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Abstract

The Generative Topographic Mapping (GTM) model was introduced by 7) as a
probabilistic re-formulation of the self-organizing map (SOM). It offers a number
of advantages compared with the standard SOM, and has already been used in a
variety of applications. In this paper we report on several extensions of the GTM,
including an incremental version of the EM algorithm for estimating the model
parameters, the use of local subspace models, extensions to mixed discrete and
continuous data, semi-linear models which permit the use of high-dimensional man-
ifolds whilst avoiding computational intractability, Bayesian inference applied to
hyper-parameters, and an alternative framework for the GTM based on Gaussian
processes. All of these developments directly exploit the probabilistic structure of
the GTM, thereby allowing the underlying modelling assumptions to be made ex-
plicit. They also highlight the advantages of adopting a consistent probabilistic
framework for the formulation of pattern recognition algorithms.



1 Introduction

Probability theory provides a powerful, consistent framework for dealing quantitatively with un-
certainty (10). It is therefore ideally suited as a theoretical foundation for pattern recognition.
Recently, the self-organizing map (SOM) of 19) was re-formulated within a probabilistic setting
(7) to give the GTM (Generative Topographic Mapping). In going to a probabilistic formulation,
several limitations of the SOM were overcome, including the absence of a cost function and the
lack of a convergence proof.

A further advantage of the probabilistic formulation of the GTM is that extensions to the basic
model can be formulated in a principled manner in which the corresponding modelling assumptions
are made explicit. In this paper we present several extensions of the GTM, all of which build on
its probabilistic formulation. We first show, in Section 2, how a generalized form of EM algorithm
can be used to derive an incremental version in which data points are presented one at a time,
while preserving the convergence guarantees of the batch version. Next we show in Section 3 how
the Gaussian components of the GTM can be generalized from an isotropic distribution to one
which reflects the local subspace properties of the underlying manifold. Then in Section 4 we
show how the GTM can be extended to allow for discrete as well as continuous data variables. A
generalization of the GTM which permits the use of high-dimensional manifolds without running
into computational intractability is described in Section 5. Next, in Section 6 we provide a Bayesian
treatment of the hyper-parameters in the GTM. Finally, in Section 7 we demonstrate the use of
Gaussian processes in place of standard regression models to define the non-linear manifold.

We begin with a brief, self-contained, review of the GTM.

1.1 The Generative Topographic Mapping

The Generative Topographic Mapping is a probability density model which describes the distri-
bution of data in a space of several dimensions in terms of a smaller number of latent (or hidden)
variables. By using a discrete grid of points in latent space, analogous to the nodes of the SOM, it
is able to use a non-linear relationship between the latent space and the data space while remain-
ing tractable. A detailed derivation of the GTM can be found in 7). Here we simply describe the
resulting density model and summarize the parameter estimation (or training) procedure.

Our description of the GTM starts by defining a q-dimensional latent space, with coordinates
u = (u1, . . . , uq), as shown schematically on the left-hand side of Figure 1. For the purposes of
this paper we shall be primarily interested in q = 1 or q = 2. Within the latent space we introduce
a regular array of nodes, labelled by the index i = 1, . . . ,K. These are analogous to the nodes of
the SOM. Next we introduce a set of M fixed non-linear basis functions φ(u) = {φj(u)}, where
j = 1, . . . ,M , which form a non-orthogonal basis set. The {φj} might consist, for example, of
a regular array of Gaussian or sigmoidal functions. Using these basis functions we define a non-
linear transformation from the latent space to the data space given by a linear combination of the
basis functions so that each point u in latent space is mapped to a corresponding point y in the
D-dimensional data space given by

y = Wφ(u) (1)

where W is a D × M matrix of weight parameters.

If we denote the node locations in latent space by ui, then (1) defines a corresponding set of
‘reference vectors’ given by

mi = Wφ(ui). (2)
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Figure 1: In order to formulate a latent variable model which is similar in spirit to the SOM,
we consider a prior distribution p(u) consisting of a superposition of delta functions
located at the nodes of a regular grid in latent space. Each node ui is mapped
to a corresponding point mi = y(ui;W) in data space, and forms the centre of a
corresponding Gaussian distribution.

Each of the reference vectors then forms the centre of an isotropic Gaussian distribution in data
space, whose inverse variance we denote by β, so that

p(x|i) =

(

β

2π

)D/2

exp

{

−
β

2
‖mi − x‖2

}

. (3)

Finally, the probability density function for the GTM model is obtained by summing over all of
the Gaussian components, to give

p(x|W, β) =

K
∑

i=1

P (i)p(x|i) =

K
∑

i=1

1

K

(

β

2π

)D/2

exp

{

−
β

2
‖mi − x‖2

}

(4)

where K is the total number of components (equal to the number of grid points in latent space), and
we have taken the prior probabilities of each of the components to be constant and equal to 1/K.
To summarize, we can regard the GTM model as a constrained mixture of Gaussians, as illustrated
schematically in Figure 1, in which the Gaussian components are isotropic with an inverse variance
β and have centres given by (2). The GTM is an example of a latent variable model, in which the
probability distribution of the observed data variables x is expressed in terms of an integration
over the distribution of a set of latent, or hidden, variables u whose values are unobserved. The
regular grid of points in latent space corresponds to a particular choice of latent space distribution
for which the integration is tractable. Since the transformation from latent space to data space
is non-linear, the GTM is representing the distribution of data in terms of a q-dimensional non-
Euclidean manifold in data space. The Gaussian distribution (3) represents a noise model and
allows for the fact that the data will not be confined precisely to such a q-dimensional manifold.

The adaptive parameters of the model are W and β. Since the GTM represents a constrained mix-
ture model, the centres of the Gaussian components cannot be adapted to the data independently,
but instead are adjusted indirectly through changes to the weight matrix W.

We denote the data space variables by x = x1, . . . , xD, and we shall assume that the data set has
been normalized to zero mean (equivalently we can include a constant basis function φ0(u) = 1
in the mapping (1)). Since the GTM represents a parametric probability density model, it can be
fitted to a data set {xn}, where n = 1, . . . , N , by maximum likelihood. The log likelihood function
is given by

L(W, β) =

N
∑

n=1

ln p(xn|W, β) (5)
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where p(x|W, β) is given by (4), and we have assumed independent, identically distributed data.
We can maximize this log likelihood function by finding expressions for its derivatives and using
these in a standard non-linear optimization algorithm such as conjugate gradients.

Alternatively, we can exploit the latent-variable structure of the model and use the expectation-
maximization (EM) algorithm (12; 3). In the E-step, we use the current values of the parameters
W and β to evaluate the posterior probability, or responsibility, which each component i takes for
every data point xn, which, using Bayes’ theorem, is given by

Rni ≡ p(i|xn) =
p(xn|i)

∑

j p(xn|j)
(6)

in which the prior probabilities P (i) = 1/K have cancelled between numerator and denominator.
Using (3) we can rewrite this in the form

Rni =
exp

{

−β
2 ‖mi − xn‖

2
}

∑

j exp
{

−β
2 ‖mj − xn‖2

} . (7)

Then in the M-step we use the responsibilities to re-estimate the weight matrix W by solving the
following system of linear equations

(ΦTGΦ)WT
new = ΦTRX (8)

which follow by maximization of the expected complete-data log likelihood. In (8) Φ is a K × M
matrix with elements Φij = φj(ui), X is an N ×D matrix with elements xnk, R is a K×N matrix
with elements Rni, and G is a K × K diagonal matrix with elements Gii =

∑

n Rni. The inverse
variance parameter is also re-estimated in the M-step using

1

βnew
=

1

ND

N
∑

n=1

K
∑

i=1

Rni‖Wnewφ(ui) − xn‖
2. (9)

A detailed derivation of the EM algorithm for the GTM can be found in 7).

We can initialize the parameters W so that the GTM model initially approximates principal
component analysis (PCA). To do this, we first evaluate the data covariance matrix and obtain the
eigenvectors corresponding to the q largest eigenvalues, and then we determine W by minimizing
the sum-of-squares error between the projections of the latent points into data space by the GTM
model and the corresponding projections obtained from PCA. The value of β−1 is initialized to be
the larger of either the q+1 eigenvalue from PCA (representing the variance of the data away from
the PCA sub-space) or the square of half of the grid spacing of the PCA-projected latent points
in data space.

The latent space of the GTM is generally chosen to have a low dimensionality (typically q = 2).
Although it is straightforward to formulate the GTM for latent spaces of any dimension, the model
becomes computationally intractable if q becomes large, since the number of nodes in the regular
grid grows exponentially with q (as does the number of basis functions). The same problem arises
for the SOM. One approach to solving this problem is discussed in Section 5.

The batch SOM can be related to the GTM by considering the limit in which the inverse variance
parameter β → ∞. This is analogous to the relation between a Gaussian mixture model trained by
EM and the K-means algorithm (which can be obtained from the Gaussian mixture model by taking
the limit in which the component variances go to zero). For large data sets in many dimensions,
the dominant computational cost of the GTM arises in the E-step due to the evaluation of the
quantities ‖mi − xn‖

2 corresponding to the Euclidean distances between each reference vector
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and each data point. Since this same computation must also be performed for the self-organizing
map, the computational efficiency of the GTM and the batch SOM, for large data sets in high
dimensions, are roughly comparable. Many of the techniques used to speed up the learning phase
of the SOM can also be adapted to the GTM model.

One useful modification to the standard GTM is to use penalized maximum likelihood by adding
a regularization term to the log likelihood in (5). The simplest example is a quadratic regularizer
of the form

1

2
α‖w‖2 (10)

where w is a column vector consisting of the concatenation of the successive columns of W, and
the hyperparameter α is a fixed constant. Techniques for treating α probabilistically are discussed
in Section 6, where the regularizer (10) will be interpreted as the logarithm of a Gaussian prior
distribution over the weights. Inclusion of the regularizer (10) leads to a simple modification to
the M-step (8) of the EM algorithm to give

(

ΦTGΦ +
α

β
I

)

WT
new = ΦTRX (11)

where I is the M × M unit matrix.

A more complete discussion of the GTM model, and of its relation to the SOM, is given in 7).
Papers relating to the GTM, and a software implementation of the GTM in Matlab, are available
from

http://www.ncrg.aston.ac.uk/GTM/.

2 Incremental Learning

The version of the GTM described in Section 1.1 uses batch learning in which all of the data
points are used together to update the model parameters. For large data sets this may become
computationally wasteful since the M-step is performed only after all of the data points have
been considered. Significant computational savings could potentially be obtained by updating the
parameters incrementally using data points one at a time, or in small batches. This is particularly
advantageous if there is significant redundancy in the data set. We therefore consider a sequential
EM algorithm for the GTM and provide an outline proof of its convergence.

Suppose that, at a given stage of the algorithm, we have current estimates for {Rni} as well as
for W and β. If the next data point is xm then we can use (6) to evaluate the corresponding
value for Rnew

mi , while leaving the remaining Rni for n 6= m unchanged. Then we can revise our
estimate of G using Gnew

ii = Gii + Rnew
mi − Rmi and similarly revise our estimate of RX using

(RX)new
i = (RX)i + (Rnew

mi − Rmi)xm. We then solve (8) to find Wnew and subsequently obtain
βnew using

1

βnew
=

1

β
+

1

ND

K
∑

i=1

Rnew
im ‖Wnewφ(ui) − xm‖2 −

1

ND

K
∑

i=1

Rim‖Wφ(ui) − xm‖2 (12)

which follows from (9).

This incremental EM algorithm is effectively performing a partial E-step since we are updating
only one of the {Rni}. A general proof that such algorithms still have guaranteed convergence
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properties was demonstrated by 27). Here we give an outline of their proof in the context of the
GTM. Consider the function

F({Rni},W, β) =
∑

n

∑

i

Rni ln

{

1

K
p(x|i,W, β)

}

−
∑

n

∑

i

Rni ln Rni (13)

in which the {Rni} are regarded as arbitrary non-negative numbers satisfying
∑

i Rni = 1 for all n.
The quantity F is analogous to the (negative) free energy in statistical physics. If we maximize (13)
with respect to the Rni, using Lagrange multipliers to take account of the summation constraints,
we obtain the result (6). If we then subsequently maximize over W and β keeping the Rni fixed, we
recover the standard M-step equations (8) and (9). Our partial E-step corresponds to maximizing
F with respect to Rmi while keeping the remaining Rni for n 6= m fixed. It is easily shown (27)
that a (local or global) maximum of F corresponds to a (local or global) maximum of the true log
likelihood. Thus our algorithm is guaranteed to increase F until we reach a maximum likelihood
solution.

Comparison of the incremental EM algorithm with the standard batch approach for a simple
Gaussian mixture model by 27) demonstrated the potential for substantial improvements in speed
of convergence. In the case of the GTM, each M-step requires the solution of a set of coupled linear
equations given by (8) and the computational cost of doing so may offset much of the gain of using
an incremental approach involving data points considered one at a time. This is easily resolved by
taking batches of data points and using these to update the corresponding responsibilities before
performing the M-step, thereby keeping the overhead of the M-step small while still ensuring that
the overall cost of one EM cycle does not scale with the size of the data set. Again, at each iteration
the function F in (13) is increased, thereby providing a guarantee of convergence. For sufficiently
large data sets it will always be computationally efficient to use an incremental approach, for which
there will exist an optimal batch size.

We see that the initialization of the Rni does not have to be consistent with the initial values of W

and β, so that we can, for instance, simply set all of the Rni = 1/K. Other variations of the EM
algorithm are also possible. For instance, it will often be the case that many of the responsibilities
take very small values, particularly in later stages of the optimization. If these values are frozen
(i.e. not recomputed when the corresponding data points are presented) then the analysis based
on (13) again shows that the value of F will not decrease and so a stable algorithm will result.

3 A Manifold-Aligned Noise Model

The noise model (3) was introduced primarily to account for the variance of the data away from
the underlying non-Euclidean manifold. However, since the latent points are discrete it also has
to account for variance locally along the directions of the manifold. Depending on the distribution
of the data, and the density of points on the manifold, these variances may have quite different
values. We can accommodate this effect by generalizing (3) to allow for different variances in
directions which are (locally) parallel and perpendicular to the manifold, as illustrated in Figure 2.
In particular, we would like to ensure that the variance of the noise distribution in directions
tangential to the manifold is never significantly less than the square of the typical distance between
neighbouring nodes, so that there is a smooth distribution along the manifold even when the noise
variance perpendicular to the manifold becomes small.

We can construct a suitable covariance matrix as follows. The derivatives of the mapping function
y(u;W) with respect to the latent space coordinates u1, . . . , uq represent linearly independent
vectors lying tangentially to the manifold at the point u. The covariance matrix can then be
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Figure 2: Illustration of the generalization of the noise model to allow for different variances
parallel and perpendicular to the GTM manifold. The top figure shows the standard
GTM model, with the manifold shown as a curve and the Gaussian component
densities represented as circles. In the bottom figure the noise model is generalized
to a manifold-aligned non-isotropic covariance model.

constructed in the form

Ci =
1

β
I + η

q
∑

l=1

∂y

∂uil

∂yT

∂uil
(14)

where uil is the lth component of ui, and η is a scaling factor equal to (some multiple of) the
distance between neighbouring nodes in latent space. The required derivatives are easily calculated
since

∂y

∂uil
= Wψil (15)

where ψil are the (fixed) partial derivatives of the basis functions φ(ui) with respect to uil.

This modification to the model results in a more complex E-step since the component densities of
the mixture distribution take the form

p(x|i) =

(

1

2π

)D/2

|Ci|
−1/2 exp

{

−
1

2
(mi − x)TC−1

i (mi − x)

}

(16)

and hence require that the inverse and the determinant of each covariance matrix be evaluated for
each latent point. The inverse is efficiently computed using q successive applications of the matrix
inversion lemma

(A + vvT)−1 = A−1 −
(A−1v)(vTA−1)

1 + vTA−1v
(17)

which is easily verified by multiplying both sides by (A + vvT). Similarly, the M-step equations
become more complex since the covariance matrices now depend on the weight matrix W. For the
W-update we therefore approximate the re-estimation formulae for W by replacing C with β−1I

thereby recovering the standard M-step updates (8) and (9).

As an illustration of this model we use a 1D toy problem in 2D, similar to the one used in 7). The
training data, together with the converged model, are shown in Figure 3.

This version of the GTM has some similarities to the adaptive subspace SOM model (20), since
each mixture component now represents a local linear sub-space. A related form of Gaussian
mixture model, with general covariance matrices and constrained centres, was described by 39).
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Figure 3: Application of the manifold-aligned noise model to a toy problem. The plots show
the data space, with the training data plotted as ◦, and the GTM manifold shown
as a curve connecting the mixture component centres. Mixture components are
plotted as ellipsoids, corresponding to unit Mahalanobis distance, with ’+’ marking
the centres. The left hand plot shows a standard GTM model (giving a log likelihood
of −58.9) while the right hand plot shows the modified form of the GTM having a
manifold-aligned noise model (giving a log likelihood of −48.3).

4 Discrete Data

The original version of the GTM, as discussed in Section 1, was formulated for the case of data
variables which are continuous1. We now extend the model to account for discrete data and for
combinations of discrete and continuous variables. Consider first the case of a set of binary data
variables xk ∈ {0, 1}. As for the case of continuous variables, we assume that the components of x

are conditionally independent, given the latent space label i. We can then express the conditional
distribution of the binary vector x, given i, using a binomial (Bernoulli) distribution of the form

p(x|i) =
∏

k

mxk

ik (1 − mik)1−xk (18)

where the conditional means mik are given by mik = σ(wT
kφ(ui)), σ(a) = (1 + exp(−a))−1 is the

logistic sigmoid function, and wk is the kth column of W. Note that in (18) there is no analogue
of the noise parameter β.

Next, suppose instead that the D data variables represent membership of one of D mutually
exclusive classes. Again, the data values are binary, but for a given pattern all values are zero
except for one component which identifies the class (this is called a 1-of-D coding scheme). In
this case we can represent the conditional distribution of the data variables using a multi-nomial
distribution (3) of the form

p(x|i) =
D
∏

k=1

mxk

ik (19)

1The SOM model is also formulated for continuous variables.
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where mik are defined by a softmax, or normalized exponential, transformation (3) of the form

mik =
exp(wT

kφ(ui))
∑

j exp(wT
kφ(uj))

. (20)

Finally, if we have a data set consisting of a combination of continuous, binary and categorical
variables, we can formulate the appropriate model by writing the conditional distribution p(x|i)
as a product of Gaussian, binomial and multi-nomial distributions. This represents the standard
conditional independence framework (used in many latent variable models) in which the observed
variables are independent given the latent variables.

We can again estimate the parameters in such models using the EM algorithm. The E-step again
takes the form (6). However, the M-step now requires non-linear optimization, although this
may be performed efficiently using the iterative re-weighted least squares (IRLS) algorithm (25).
Note that it is not necessary to perform an exact optimization in the M-step, and indeed it will
typically be computationally efficient to perform only a partial optimization, corresponding to the
generalized EM (GEM) algorithm (12).

5 A Semi-linear Model

We have already noted that the computational cost of the standard GTM grows exponentially
with the number of latent dimensions (as is also the case for the SOM). One approach to dealing
with high-dimensional latent spaces would simply be to consider a random sampling of the latent
space, as used by 23) in the ‘density network’ model. However, such sampling effectively becomes
very sparse as the dimensionality of the latent space increases, so again this approach is limited to
low values of q.

An alternative approach is to introduce a semi-linear model, in which the data variables depend
non-linearly on a small number of dimensions of latent space, and depend linearly on the remaining
dimensions. Linear latent variable models include factor analysis (15) and probabilistic principal
component analysis (35). The GTM can be regarded as one possible non-linear generalization of
such models.

First, suppose we consider a model in which the data variables are purely linear functions of
the latent variables, so that (1) becomes y = Vu + µ in which V is a D × q matrix, and for
convenience we have introduced an explicit mean vector µ. Instead of using a finite discrete grid
in latent space, we can consider a prior distribution over u given by a zero mean, unit covariance
Gaussian. The marginal distribution of the data variables is then given by the convolution of
two Gaussian functions and can be evaluated analytically, with the result that the overall density
model is a Gaussian with mean µ and covariance

C = β−1I + VVT. (21)

An important property of this model, demonstrated by Tipping and Bishop (34,35), is that the
maximum likelihood solution for V, β and µ can be found in closed form. The solution for µML

is straightforward and is given by the sample mean. If we now introduce the sample covariance
matrix given by

S =
1

N

N
∑

n=1

(xn − µML)(xn − µML)T (22)

then the maximum likelihood solution for V is given by

VML = U(Λ − β−1I)1/2 (23)
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where U is a D× q matrix whose columns are the principal eigenvectors of S (i.e. the eigenvectors
corresponding to the q largest eigenvalues) with corresponding eigenvalues in the diagonal q × q
matrix Λ. Finally the maximum-likelihood estimator of β is given by

1

βML
=

1

D − q

D
∑

j=q+1

λj (24)

where we have ordered the eigenvalues such that λ1 ≥ λ2 ≥ . . . ≥ λD. The result (24) has a
clear interpretation as the variance ‘lost’ in the projection, averaged over the lost dimensions. This
model therefore represents a probabilistic formulation of standard principal components analysis.

Now we consider a semi-linear formulation of the GTM in which the data variables depend non-
linearly on a few discretized latent variables and linearly on the remaining Gaussian latent variables.
Marginalizing over all of the latent variables we obtain the following density model

p(x|W,V, β) =

K
∑

i=1

1

K

(

1

2π

)D/2

|C|−1/2 exp

{

−
1

2
(x − mi)

TC−1(x − mi)

}

(25)

where C is given by (21). The density model (25) can be interpreted as a mixture of probabilistic
PCA models with equal covariance matrices and with means mi lying on the GTM manifold. In
order to maximize the corresponding log likelihood, we could treat both the discretized and the
continuous latent variables as jointly missing data and apply the EM algorithm. However, we can
make use of the above result for probabilistic PCA by treating only the discrete latent variables
(corresponding to the ‘non-linear dimensions’) as missing. The E-step of the corresponding EM
algorithm involves the evaluation of the responsibilities Rni which are given by

Rni =
exp

{

− 1
2 (xn − mi)

TC−1(xn − mi)
}

∑

j exp
{

− 1
2 (xn − mj)TC−1(xn − mj)

} . (26)

In the M-step we must maximize the expected complete-data log likelihood (12; 3) given by

〈LC〉 =
N

∑

n=1

K
∑

i=1

Rni

{

− ln K −
D

2
ln(2π) −

1

2
ln |C| −

1

2
(xn − mi)

TC−1(xn − mi)

}

. (27)

Thus we see that 〈LC〉 depends on the data only through the weighted covariance matrix

S =

N
∑

n=1

K
∑

i=1

Rni(xn − mi)(xn − mi)
T. (28)

Maximizing (27) jointly over W, V and β, for fixed Rni, can then be accomplished as follows. We
first note that the maximum over W does not depend V or β and is given by the solution to (8).
We now use this new value for W to evaluate {mi} and hence evaluate S given by (28). Finally
we can find the eigenvector/eigenvalue decomposition of S and use this to solve for V and β using
(23) and (24).

We have seen that, in the probabilistic PCA model, the solutions for V and β have explicit, closed-
form solutions. However, it was noted by 33) that, for problems in which the dimensionality D of
the data space is high, it may be more efficient to treat the continuous latent variables as missing
data and apply the EM algorithm. Although this results in an iterative optimization scheme,
each step requires O(ND) operations, compared with the O(ND2) operations needed to evaluate
the covariance matrix. Provided the number of iterations of EM needed to reach satisfactory
convergence is sufficiently smaller than D, there can be an overall computational saving, which
typically improves as D increases. A derivation and discussion of this EM algorithm is given in
35).
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As a demonstration of this model, a simple data set was generated in a 3-dimensional space. The
first two variables, x1 and x2 were discretized over a rectangular grid, while the third variable, x3,
was computed from x1 and x2 with the formula

x3 = x2 + 0.5 sin(0.5πx1) (29)

so that x3 depends linearly on x2 and non-linearly on x1. Gaussian noise was then added to
x1, x2 and x3. A semi-linear GTM with one non-linear latent variable (using 10 nodes and 5
basis functions) and one linear latent variable was trained on this data set, starting from a PCA
initialization. The trained model, shown in Figure 4, captures the structure of the data well. Note
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Figure 4: Demonstration of the semi-linear model. The left plot shows a 2-dimensional mani-
fold embedded in data space, along with the data set generated by sampling points
on the manifold and adding Gaussian noise. The right hand plot shows the result
of fitting a semi-linear GTM model having one non-linear latent dimension with 10
latent points, and one linear dimension. The mixture components are plotted as
ellipsoids corresponding to unit Mahalanobis distance.

that this model appears to be fairly sensitive to the initialization of its parameters, and is relatively
prone to finding local minima.

The semi-linear model for the latent space distribution can easily be combined with the type of
mixed discrete-continuous distributions for the data space distribution discussed in Section 4.

6 Bayesian Inference for Hyperparameters

An important issue in maximum likelihood density estimation is that of model complexity, which
in the context of the GTM is determined in large part by the ‘stiffness’ of the manifold. A more
flexible manifold can provide a better fit to the training data, but if the effective complexity is
too high the model may adapt too closely to the specific data set and thereby give a poorer
representation of the underlying distribution from which the data was generated (a phenomenon
known as over-fitting).
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The effective model complexity in the GTM is controlled by the number and form of the basis
functions as well as by the regularization coefficient. Although it would be possible to explore a
range of model complexities by altering the number of basis functions, it is computationally more
convenient to arrange for the complexity to be governed by one or more real-valued parameters,
and to explore the corresponding continuous space. We shall denote such parameters generically
by σ, which might, for example, represent a common width parameter in the case of Gaussian
basis functions.

In the discussion of the GTM in Section 1.1 the parameters W and β were estimated from the
data using maximum (penalized) likelihood, while the regularization coefficient α (as well as any
parameters governing the basis functions) was assumed to be constant. Since the GTM represents
a probabilistic model, it offers the possibility of a more comprehensive probabilistic treatment using
a Bayesian formalism.

In this section it will be convenient to introduce a column vector w consisting of the concatenation
of the successive columns of W. From (4) and (5) the log likelihood function for the GTM is given
by

L(w, β, σ) = ln p({x}|w, β, σ) =

N
∑

n=1

ln

{

K
∑

i=1

1

K

(

β

2π

)D/2

exp

[

−
β

2
‖mi − x‖2

]

}

. (30)

We now introduce a prior distribution over the weights, which for simplicity we choose to be an
isotropic Gaussian distribution of the form

p(w|α) =
( α

2π

)W/2

exp
{

−
α

2
‖w‖2

}

(31)

where W is the total number of elements in w. Since α controls the distribution of other parameters
it is often called a hyperparameter, and we shall similarly use this terminology to describe β and σ
also. A full Bayesian treatment would involve the introduction of prior distributions over α, β and
σ followed by a marginalization over all the parameters and hyperparameters in the model. Instead
we estimate values for the hyperparameters by maximizing their marginal likelihood p({xn}|α, β, σ)
in which we have integrated over w. This corresponds to the type-II maximum likelihood procedure
(2), also known as the evidence approximation (21; 3). 36) applies a similar Bayesian treatment
to a generalized form of the elastic net (14; 13), which is also a probabilistic model having close
connections to the SOM.

The marginal likelihood for the GTM model is given by

p({xn}|α, β, σ) =

∫

p({xn}|w, β, σ)p(w|α) dw. (32)

Since this integral is analytically intractable, we follow 22) and make a local Gaussian approx-
imation to the posterior distribution over w in the neighbourhood of a mode. Maximizing the
posterior distribution (for given values of α, β and σ) corresponds to maximizing the penalized log
likelihood, and the solution for w was given in (11). Suppose we have found a maximum w∗ of
the posterior distribution. If we define

S(w, α, β, σ) = − ln
{

p({xn}|w, β, σ)p(w|α)
}

(33)

then we can then write (32) in the form

p({xn}|α, β, σ) =

∫

exp
{

− S(w, α, β, σ)
}

dw

' exp
{

− S(w∗, α, β, σ)
}

∫

exp

{

−
1

2
(w − w∗)

TA(w − w∗)

}

dw

= exp
{

− S(w∗, α, β, σ)
}

(2π)W/2|A|−1/2 (34)
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where we we have performed a Taylor expansion of the logarithm of the integrand and retained
terms up to second order. Note that the first order terms vanish since the integrand is proportional
to the posterior distribution, through Bayes’ theorem, and we are at a local maximum. We have
also introduced the Hessian matrix A given by the second derivatives of S with respect to the
elements of w, evaluated at w∗. Making use of (30) and (31) we then obtain the log-evidence for
σ, α and β in the form

ln p({xn}|α, β, σ) = L(w∗, β, σ) −
α

2
‖w∗‖

2 −
1

2
ln |A| +

W

2
lnα. (35)

Although the Hessian matrix can be calculated exactly, the resulting expression is computationally
expensive to evaluate. Here we consider an approximation obtained by neglecting terms involving
derivatives of the responsibilities Rni with respect to w. This approximation becomes exact when
the responsibility for each data point n is taken by just one of the mixture components (as is often
effectively the case during the later stages of GTM training) so that Rni ∈ {0, 1}. The Hessian
matrix then takes a block diagonal form (with one block corresponding to each column from the
original W matrix) in which all blocks are identical and have the form βΦTGΦ + αI. Note that
this expression will already have been evaluated for use in the regularized M-step (11).

We can maximize (35) with respect to α and β by setting the respective derivatives to zero, yielding
the update formulae

α =
γ

‖w∗‖2
(36)

and

β =
ND − γ

∑

n

∑

i Rni‖xn − mi‖2
(37)

where we have defined

γ =

W
∑

i=1

λi − α

λi
(38)

and λi are the eigenvalues of A. Note that we have neglected terms involving derivatives of w∗

with respect to α and β. Comparison of (37) with the corresponding maximum likelihood update
(9) shows that they have identical form except for the appearance of γ which can be interpreted
as the effective number of w-parameters in the model (21).

In a practical implementation, maximization with respect to W using the EM algorithm is inter-
leaved with re-estimation of α and β. Since the dependence of the marginal log likelihood on σ is
more complex we do not obtain a simple re-estimation formula, but since we are now down to a
single variable, we can simply evaluate (35) for a range of different σ values, while estimating α
and β on-line, and select the model with the highest log-evidence score.

To evaluate this method, synthetic data was generated from a curved 2D manifold in a 3D space.
20 data sets were generated by adding random Gaussian noise with standard deviation 0.2 to 400
points drawn from a regular grid on the manifold. A corresponding test data set of 1024 points
was also generated. A GTM model, with a 15 × 15 latent grid and a 5 × 5 grid of Gaussian basis
functions with common width parameter σ, was trained on the 20 data sets, each time starting
from a PCA initialization. The plots in Figure 5 show the log-evidence and log-likelihoods after
training, plotted against log2(σ). The data generating manifold is shown in the top left panel of
Figure 6, together with a sample data set. Figure 6 also shows an example of the model with the
highest log-evidence (σ = 1), together examples of models in which σ is fixed to values which are
either too small or too large.
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Figure 5: Log-evidence and log-likelihood plotted against log
2
(σ). Each plot shows the individ-

ual results for the 20 data sets after training, together with a line plot summarizing
the mean. The log-likelihood plot shows results for the training and test sets (nor-
malized by the respective size of the data sets).

7 Gaussian Process Formulation

In the original GTM, described in Section 1.1, there is a hard constraint on the form of the
latent-space to data-space mapping due to the finite number of basis functions used, as well as
a soft constraint due to the regularization term (10). An alternative approach is to enforce the
smoothness of this mapping entirely through regularization, using a Gaussian process prior over
functions. For each dimension j in the data space (j = 1, . . . , D), let m(j) be a vector of length K
consisting of the jth components of m1 through mK , so that if the column vectors mi are arranged
side-by-side, one obtains the D×K matrix M in which m(j) is the jth row of this matrix. Consider
a Gaussian prior distribution on the centre locations given by

p(M) =

D
∏

j=1

1

(2π)K/2|B(j)|1/2
exp

{

−
1

2
m(j)T(B(j))−1m(j)

}

(39)

where the B(j)’s are positive definite matrices. In practice it will usually not be necessary to use
different covariance matrices for each dimension, and the B(j)’s will be denoted generically by B.

The EM algorithm is now used to maximize the penalized log likelihood

Lp(M, β) =

N
∑

n=1

ln p(xn|M, β) + ln p(M). (40)

In the E-step, the usual responsibilities are calculated. With these fixed, the M-step involves the
inversion of a K ×K matrix (where K is the number of latent points). This should be contrasted
with equation (8) which involves the inversion of an M ×M matrix (in which M is the number of
basis functions). The m’s can be initialized via PCA, as in the standard GTM.

We now focus on the specification of B. The theory of Gaussian process regression (37; 38) or
equivalently regularization networks (30) allows B to be quite general. The covariance between
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Figure 6: Illustration of Bayesian parameter re-estimation. The data generating manifold is
shown in the top left plot, together with a sample data set. The top right plot shows
the manifold of a GTM model trained on this data set, with σ fixed to 1 and α and
β being re-estimated during training, final values being α = 9.2 and β = 18.3. The
bottom left plot shows a significantly more flexible model, σ = 0.25, trained using
the standard GTM and no weight regularization; the final estimated value for β was
40.9. The bottom right plot, shows a much stiffer model, σ = 2, trained using the
standard GTM and constant weight regularization of 50; the final estimated value
for β was 10.1.

mkj and mlj can be taken to depend on the positions of their respective nodes uk and ul, so that
Bkl = f(uk,ul), where f(·, ·) is a covariance function. For example, one can use

Bkl = v exp

{

−
‖ uk − ul ‖

2

2λ2

}

(41)

where λ is a length scale in the latent space and v sets the overall scale of B. A wide variety of
covariance functions can be used, and there is a substantial literature concerning valid covariance
functions (see, for example, 40)).

In the original GTM, and in the Gaussian process formulation of the GTM outlined above, the
overall regression problem decomposes into separate problems for each dimension in the data space.
(These problems are coupled only through the responsibilities.) However, if the prior on M couples
the various dimensions (as in the technique of co-kriging in geostatistics (11)), then this would no
longer be the case, and the M-step would involve a KD × KD matrix inversion.

36) provides a similar analysis to that above, but uses a relatively simple covariance matrix B
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based on a discretized approximation to derivatives of the M surface2. He gives details of the EM
algorithm which can easily be extended to the more general case, and also provides a Bayesian
treatment of hyper-parameters which is similar in spirit to that given in Section 6. By specifying
B through a covariance function we would expect to obtain rather better control over the prior
on M. For example, the length scale λ in (41) affords direct and readily understandable control
over the flexibility of the latent-space to data-space mapping. One other important advantage of
formulating the Gaussian process prior via the covariance function, rather than through a difference
operator as in 36), is that it defines the manifold in the data space not just at the reference vectors
but everywhere on the 2-d surface. This can be achieved because the machinery of Gaussian process
regression predicts the data-space locations corresponding to new u points.

The use of spline smoothing for the M-step in work on principal curves (17; 32) is another example
of the use of Gaussian process-type priors over functions in SOM-like models.

An advantage of the Gaussian process formulation of the GTM is that it emphasizes the similarities
between the GTM and SOM, by eliminating the use of basis functions in the regression model.
Furthermore, the update for m(j) is given by

m(j) = (G + β−1(B(j))−1)−1G(G−1Rx(j)) (42)

where x(j) is the jth column of X, and G−1Rx(j) def
= x(j) is the vector of weighted means of the

data at the K points in latent space. In the SOM, the update for m(j) is given by

m(j) = H(j)x(j) (43)

where H is the neighbourhood function evaluated between pairs of latent points. It is hard to draw
an analogy between H(j) and B(j) because of the matrix inversions involved in (42).

Another advantage of the Gaussian process formulation is that it avoids issues of discrete model
order selection that arise in the GTM concerning the number of basis functions used. However, the
continuous parameters that control p(M) through the covariance function still need to be addressed.
36) has discussed a MAP (maximum a-posteriori probability) treatment of these parameters, and
a fully Bayesian treatment using Markov chain Monte Carlo methods would also be possible.

One disadvantage of using Gaussian processes to formulate the GTM model is that the matrices to
be inverted will be larger than those in the parametric GTM case. However, using up to 1000 nodes
in latent space should not present too many problems on modern workstations, and techniques for
efficient approximate treatment of Gaussian processes for larger problems have been explored by
16).

8 Conclusions

One of the many benefits of the probabilistic foundation of the GTM is that extensions of the model
can be formulated in a principled manner, and we have explored a number of such extensions in
this paper. There are many other ways in which the basic GTM model can be extended, again
by taking advantage of the probabilistic setting. For example, it is straightforward to construct
a probabilistic mixture of GTM models. The parameters of the component models as well as the
mixing coefficients between the models, can be determined by maximum likelihood using the EM
algorithm, again retaining the attractive convergence properties. This can be further extended to
hierarchical mixtures, as discussed in 8).

2In fact Utsugi’s matrix is only positive semi-definite due to the presence of a linear null-space.
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Another refinement of the basic model would be to allow the parameters σ and β to be contin-
uous functions of the latent space variable u, defined by a parametric transformation. Similarly,
the individual nodes can be assigned adaptive mixing coefficients (fixed at 1/K in the original
formulation of the GTM) and these could be independent variables (non-negative and summing
to unity) or they could again be smooth functions of u. In all such cases, there is a well-defined
learning procedure based on maximization of the likelihood function, and the EM algorithm can
be exploited to handle the hidden variables.

In many applications involving real-world data, the data set will suffer from missing values. Pro-
vided the values can be assumed to be ‘missing at random’ (i.e. the missingness is not itself
informative) then maximum likelihood specifies that the correct procedure for treating such data
is to marginalize over the missing values. For many of the distributions considered in this pa-
per this marginalization is trivial to implement, and corresponds to simply ignoring the missing
values, as has been done in the case of the SOM (31). For more complex distributions, such as
the non-isotropic Gaussians considered in Section 3, the marginalization is more complex but still
analytically tractable.

While both the SOM and the GTM represent the data in terms of an underlying two-dimensional
structure, an elegant property of the GTM is that there exists an explicit manifold defined by the
continuous non-linear mapping from latent space to data space specified by the basis functions.
The corresponding magnification factors, which characterize the way in which portions of the latent
space are stretched and distorted by the transformation to data space, can therefore be evaluated
as continuous functions of the latent space coordinates using the techniques of differential geometry
(5). This technique can also be applied to the batch version of the SOM (6), by exploiting the
existence of a natural interpolating surface arising through a kernel smoothing interpretation (26).

Another role for the GTM is as the emission distribution of a hidden Markov model, leading
to GTM through time as described in 4). Finally, we note that the technique of independent
component analysis (ICA) (18; 9; 1) can be formulated as a latent variable model with a linear
transformation from latent space to data space (24; 29). ICA can therefore be extended to allow
non-linear transformations by employing the framework of the GTM (28).

In summary, the GTM retains the many appealing features of the SOM, and offers comparable
computational speed, while its probabilistic formulation permits a wide variety of extensions to be
developed in a theoretically well-founded setting.
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