
Exact Calculation of the Hessian Matrix
for the Multi-layer Perceptron

Christopher M. Bishop
Current address:

Microsoft Research,
7 J J Thomson Avenue,

Cambridge, CB3 0FB, U.K.
cmishop@microsoft.com

http://research.microsoft.com/∼cmbishop/

Published in Neural Computation 4 No. 4 (1992) 494 – 501

Abstract

The elements of the Hessian matrix consist of the second derivatives of the error mea-
sure with respect to the weights and thresholds in the network. They are needed in
Bayesian estimation of network regularization parameters, for estimation of error bars on
the network outputs, for network pruning algorithms, and for fast re-training of the net-
work following a small change in the training data. In this paper we present an extended
back-propagation algorithm which allows all elements of the Hessian matrix to be evalu-
ated exactly for a feed-forward network of arbitrary topology. Software implementation
of the algorithm is straightforward.

1



1 Introduction

Standard training algorithms for the multi-layer perceptron use back-propagation to eval-
uate the first derivatives of the error function with respect to the weights and thresholds
in the network. There are, however, several situations in which it is also of interest to
evaluate the second derivatives of the error measure. These derivatives form the elements
of the Hessian matrix.

Second derivative information has been used to provide a fast procedure for re-training
a network following a small change in the training data (Bishop, 1991). In this application
it is important that all elements of the Hessian matrix be evaluated accurately. Approxi-
mations to the Hessian have been used to identify the least significant weights as a basis
for network pruning techniques (Le Cun et al., 1990), as well as for improving the speed
of training algorithms (Becker and Le Cun, 1988; Ricotta et al., 1988). The Hessian has
also been used by MacKay (1991) for Bayesian estimation of regularization parameters, as
well as for calculation of error bars on the network outputs and for assigning probabilities
to different network solutions. MacKay found that the approximation scheme of Le Cun
et al. (1990) was not sufficiently accurate and therefore included off-diagonal terms in the
approximation scheme.

In this paper we show that the elements of the Hessian matrix can be evaluated exactly
using multiple forward propagation through the network, followed by multiple backward
propagation. The resulting algorithm is closely related to a technique for training networks
whose error functions contain derivative terms (Bishop, 1990). In Section 2 we derive the
algorithm for a network of arbitrary feed-forward topology, in a form which can readily
be implemented in software. The algorithm simplifies somewhat for a network having a
single hidden layer, and this case is described in Section 3. Finally a brief summary is
given in Section 4.

2 Evaluation of the Hessian Matrix

Consider a feed-forward network in which the activation zi of the ith unit is a non-linear
function of the input to the unit:

zi = f(ai) (1)

in which the input ai is given by a weighted linear sum of the outputs of other units

ai =
∑

j

wijzj + θi (2)

where wij is the synaptic weight from unit j to unit i, and θi is a bias associated
with unit i. Since the bias terms can be considered as weights from an extra unit whose
activation is fixed at zk = +1, we can simplify the notation by absorbing the bias terms
into the weight matrix, without loss of generality.

We wish to find the first and second derivatives of an error function E, which we take
to consist of a sum of terms, one for each pattern in the training set,

E =
∑

p

Ep (3)

1



where p labels the pattern. The derivatives of E are obtained by summing the deriva-
tives obtained for each pattern separately.

To evaluate the elements of the Hessian matrix, we note that the units in a feed-forward
network can always be arranged in ‘layers’, or levels, for which there are no intra-layer
connections and no feed-back connections. Consider the case in which unit i is in the
same layer as unit n, or in a lower layer (i.e. one nearer the input). The remaining terms,
in which unit i is above unit n, can be obtained from the symmetry of the Hessian matrix
without further calculation. We first write

∂2Ep

∂wij∂wnl

=
∂ai

∂wij

∂

∂ai

(

∂Ep

∂wnl

)

= zj

∂

∂ai

(

∂Ep

∂wnl

)

(4)

where we have made use of equation 2. The first equality in equation 4 follows from
the fact that, as we shall see later, the first derivative depends on wij only through ai.
We now introduce a set of quantities σn defined by

σn ≡
∂Ep

∂an

(5)

Note that these are the quantities which are used in standard back-propagation. The
appropriate expressions for evaluating them will be obtained shortly. Equation 4 then
becomes

∂2Ep

∂wij∂wnl

= zj

∂

∂ai

(σnzl) (6)

where again we have used equation 2. We next define the quantities

gli ≡
∂al

∂ai

(7)

bni ≡
∂σn

∂ai

(8)

The second derivatives can now be written in the form

∂2Ep

∂wij∂wnl

= zjσnf ′(al)gli + zjzlbni (9)

where f ′(a) denotes df/da. The {gli} can be evaluated from a forward propagation
equation obtained as follows. Using the chain rule for partial derivatives we have

gli =
∑

r

∂ar

∂ai

∂al

∂ar

(10)

where the sum runs over all units r which send connections to unit l. (In fact, con-
tributions only arise from units which lie on paths connecting unit i to unit l). Using
equations 1 and 2 we then obtain the forward propagation equation

gli =
∑

r

f ′(ar)wlrgri (11)

The initial conditions for evaluating the {gli} follow from the definition of equation 7,
and can be stated as follows. For each unit i in the network, (except for input units, for

2



which the corresponding {gli} are not required), set gii = 1 and set gli = 0 for all units
l 6= i which are in the same layer as unit i or which are in a layer below the layer containing
unit i. The remaining elements of gli can then be found by forward propagation using
equation 11. The number of forward passes needed to evaluate all elements of {gli} will
depend on the network topology, but will typically scale like the number of (hidden plus
output) units in the network.

The quantities {σn} can be obtained from the following back-propagation procedure.
Using the definition in equation 5, together with the chain rule, we can write

σn =
∑

r

∂Ep

∂ar

∂ar

∂an

(12)

where the sum runs over all units r to which unit n sends connections. Using equations
1 and 2 then gives

σn = f ′(an)
∑

r

wrnσr (13)

This is just the familiar back-propagation equation. Note that the first derivatives of
the error function are given by the standard expression

∂Ep

∂wij

= σizj (14)

which follows from equations 2 and 5. The initial conditions for evaluation of the {σn}
are given, from equations 2 and 5, by

σm = f ′(am)
∂Ep

∂zm

(15)

where m labels an output unit.
Similarly, we can derive a generalised back-propagation equation which allows the

{bni} to be evaluated. Substituting the back-propagation formula 13 for the {σn} into the
definition of bni, equation 8, we obtain

bni =
∂

∂ai

{

f ′(an)
∑

r

wrnσr

}

(16)

which, using equations 7 and 8, gives

bni = f ′′(an)gni

∑

r

wrnσr + f ′(an)
∑

r

wrnbri (17)

where again the sum runs over all units r to which unit n sends connections. Note
that, in a software implementation, the first summation in equation 17 will already have
been computed in evaluating the {σn} in equation 13.

The derivative ∂/∂ai which appears in equation 16 arose from the derivative ∂/∂wij

in equation 4. This transformation, from wij to ai, is valid provided wij does not appear
explicitly within the brackets on the right hand side of equation 16. This is always the
case, because we considered only units i in the same layer as unit n, or in a lower layer.
Thus the weights wrn are always above the weight wij and so the term ∂wrn/∂wij is always
zero.

3



The initial conditions for the back-propagation in equation 17 follow from equations
7, 8 and 15,

bmi = gmiHm (18)

where we have defined

Hm ≡
∂2Ep

∂a2
m

= f ′′(am)
∂Ep

∂zm

+ (f ′(am))
2 ∂2Ep

∂z2
m

(19)

Thus, for each unit i (except for the input units), the bmi corresponding to each output
unit m are evaluated using equations 18 and 19, and then the bni for each remaining unit
n (except for the input units, and units n which are in a lower layer than unit i) are found
by back-propagation using equation 17.

Before using the above equations in a software implementation, the appropriate ex-
pressions for the derivatives of the activation function should be substituted. For instance,
if the activation function is given by the sigmoid:

f(a) ≡
1

1 + exp(−a)
(20)

then the first and second derivatives are given by

f ′(a) = f(1 − f) f ′′(a) = f(1 − f)(1 − 2f) (21)

For the case of linear output units, we have f(a) = a, f ′(a) = 1, and f ′′(a) = 0, with
corresponding simplification of the relevant equations.

Similarly, appropriate expressions for the derivatives of the error function with respect
to the output unit activations should be substituted into equations 15 and 19. Thus, for
the sum of squares error defined by

Ep =
1

2

∑

m

(zm − tm)2 (22)

where tm is the target value for output unit m, the required derivatives of the error
become

∂Ep

∂zm

= (zm − tm)
∂2Ep

∂z2
m

= 1 (23)

Another commonly used error measure is the relative entropy (Solla et al., 1988)
defined by

Êp =
∑

m

{tm ln zm + (1 − tm) ln(1 − zm)} (24)

The derivatives of Êp take a particularly elegant form when the activation function
of the output units is given by the sigmoid of equation 20. In this case, we have, from
equations 15, 19 and 21,

σm = tm − zm Hm = −zm(1 − zm) (25)

To summarise, the evaluation of the terms in the Hessian matrix can be broken down
into three stages. For each pattern p, the {zn} are calculated by forward propagation using

4



equations 1 and 2, and the {gli} are obtained by forward propagation using equation 11.
Next, the {σn} are found by back-propagation using equations 13 and 15, and the {bni} are
found by back-propagation using equations 17, 18, and 19. Finally, the second derivative
terms are evaluated using equation 9. (If one or both of the weights is a bias, then the
correct expression is obtained simply by setting the corresponding activation(s) to +1).
These steps are repeated for each pattern in the training set, and the results summed to
give the elements of the Hessian matrix.

The total number of distinct forward and backward propagations required (per training
pattern) is equal to twice the number of (hidden plus output) units in the network, with
the number of operations for each propagation scaling like N , where N is the total number
of weights in the network. Evaluation of the elements of the Hessian using equation 9
requires of order N 2 operations. Since the number of weights is typically much larger
than the number of units, the overall computation will be dominated by the evaluations
in equation 9.

3 Single Hidden Layer

Many applications of feed-forward networks make use of an architecture having a single
layer of hidden units, with full interconnections between adjacent layers, and no direct
connections from input units to output units. Since there is some simplification to the
algorithm for such a network, we present here the explicit expressions for the second
derivatives. These follow directly from the equations given in Section 2.

We shall use indices k and k′ for units in the input layer, indices l and l′ for units in
the hidden layer, and indices m and m′ for units in the output layer. The Hessian matrix
for this network can be considered in three separate blocks as follows.

(A) Both weights in the second layer:

∂2Ep

∂wml∂wm′l′
= zlzl′δmm′Hm′ (26)

(B) Both weights in the first layer:

∂2Ep

∂wlk∂wl′k′

= zkzk′

{

f ′′(al′)δll′

∑

m

wml′σm + f ′(al′)f
′(al)

∑

m

wml′wmlHm

}

(27)

(C) One weight in each layer:

∂2Ep

∂wlk∂wml′
= zkf

′(al) {σmδll′ + zl′wmlHm} (28)

where Hm is defined by equation 19.
If one or both of the weights is a bias term, then the corresponding expressions are

obtained simply by setting the appropriate unit activation(s) to +1.

4 Summary

In this paper, we have derived a general algorithm for the exact evaluation of the second
derivatives of the error function, for a network having arbitrary feed-forward topology.

5



The algorithm involves successive forward and backward propagations through the net-
work, and is expressed in a form which allows for straightforward implementation in
software. The number of forward and backward propagations, per training pattern, is
at most equal to twice the number of (hidden plus output) units in the network, while
the total number of multiplications and additions scales like the square of the number
of weights in the network. For networks having a single hidden layer, the algorithm can
be expressed in a particularly simple form. Results from a software simulation of this
algorithm, applied to the problem of fast network re-training, are described in Bishop
(1991).

6



References

Becker S. and Le Cun Y. 1988. Improving the Convergence of Back-Propagation Learning
with Second Order Methods. In Proceedings of the Connectionist Models Summer

School, Ed. D. S. Touretzky, G. E. Hinton and T. J. Sejnowski, Morgan Kaufmann,
29.

Bishop C. M. 1990. Curvature-Driven Smoothing in Feed-forward Networks. In Proceed-

ings of the International Neural Network Conference, Paris, Vol 2, p749. Submitted
to Neural Networks.

Bishop C. M. 1991. A Fast Procedure for Re-training the Multi-layer Perceptron. To
appear in International Journal of Neural Systems 2 No. 3.

Le Cun Y., Denker J. S. and Solla S. A. 1990. Optimal Brain Damage. In Advances

in Neural Information Processing Systems, Volume 2, Ed. D. S. Touretzky, Morgan
Kaufmann, 598.

MacKay D. J. C. 1991. A Practical Bayesian Framework for Backprop Networks. Sub-
mitted to Neural Computation.

Ricotta L. P., Ragazzini S. and Martinelli G. 1988. Learning of Word Stress in a Sub-
optimal Second Order Back-propagation Neural Network. In Proceedings IEEE In-

ternational Conference on Neural Networks, San Diego, Vol 1, 355

Solla S. A., Levin E. and Fleisher M. 1988. Accelerated Learning in Layered Neural
Networks. Complex Systems 2, 625 – 640.

7


