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Abstract

The Generative Topographic Mapping (GTM) algorithm of Bishop, Svensén, and
Williams (1998) has been introduced as a principled alternative to the Self-
Organizing Map (SOM). As well as avoiding a number of deficiencies in the SOM,
the GTM algorithm has the key property that the smoothness properties of the
model are decoupled from the reference vectors, and are described by a continuous
mapping from a lower-dimensional latent space into the data space. Magnifica-
tion factors, which are approximated by the difference between code-book vectors
in SOMs, can therefore be evaluated for the GTM model as continuous functions
of the latent variables using the techniques of differential geometry. They play an
important role in data visualization by highlighting the boundaries between data
clusters, and are illustrated here for both a toy data set, and a problem involving
the identification of crab species from morphological data.

c©1997 The Institution of Electrical Engineers



1 The GTM Algorithm

Many algorithms have been proposed which seek a representation of a multi-dimensional data set in
terms of a reduced number of dimensions. One of the best known is the Self-Organizing Map (SOM)
algorithm of Kohonen (1982). However, the SOM suffers from a number of limitations including
the absence of a well-defined cost function, the lack of any guarantee of ‘self-organisation’ or of
convergence, and the absence of a probability density function. We have introduced the Generative

Topographic Mapping algorithm (Bishop, Svensén, and Williams 1998) as a principled alternative
to the SOM which overcomes these limitations. For completeness, and to establish notation, we
begin with a brief overview of the GTM algorithm.

Our goal is to model a probability distribution in a D-dimensional data space in terms of a smaller
number, L, of latent, or ‘hidden’, variables. We denote the coordinates of the data space by
t = (t1, . . . , tD)T and the latent variables by x = (x1, . . . , xL)T. The model will be trained using
a set of N data vectors t1, . . . , tN . We first define a non-linear mapping from latent space to data
space of the form

y = Wφ(x) (1)

where φ = (φ1, . . . , φM )T represents a set of M fixed non-linear basis functions, and W is a
D×L matrix of parameters. The mapping (1) defines an L-dimensional non-Euclidean manifold S
embedded in the D-dimensional Euclidean data space, as illustrated in Figure 1. A typical choice
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Figure 1: The non-linear mapping y(x;W) from the L-dimensional latent space x to the D-
dimensional data space t defines an L-dimensional non-Euclidean manifold S.

for the basis functions would be a set of Gaussians centred on a regular grid in latent space, with
a common width parameter whose value controls the degree of smoothness of the manifold in data
space.

If we introduce a probability distribution p(x) over latent space, then (1) induces a corresponding
distribution in data space which will be confined to the L-dimensional manifold. Since our data
will not live exactly on such a manifold, we convolve this distribution with an isotropic Gaussian
distribution in data space of the form

p(t|x,W, β) =

(
β

2π

)D/2
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exp

{
−β

2
‖y(x;W) − t‖2

}
. (2)

The distribution in t-space, for given values of W and β, is then obtained by integration over the
x-distribution

p(t|W, β) =

∫
p(t|x,W, β)p(x) dx. (3)

The GTM algorithm corresponds to a particular form of this model in which we consider p(x) to
be a sum of delta functions centred on the nodes of a regular lattice in latent space

p(x) =
1

K

K∑

l=1

δ(x − xl). (4)

Note that this lattice is typically much finer than the grid of points used to define the centres
of the basis functions. Each point xl is then mapped to a corresponding point y(xl;W) in data
space, which then forms the centre of a Gaussian density function. From (3) and (4) we see that
the distribution function in data space then takes the form

p(t|W, β) =
1

K

K∑

l=1

p(t|xl,W, β) (5)

which represents a mixture of Gaussians in which the centres of the Gaussian functions are con-
strained to lie in the L-dimensional manifold S. The parameters W and β can be determined by
maximum likelihood using the EM (expectation-maximization) algorithm (Dempster, Laird, and
Rubin 1977; Bishop 1995). Often the latent space is chosen to be two-dimensional so that the
algorithm can be applied to the problem of data visualization. The latent space density p(x) can
be regarded as a prior distribution, with the corresponding posterior distribution p(x|t,W, β), for
a given data point t, given by Bayes’ theorem. For a two-dimensional latent space this posterior
distribution can be visualized using, for example, pseudo-colour. In order to visualize a set of data
points, each of the corresponding posterior distributions can conveniently be summarized by its
mean (or mode), which is easily evaluated.

2 Magnification Factors

The concept of a magnification factor arose originally in the context of topographic maps in the
brain, such as those found in the visual and somatosensory areas of the cortex, where it relates
the two-dimensional spatial density of sensors to the two-dimensional spatial density of the cor-
responding cortical cells. In the context of data analysis, the analogous concept plays an equally
important role. When a small region of the latent space is mapped to data space it may be com-
pressed or stretched as the mapping is optimized to fit the data. One consequence of this is that
well-separated clusters of points in data space will appear to be more nearly uniform in latent
space, and so inhomogeneities in the data can be obscured.

This problem has been addressed in the context of the SOM by Ultsch (1993) who uses a gray-
scale scheme to display the Euclidean distances between code-book vectors on the visualization
plot. This necessarily gives a discrete representation of the local magnification since the effective
surface in data space for the SOM is defined only in terms of the positions of the code-book vectors.
A key difference between GTM and the SOM is that in the GTM algorithm the lower-dimensional
manifold S in data space is defined directly by the mapping (1), while in the SOM it is determined
only indirectly by the locations of the finite number of code-book vectors. We now show how
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the local magnification factor for GTM can be evaluated in terms of the mapping (1) using the
techniques of differential geometry.

Consider a standard set of Cartesian coordinates xi in the latent space. Since each point P in
latent space is mapped by a continuous function to a corresponding point P ′ in data space, the
mapping defines a set of curvilinear coordinates ξi in the manifold in which each point P ′ is labelled
with the coordinate values ξi = xi of P , as illustrated in Figure 2. Throughout this paper we shall

y(x;W)

x 1dA dA′
ξ1

ξ2x 2

Figure 2: This diagram shows the mapping of the Cartesian coordinate system xi in latent
space onto a curvilinear coordinate system ξi in the L-dimensional manifold S.

use the standard notation of differential geometry in which raised indices denote contravariant
components and lowered indices denote covariant components, with an implicit summation over
pairs of repeated covariant-contravariant indices.

Our goal is to find an expression for the area1 dA′ of the region of S corresponding to an infinitesimal
rectangle in latent space with area dA =

∏
i dx

i. We first discuss the metric properties of the
manifold S. Consider a local transformation, at some point P ′ in S, to a set of rectangular
Cartesian coordinates ζi = ζi(ξ). Then the squared length element in these coordinates is given
by

ds2 = δµνdζ
µdζν

= δµν
∂ζµ

∂ξi

∂ζν

∂ξj
dξidξj

= gijdξ
idξj (6)

where gij is the metric tensor, which is therefore given by

gij = δµν
∂ζµ

∂ξi

∂ζν

∂ξj
(7)

and we are implicitly summing over repeated indices. The area element in the manifold S can be
related to the corresponding area element in the latent space by the determinant of the Jacobian
of the transformation ξ → ζ

dA′ =
∏

µ

dζµ = J
∏

i

dξi

= J
∏

i

dxi = JdA (8)

where the determinant J of the Jacobian is given by

J = det

(
∂ζµ

∂ξi

)
= det

(
∂ζµ

∂xi

)
. (9)

1We shall talk about area since we are mainly interested in the case L = 2. In fact our derivation is equally

applicable for L > 2.
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We now introduce the determinant g of the metric tensor which we can write in the form

g = det(gij)

= det

(
δµν

∂ζµ

∂xi

∂ζν

∂xj

)

= det

(
∂ζµ

∂xi

)
det

(
∂ζν

∂xj

)

= J2 (10)

and so, using (8), we obtain an expression for the area element in curvilinear coordinates in the
form

dA′

dA
= J =

√
g. (11)

We now seek an expression for g in terms of the non-linear mapping (1). Consider again the squared
length element ds2 lying within the manifold S. Since S is embedded within the Euclidean data
space, this also corresponds to the squared length element of the form

ds2 = δkldy
kdyl

= δkl
∂yk

∂xi

∂yl

∂xj
dxidxj

= gijdx
idxj (12)

and so we have

gij = δkl
∂yk

∂xi

∂yl

∂xj
. (13)

Using (11) we then obtain
dA′

dA
= det 1/2

(
δkl

∂yk

∂xi

∂yl

∂xj

)
. (14)

Making use of the expression (1) we can write this explicitly in terms of the derivatives of the basis
functions φj(x) in the form

dA′

dA
= det 1/2

(
ψTWTWψ

)
(15)

where ψ has elements ψji = ∂φj/∂x
i.

3 Results: Toy Data

As a simple illustration of the evaluation of the local magnification factor for the GTM algorithm
we consider a data set consisting of 400 data points drawn from a mixture of two Gaussians in two
dimensions, shown in Figure 3.

The corresponding visualization plot is shown in Figure 4 in which each data point is represented
by the mean of the corresponding posterior probability distribution. This figure also shows the
corresponding magnification factor plotted as a function of the latent space coordinates. It can be
seen that, while the data points form well separated clusters in the original data space, they appear
to be much more uniformly distributed when viewed in the latent space. This is a consequence
of the model adapting to give a good representation of the distribution in data space, and tends
to obscure the presence of distinct clusters. However, by superimposing the magnification factor
dA′/dA, as a function of x, over the latent space, we can see that the central region of the map
suffers a relatively large magnification on projection to the data space (corresponding to the region
between the clusters where the data are sparse) and so appears as a darker band on the right-hand
plot in Figure 3. Such darker regions thus serve to delineate the boundaries of clusters.
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Figure 3: The toy data set in two dimensions, consisting of 400 data points generated from a
mixture of two Gaussians.

4 Results: Crabs Data

As a second illustration of magnification factors we consider a data set2 of measurements taken
from the genus Leptograpsus of rock crabs. Measurements were taken from two species classified
by their colour (orange or blue) with the aim of discovering morphological differences which would
allow preserved specimens (which have lost their colour) to be distinguished. The data set contains
50 examples of each sex from each species, and the measurements correspond to length of frontal
lip, rear width, length along mid-line, maximum width of carapace, and body length. Since all
of the variables correspond to length measurements, the dominant feature of the crabs data is an
overall scaling of the data vector in relation to the size of the crab. To remove this effect each data
vector tn = (t1n, . . . , tDn)T is normalized to unit mean, so that

t̃kn = tkn

/
D∑

k′=1

tk′n. (16)

Results from the crabs data are shown in Figure 5. It can be seen that the two species form distinct
clusters, with the manifold undergoing a relatively large stretching in the region between them.
Within each cluster there is a partial separation of males from females. Ripley (1996) shows a
visualization of the SOM code-book vectors for the crab data using the representation of Ultsch
(1993), which corresponds to a rough discrete approximation to the magnification factors of the
GTM model.

5 Discussion

One of the key differences between GTM and SOM is that in the GTM algorithm the definition of
the manifold is independent of the Gaussian centres, whereas in SOM a manifold is defined only by
the discrete set of code-book vectors, and requires some arbitrary form of interpolation to specify
the location of the manifold at other points. In this paper we have shown how the techniques of

2Available from Brian Ripley at: http://markov.stats.ox.ac.uk/pub/PRNN.
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Figure 4: This shows the toy data set visualized in the latent space of a trained GTM model,
with the local magnification factor superimposed using a grey-scale representation.
Darker shades correspond to high values of dA′/dA while lighter shades correspond
to low values.

differential geometry allow the local magnification factor for the GTM algorithm to be computed
as a continuous function of the latent variables. We have also shown how this magnification factor
augments the posterior latent space plot by providing important information on the clustering
properties of the data.

We note that, although the magnification factor represents the extent to which areas are magnified
on projection to the data space, it gives no information about which directions in latent space cor-
respond to the stretching. Also, stretching in one direction may be compensated by compression in
the orthogonal direction, and such distortion would therefore not be apparent from the magnifica-
tion factor alone. We can recover this information by considering the decomposition of the metric
tensor in terms of its eigenvectors and eigenvalues. It is convenient to display the information by
selecting a regular grid in latent space (which could correspond to the reference vector grid, but
could also be much finer) and to plot at each grid point an ellipse with principal axes oriented
according to the eigenvectors, with principal radii given by the square roots of the eigenvalues.
This is illustrated for the crabs data in Figure 6. The standard area magnification factor is given
from (11) by the square root of the product of the eigenvalues, and so corresponds to the area of
the ellipse.

It should also be noted that, for the batch version of the self-organizing map, it is possible to
define an interpolating surface by interpreting the reference vector update equations of the SOM
as a kernel smoother (Mulier and Cherkassky 1995). For a differentiable neighbourhood function,
it is then straightforward to apply the techniques developed in this paper.
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Figure 5: Plot of the latent-space distribution of the crabs data, in which ♣ denotes blue males,
♦ denotes blue females, ♥ denotes orange males, and ♠ denotes blue females. The
grey-scale background shows the corresponding magnification factor as a function of
the latent space coordinates.
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Figure 6: Plot of the local magnification factor for the crabs data, using the ellipse represen-
tation discussed in the text.
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