that the network outputs are 
satisfactory. One approach is to try to detect the presence of novel input data, and this 
has been demonstrated in a different context in Bishop and James (1992). In the present 
application, however, we can adopt an alternative procedure. The determination of the 
spectral line parameters from the spectral data can be regarded as an ‘inverse’ problem. The 
‘forward‘ problem consists of the evaluation of the spectrum for a given set of parameters, 
and is a well defined calculation with a unique solution. By contrast the inverse problem is 
highly nonlinear and, as we have seen, may exhibit many potential solutions, only one of 
which is physically meaningful. We can check the neural network solution to the inverse 
problem by running it through the forward problem, that is by evaluating the spectrum 
predicted by the parameter values generated by the network, and computing x2. If the 
reconstructed spectrum corresponds closely to the original spectrum we can be reasonably 
sure that the network outputs are satisfactory. 

As we have seen, the neural network approach to charge exchange is complementary to 
conventional iterative techniques. It can be used alone for high speed analysis of the data, 
or combined with standard methods to give a hybrid approach, for situations in which very 
high accuracy is desired. 
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