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Abstract In recent years Bayesian methods have become widespread in many do-
mains including computer vision, signal processing, information retrieval and genome
data analysis. The availability of fast computers allows the required computations to
be performed in reasonable time, and thereby makes the benefits of a Bayesian treat-
ment accessible to an ever broadening range of applications. In this tutorial we give
an overview of the Bayesian approach to pattern recognition in the context of simple
regression and classification problems. We then describe in detail a specific Bayesian
model for regression and classification called the Relevance Vector Machine. This
overcomes many of the limitations of the widely used Support Vector Machine, while
retaining the highly desirable property of sparseness.

1 Introduction

Although Bayesian methods have been studied for many years, it is only recently that their
practical application has become truly widespread. This is due in large part to the relatively
high computational overhead of performing the marginalizations (integrations and summa-
tions) which lie at the heart of the Bayesian paradigm. For this reason more traditional ap-
proaches, based on point estimation of parameters, have typically been the method of choice.
However, the widespread availability of fast computers allows Bayesian computations to be
performed in reasonable time for an increasingly wide spectrum of real world applications.
Furthermore, the development of Markov chain Monte Carlo techniques, and more recently
of deterministic approximation schemes such as variational inference, have greatly extended
the range of models amenable to a Bayesian treatment.

1.1 Least Squares Regression

In this tutorial we consider the relatively simple, but widely studied, problems of regression
and classification for independent, identically distributed (i.i.d.) data. Consider a data set of
examples of input vectors {xn}

N
n=1 along with corresponding targets t = {tn}

N
n=1. Note that,

for notational simplicity, we shall consider a single target variable, but that the extension
of the methods discussed in this paper to multiple target variables is straightforward. For
regression, we generally assume that the targets are some noisy realization of an underlying
functional relationship y(x) that we wish to estimate so that

tn = y(xn;w) + εn (1)
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where ε is an additive noise process in which the values εn are i.i.d., and w is a vector of
adjustable parameters or ‘weights’.

One interesting class of candidate functions for y(x;w) is given by

y(x;w) =
M∑

i=1

wiφi(x) = w
Tφ(x), (2)

which represents a linearly-weighted sum of M nonlinear fixed basis functions denoted by
φ(x) = (φ1(x), φ2(x), . . . , φM(x))T. Models the type (2) are known as linear models since
the function y(x;w) is a linear function of the parameters w = (w1, w2, . . . , wM)T. However,
in general the function itself is non-linear, and indeed can be very flexible if M is relatively
large.

Classical (non-Bayesian) techniques use some form of ‘estimator’ to determine a specific
value for the parameter vector w. One of the simplest examples is the sum-of-squares error
function defined by

E(w) =
1

2

N∑

n=1

|y(xn;w) − tn|
2 (3)

where the factor of 1/2 is included for later convenience. Minimizing this error function with
respect to w leads to an estimate w

∗ which can be used to make predictions for new values
of x by evaluating y(x;w∗).

In the case of classification problems, the function y(x;w) is transformed using an appro-
priate non-linearity, such as a logistic sigmoid for 2-class problems or a softmax (normalized
exponential) for multi-class problems. The corresponding error function is given by the cross-
entropy (Bishop 1995).

A well-known problem with error function minimization is that complex and flexible
models can ‘over-fit’ the training data, leading to poor generalization. Indeed, when the num-
ber of parameters equals the number of data points, the least squares solution for a model of
the form (2) can achieve a perfect fit to the training data while having very poor generalization
to new data points. This behaviour is characterized by value of the parameters wi which have
large positive and negative values finely tuned to the individual noisy data points. The cor-
responding function y(x;w) typically exhibits strong oscillations as a function of x. Whilst
over-fitting can be avoided by limiting the complexity of the model, this too can lead to poor
generalization if the model is insufficiently flexible to capture the underlying behaviour of
the data set. However, we often have to work with data sets of limited size and yet we wish to
be able to use flexible models many adjustable parameters. We shall see that the phenomenon
of over-fitting is a pathological property of point estimation, and that by adopting a Bayesian
viewpoint we can apply complex models to small data sets without encountering problems of
over-fitting.

1.2 Regularization

One classical (non-Bayesian) technique for reducing over-fitting is that of regularization in
which a penalty term Ω(w) is added to the error function to give

Ẽ(w) = E(w) + λΩ(w) (4)
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where Ω(w) discourages over-fitting, for example by penalizing large values for the weight
parameters wi. The parameter λ controls the trade-off between fitting the data by reducing
E(w) and smoothing the function y(x;w) as a function of x by reducing Ω(w). A common
choice of regularizer is given by the sum of the squares of the weight parameters, so that

Ω(w) =
‖w‖2

2
. (5)

The value of the regularization coefficient is typically set by holding back some data from the
training set and optimizing λ by minimizing the value of the un-regularized error function
E(w) evaluated with respect to the held out data. For small data sets this procedure may be
refined to give the cross-validation technique which makes more efficient use of limited data
(Bishop 1995).

1.3 Probabilistic Models

We can motivate the regularized least-squares framework from a probabilistic viewpoint as
follows. The observed target values tn are assumed to have been generated from the underly-
ing function y(x;w) by the addition of independent Gaussian noise, so that in (1) the noise
values εn are normally distributed with zero mean and variance σ2 so that

p(ε|σ2) = N (ε|0, σ2) (6)

=

(
1

2πσ2

)1/2

exp

{
−

1

2σ2
ε2

}
(7)

where the notation N (ε|µ, σ2) specifies a Gaussian distribution over ε with mean µ and vari-
ance σ2. Variables such as µ and σ2 are sometimes called hyperparameters since they control
the distribution over parameters. From (1) and (7) it follows that the conditional distribution
of the target variable given the input variable and the weight parameters is again a Gaussian
distribution

p(t|x,w, σ2) =

(
1

2πσ2

)1/2

exp

{
−

1

2σ2
|y(x;w) − t|2

}
. (8)

Note that the distribution for t is conditioned on the value of x. We are not interested in
modelling the distribution of x and so from now on we shall omit x from the conditioning
list in order to keep the notation compact. Since the data points are independent, the joint
probability of the whole data set, given w and β, is given by the product over all data points
of the conditional distribution (8) evaluated at the observed data values

L(w) = p(t|w, σ2) =

(
1

2πσ2

)N/2

exp

{
−

1

2σ2

N∑

n=1

|y(xn;w) − tn|
2

}
. (9)

When viewed as a function of w this is called the likelihood function.
One technique from classical statistics for estimating w is called maximum likelihood and

involves setting w to the value which maximizes the likelihood function. For convenience
we can instead minimize the negative logarithm of the likelihood function (since ‘− ln’ is a
monotonically decreasing function) given by

− ln L(w) =
N

2
ln σ2 +

N

2
ln(2π) +

1

2σ2

N∑

n=1

|y(xn;w) − tn|
2. (10)
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Note that minimizing ln L(w) in (10) with respect to w is equivalent to minimizing the sum
of squares error function (3). We denote the resulting value of w by wML. Similarly we can
minimize (10) with respect to β with the result

1

βML

=
1

N

N∑

n=1

|y(xn;wML) − tn|
2. (11)

This provides us with an estimate of the noise level associated with the data under the assumed
model.

1.4 Bayesian Regression

We have seen that a classical treatment of our regression problem seeks a point estimate of
the unknown parameter vector w. By contrast, in a Bayesian approach we characterize the
uncertainty in w through a probability distribution p(w). Observations of data points mod-
ify this distribution by virtue of Bayes’ theorem, with the effect of the data being mediated
through the likelihood function.

Specifically we define a prior distribution p(w) which expresses our uncertainty in w tak-
ing account of all information aside from the data itself, and which, without loss of generality,
can be written in the form

p(w|α) ∝ exp {−αΩ(w)} (12)

where α can again be regarded as a hyperparameter. As a specific example we might choose
a Gaussian distribution for p(w|α) of the form

p(w|α) =
( α

2π

)M/2

exp
{
−

α

2
‖w‖2

}
. (13)

We can now use Bayes’ theorem to express the posterior distribution for w as the product
of the prior distribution and the likelihood function

p(w|t, α, σ2) ∝ p(w|α)L(w) (14)

where, as before, L(w) = p(t|w, σ2).
In a Bayesian treatment we make predictions by integrating with respect to the posterior

distribution of w, and we discuss this in detail shortly. For the moment, let us suppose that
we wish to use the posterior distribution to find a point estimate for w, and that we choose to
do this by finding the value of w which maximizes the posterior distribution, or equivalently
which minimizes the negative logarithm of the distribution. Taking the negative log of the
right hand side of (14) and using (12) and (9) we see that maximizing the log of the posterior
distribution is equivalent to minimizing

1

2σ2

N∑

n=1

|y(xn;w) − tn|
2 +

α

2
Ω(w) (15)

which represents a specific example of the regularized error function given by (4) in which
E(w) is proportional to the sum-of-squares error function (3).

Thus we see that there are very close similarities between this Bayesian viewpoint and the
conventional one based on error function minimization and regularization, since the latter can
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be obtained as a specific approximation to the Bayesian approach. However, there is also a
key distinction which is that in a Bayesian treatment we make predictions by integrating over
the distribution of model parameters w, rather than by using a specific estimated value of
w. On the one hand such integrations may often be analytically intractable and require either
sophisticated Markov chain Monte Carlo methods, or more recent deterministic schemes such
as variational techniques, to approximate them. On the other hand the integration implied by
the Bayesian framework overcomes the issue of over-fitting (by averaging over many different
possible solutions) and typically results in improved predictive capability.

Specifically, if we are given a new value of x then the predictive distribution for t is
obtained from the sum and product rules of probability by marginalizing over w

p(t|t, α, β) =

∫
p(w|t, α, σ2)p(t|w, σ2) dw. (16)

So far we have said little about the treatment of the hyperparameters α and σ2. In most
applications, suitable values for these will not be known in advance (although in some cases
the noise level σ2 may be known) and so a Bayesian treatment will introduce prior distribu-
tions over these quantities, and then eliminate them from the problem by marginalization. We
shall see in Section 3 that an appropriate choice of prior distribution can lead to some power-
ful properties for the resulting model, including sparsity of the basis function representation.
First, however, we review briefly a popular model for regression and classification based on
point estimates of parameters, which also exhibits sparsity.

2 Support Vector Machines

One specific instantiation of the model given by (2) is the support vector machine (SVM)
(Boser, Guyon, and Vapnik 1992; Vapnik 1998; Schölkopf, Burges, and Smola 1999) which,
although not usually defined explicitly in this form, ultimately makes predictions based on
the function

y(x;w) =
N∑

i=1

wiK(x,xi) + w0. (17)

Here φi(x) = K(x,xi) is a kernel function, effectively defining one basis function for each
example in the training set. The key feature of the SVM is that, in the classification case,
its target function attempts to minimize a measure of error on the training set while simul-
taneously maximizing the ‘margin’ between the two classes (in the feature space implicitly
defined by the kernel). This is an effective mechanism for avoiding over-fitting, which leads
to good generalization, and which furthermore results in a sparse model dependent only on
a subset of kernel functions, namely those associated with specific training examples xn (the
support vectors) that lie either on the margin or on the ‘wrong’ side of it. State-of-the-art
results have been reported on many tasks where the SVM has been applied.

However, despite its success, we can identify a number of significant and practical disad-
vantages of the support vector learning methodology:

• SVMs make unnecessarily liberal use of basis functions since the number of support
vectors required typically grows linearly with the size of the training set.
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• Predictions are not probabilistic. In regression the SVM outputs a point estimate, and in
classification, a ‘hard’ binary decision. For many real world applications, as distinct from
algorithm bench-marking, we require the conditional distribution p(t|x) of targets given
inputs rather than just a point prediction. Such a distribution expresses our uncertainty in
the prediction and offers numerous advantages (Bishop 1995) such as optimal rejection,
flexible and optimal decision making, fusion of outputs with other sources of probabilistic
information, and so on.

• It is necessary to estimate the error/margin trade-off parameter ‘C’ (and in regression, the
insensitivity parameter ‘ε’ too). This generally entails a cross-validation procedure, which
is wasteful both of data and computation.

• The kernel function K(x,xi) must satisfy Mercer’s condition.

Nevertheless, the twin properties of accuracy and sparsity make the SVM a very attractive
model. We have already discussed how a Bayesian approach to modelling can naturally deal
with complexity control and avoid over-fitting. Here we show that in addition, through a
judicious choice of prior over w, we can obtain models that are also highly sparse (typically
much more so than the SVM) and at the same time also overcome all the above limitations.

3 The Relevance Vector Machine

While we stress that the framework we are about to describe can be applied to general models
of the type (2) (i.e. to arbitrary sets of basis functions), we now focus on a model we term the
relevance vector machine, or RVM (Tipping 2000; Tipping 2001), which is a Bayesian frame-
work for regression and classification with analogous sparsity properties to the support vec-
tor machine. We adopt a fully probabilistic framework and introduce a prior over the model
weights governed by a set of hyperparameters, one associated with each weight, whose most
probable values are iteratively estimated from the data. Sparsity is achieved because the pos-
terior distributions of many of the weights are sharply (indeed infinitely) peaked around zero.
We term those training vectors associated with the remaining non-zero weights ‘relevance’
vectors, in deference to the principle of automatic relevance determination which motivates
this approach (MacKay 1994; Neal 1996). The most compelling feature of the RVM is that,
while capable of generalization performance comparable to an equivalent SVM, the number
of relevance vectors is, in most cases, dramatically smaller than the number of support vec-
tors used by an SVM to solve the same problem. For the purposes of this presentation, we
focus initially on the Bayesian regression model and associated inference procedures, and
then summarize the modifications required in the case of classification.

3.1 Model Specification

Given a data set of input-target pairs {xn, tn}
N
n=1 we assume that the targets are samples from

a model with additive noise, as described by (1), with a noise process given by a zero-mean
Gaussian with variance σ2, so that

p(tn|x) = N (tn|y(xn;w), σ2). (18)
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The function y(x;w) is as defined in (17) for the SVM where we identify our general basis
functions with the kernel as parameterized by the training vectors: φi(x) ≡ K(x,xi). Due
to the assumption of independence of the tn, the likelihood of the complete data set can be
written as

p(t|w, σ2) = (2πσ2)−N/2 exp

{
−

1

2σ2
‖t − Φw‖2

}
, (19)

where the N × (N + 1) matrix Φ = [φ(x1),φ(x2), . . . ,φ(xN)]T is called the design matrix,
φ(xn) = [1, K(xn,x1), K(xn,x2), . . . , K(xn,xN)]T, t = (t1 . . . tN)T, and w = (w0 . . . wN)T.

With as many parameters in the model as training examples, we would expect maximum-
likelihood estimation of w and σ2 from (19) to lead to severe over-fitting. In the SVM, this
difficulty is effectively avoided by the inclusion of the ‘margin’ term. Here, instead, we adopt
a Bayesian perspective, and introduce an explicit prior probability distribution over the pa-
rameters.

We encode a preference for smoother functions by using a Gaussian prior distribution
over w, as discussed earlier, but now modified through the introduction of a separate hyper-
parameter for each parameter in the model

p(w|α) =
N∏

i=0

N (wi|0, α
−1
i ), (20)

with α a vector of N + 1 hyperparameters.
To complete the specification of this hierarchical prior, we must define hyperpriors over

α, as well as over the final remaining parameter in the model, the noise variance σ2. These
quantities are examples of scale parameters, and suitable priors for these are given by Gamma
distributions (see, e.g. Berger (1985)):

p(α) =
N∏

i=0

Gamma(αi|a, b),

p(β) = Gamma(β|c, d),

with β ≡ σ−2 and where

Gamma(α|a, b) = Γ(a)−1baαa−1e−bα, (21)

in which Γ(a) =
∫ ∞

0
ta−1e−tdt, is the gamma function (Abromowitz and Stegun 1965). The

Gamma prior becomes non-informative in the limit a → 0, b → 0. Since, in this limit, the
hyperpriors become improper, we might fix their parameters to small values: e.g. a = b =
c = d = 10−4. However, by setting these parameters to zero, we obtain uniform hyperpriors
(over a logarithmic scale). Since all scales are equally likely, a pleasing consequence of the
use of these improper hyperpriors is that of scale-invariance: predictions are independent of
linear scaling of both t and the basis function outputs so, for example, results do not depend
on the unit of measurement of the targets. The case of general Gamma priors for α and β is
covered in more detail in Tipping (2001) and Bishop and Tipping (2000), but from now on
here we assume uniform scale priors with a = b = c = d = 0.

This choice of prior distributions is related to those used in automatic relevance determi-
nation, or ARD (MacKay 1994; Neal 1996). Using such priors in a neural network, individ-
ual hyperparameters would typically control groups of weights, in particular those associated



8 Bayesian Regression and Classification

with each input dimension x. For inputs which have little value in predicting the outputs, the
posterior distribution over the hyperparameters becomes concentrated at large values, thus
effectively switching off such ‘low relevance’ inputs. This idea has also been applied to the
input variables in ‘Gaussian process’ models (Williams 1997).

Here, the assignment of an individual hyperparameter to each weight, or basis function,
is the key feature of the sparse Bayesian framework, and is responsible ultimately for its
sparsity properties. To introduce an additional N + 1 parameters to the model may seem
counter-intuitive, since there is already one parameter per basis function (and therefore one
parameter per data point for kernel functions centered on the data), but from a Bayesian
perspective, provided we correctly integrate out all of these parameters, or can approximate
such an integration sufficiently accurately, then having the number of parameters exceed the
number of data points presents no particular difficulty either from a theoretical or from a
practical point of view (see pp. 16–17, of Neal (1996)).

3.2 The Effective Prior

We may question why the choice of a Gaussian prior should express any preference for sparse
models. In order to gain insight into the this effect we can integrate out the hyperparameters
to discover the true identity of the prior over the weights. For a Gamma prior over the hy-
perparameters, it is possible to integrate out α, independently for each weight, to obtain the
marginal, or what might be considered the ‘true’, weight prior:

p(wi) =

∫
p(wi|αi)p(αi) dαi,

=
baΓ(a + 1

2
)

(2π)
1

2 Γ(a)
(b + w2

i /2)
−(a+ 1

2
), (22)

where Γ(·) is the gamma function as defined earlier. Equation (22) corresponds to the density
of a Student-t distribution, and so the overall marginal weight prior is a product of indepen-
dent Student-t distributions over the wi. A visualization of this Student-t prior, alongside a
Gaussian, is given in Figure 1. For the case of the uniform hyperprior, with a = b = 0,
we obtain the improper prior p(wi) ∝ 1/|wi|. Intuitively, this looks very much like a sparse
prior since it is sharply peaked at zero like the popular Laplace prior p(wi) ∝ exp (−|wi|),
which has been previously utilized to obtain sparsity in Bayesian contexts (Williams 1995).
The elegance of this approach therefore lies in the use of hierarchical modelling to obtain
a prior over weights which encourages sparsity while still making use of fully conjugate
exponential-family distributions throughout.

Unfortunately, we cannot continue the Bayesian analysis down this route to compute
p(w|t), since the marginal p(w) is no longer Gaussian, and so the marginalization over w is
no longer analytically tractable. Because of this, it is not convenient to work with the marginal
prior directly and in the next section we take a different tack.
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Figure 1: LEFT: an example Gaussian prior p(w|α) in two dimensions. RIGHT: the prior p(w), where the
hyperparameters have been integrated out to give a product of Student-t distributions. Note that the probability
mass is concentrated close to the origin, where both weights go to zero, and also along ‘spines’ where one or
other of the two weights goes to zero.

3.3 Inference

Having defined the prior, Bayesian inference proceeds by computing, from Bayes’ rule, the
posterior over all unknowns given the data:

p(w,α, σ2|t) =
p(t|w,α, σ2)p(w,α, σ2)

p(t)
. (23)

Then, given a new test point, x∗, predictions are made for the corresponding target t∗, in terms
of the predictive distribution:

p(t∗|t) =

∫
p(t∗|w,α, σ2) p(w,α, σ2|t) dw dα dσ2. (24)

As is the case with many non-trivial Bayesian models, it is not possible to perform these
computations in full analytically, and we must seek an effective approximation.

We cannot compute the posterior p(w,α, σ2|t) in (23) directly since we cannot perform
the normalizing integral on the right-hand-side, p(t) =

∫
p(t|w,α, σ2)p(w,α, σ2) dw dα dσ2.

Instead, we decompose the posterior as:

p(w,α, σ2|t) = p(w|t,α, σ2)p(α, σ2|t), (25)

and note that we can compute analytically the posterior distribution over the weights since its
normalizing integral, p(t|α, σ2) =

∫
p(t|w, σ2) p(w|α) dw, is a convolution of Gaussians.

The posterior distribution over the weights is thus given by:

p(w|t,α, σ2) =
p(t|w, σ2)p(w|α)

p(t|α, σ2)
, (26)

= (2π)−(N+1)/2|Σ|−1/2 exp

{
−

1

2
(w − µ)T

Σ
−1(w − µ)

}
, (27)

where the posterior covariance and mean are respectively:

Σ = (σ−2
Φ

T
Φ + A)−1, (28)

µ = σ−2
ΣΦ

T
t, (29)
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with A = diag(α0, α1, . . . , αN ).
It is now necessary to make some form of approximation, and we do so by replacing the

integration over the hyperparameters by point estimates involving their most probable poste-
rior values. We do this on the basis that this point-estimate is representative of the posterior
in the sense that functions generated utilizing the posterior mode values are close to those
obtained by sampling from the full posterior distribution. It is important to realize that this
does not necessitate that the entire mass of the posterior be accurately approximated by the
delta-function. For predictive purposes, rather than requiring p(α, σ2|t) ≈ δ(αMP, σ2

MP), we
only desire ∫

p(t∗|α, σ2)p(α, σ2|t) dα dσ2 ' p(t∗|αMP, σ2
MP) (30)

to be a good approximation. This notion may be visualized by a thought experiment where
we consider that we are utilizing two identical basis functions φi(x) and φj(x). It follows
from (31) shortly that the mode of p(α, σ2|t) will not be unique, but will comprise an infinite
‘ridge’ where α−1

i + α−1
j is some constant value. No delta-function can be considered to be a

good approximation to the probability mass associated with this ridge, yet any point along it
implies an identical predictive distribution and so (30) holds. Evidence from the experiments
presented in this article and elsewhere suggests that this predictive approximation is very
effective in general.

Relevance vector ‘learning’ thus becomes the search for the hyperparameter posterior
mode, i.e. the maximization of p(α, σ2|t) ∝ p(t|α, σ2)p(α)p(σ2) with respect to α and
β. For the case of uniform hyperpriors, we need only maximize the marginal likelihood, or
equivalently its logarithm, ln p(t|α, σ2), which is computable and given by:

L(α) = ln p(t|α, σ2) = ln

∫ ∞

−∞

p(t|w, σ2) p(w|α) dw,

= −
1

2

[
N ln 2π + ln |C| + t

T
C

−1
t
]
, (31)

with
C = σ2

I + ΦA
−1

Φ
T. (32)

3.4 Making Predictions

In practice, having maximized (31) (we consider this task shortly), we make predictions based
on the posterior distribution over the weights, conditioned on the maximizing values αMP and
σ2

MP. We can then compute the predictive distribution, from (24), for a new datum x∗ using
(27):

p(t∗|t,αMP, σ2
MP) =

∫
p(t∗|w, σ2

MP)p(w|t,αMP, σ2
MP) dw. (33)

Since both terms in the integrand are Gaussian, this is readily computed, giving:

p(t∗|t,αMP, σ2
MP) = N (t∗|y∗, σ

2
∗),

with

y∗ = µTφ(x∗), (34)
σ2
∗ = σ2

MP + φ(x∗)
T
Σφ(x∗). (35)
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So the predictive mean is intuitively y(x∗; µ), or the basis functions weighted by the posterior
mean weights. We will find that the maximizing values of many of the hyperparameters will
be infinite, implying from (27) that the corresponding weights in wMP will be exactly zero
and the predictor y∗ is thus sparse.

3.5 Properties of the Marginal Likelihood

Values of α (assume σ2 is fixed for now) which maximize (31) cannot be jointly obtained
in closed form. However, in Faul and Tipping (2002) it was shown that we can maximize
L(α) with respect to a single hyperparameter αi. To show this, we first straightforwardly
decompose C in (32) as

C = σ2
I +

∑

m6=i

α−1
m φmφT

m + α−1
i φiφ

T

i ,

= C−i + α−1
i φiφ

T

i , (36)

where C−i is C with the contribution of basis vector i removed and φi is the i-th column
of Φ. Established matrix determinant and inverse identities can then be employed to re-write
L(α) as:

L(α) = −
1

2

[
N ln(2π) + ln |C−i| + t

T
C

−1
−i t

− ln αi + ln(αi + φT

i C
−1
−i φi) −

(φT

i C
−1
−i t)

2

αi + φT

i C
−1
−i φi

]
,

= L(α−i) +
1

2

[
ln αi − ln(αi + si) +

q2
i

αi + si

]

= L(α−i) + `(αi), (37)

where for simplification of forthcoming expressions, we have defined:

si , φT

i C
−1
−i φi, and qi , φT

i C
−1
−i t. (38)

The objective function has now been decomposed into L(α−i), the marginal likelihood
with φi excluded, and `(αi), where terms in αi are now conveniently isolated.

Analysis of `(αi) (Faul and Tipping 2002) shows that L(α) has a unique maximum with
respect to αi:

αi =
s2

i

q2
i − si

, if q2
i > si, (39)

αi = ∞, if q2
i ≤ si. (40)

An example illustrating these two cases is given in Figure 2.
Thus sparsity arises from equation (40): if this condition holds, then the marginal likeli-

hood is maximized when the individual basis (kernel) function K(x,xi) is removed from the
model. Note, from (38), that qi and si depend on all other (m 6= i) hyperparameters so the
sparsity conditions for all α mutually interact.
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Figure 2: Example plots of `(αi) against αi (on a log scale) for q2 > s (left), showing the single maximum at
finite αi, and q2 < s (right), showing the maximum as αi → ∞.

3.6 Hyperparameter Optimization

For optimizing hyperparameters, a simple set of re-estimation formulae can be derived (Tip-
ping 2000; Tipping 2001), but a more recent, and much more efficient, approach is given in
Tipping and Faul (2003) which we briefly summarize here.

We start by computing the quantities si and qi. In fact, it is easier to maintain and update
values of

Si = φT

i C
−1φi, Qi = φT

i C
−1

t, (41)

and from these it follows simply:

si =
αiSi

αi − Si

, qi =
αiQi

αi − Si

. (42)

Note that when αi = ∞, si = Si and qi = Qi. In practice, then, it is convenient to utilise the
Woodbury identity to obtain the quantities of interest:

Si = φT

i Bφi − φT

i BΦΣ̂Φ
T
Bφi, (43)

Qi = φT

i Bt̂ − φT

i Bµ̂, (44)

where B ≡ σ−2
I, Σ̂ ≡ Σ, µ̂ ≡ µ and t̂ ≡ t in the regression case, and for the classification

case as explicitly defined in the next section.
Given these, consider individual basis functions (hyperparameters) in turn and note that

the results (39) and (40) imply that for a given αi:

• If φi is ‘in the model’ (i.e. αi < ∞) yet q2
i ≤ si, then φi may be deleted (i.e. αi set to ∞),

• If φi is excluded from the model (αi = ∞) and q2
i > si, φi may be ‘added’: i.e. αi is set

to the optimal finite value given by (39).

• If φi is ‘in the model’ and q2
i > si then αi may be re-estimated.

All these actions guarantee to increase the marginal likelihood function, and we thus have a
framework for making discrete changes to the model, by adding and deleting basis functions,
in a principled probabilistic manner.
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For the noise variance σ2, we can derive a re-estimation equation which may be utilized
concurrently with those of α in order to infer the noise variance:

(σ2)new =
‖t − Φµ‖2

N − M +
∑

i αiΣii

. (45)

Note that the ‘N ’ in the denominator refers to the number of data examples and not the
number of basis functions.

Further information on the optimization procedure, including details of computing and
updating si and qi are given in Tipping and Faul (2003).

3.7 Relevance Vector Machines for Classification

Sparse Bayesian classification follows an essentially identical framework as described for
regression above, but using a Bernoulli likelihood and a sigmoidal link function to account
for the change in the target quantities. As a consequence, there is an additional approximation
step in the algorithm.

Applying the logistic sigmoid link function σ(y) = 1/(1 + e−y) to y(x;w) and, adopting
the Bernoulli distribution for P (t|x), we write the likelihood as:

P (t|w) =
N∏

n=1

σ{y(xn;w)}tn [1 − σ{y(xn;w)}]1−tn , (46)

where, following from the probabilistic specification, the targets tn ∈ {0, 1}.
Unlike the regression case, the weights cannot be integrated out analytically, precluding

closed-form expressions for either the weight posterior p(w|t,α) or the marginal likelihood
P (t|α). We thus utilize the Laplace approximation procedure, as used in MacKay (1992):

1. For the current values of α, the the mode of the posterior distribution is found iteratively to
give the ‘most probable’ weights µ̂. Since p(w|t,α) ∝ P (t|w)p(w|α), this is equivalent
to finding the maximum, over w, of

ln {P (t|w)p(w|α)} =
N∑

n=1

[tn ln yn + (1 − tn) ln(1 − yn)] −
1

2
w

T
Aw, (47)

with yn = σ{y(xn;w)}. This is a standard procedure, since (47) is a penalized logistic
log-likelihood function, and necessitates iterative maximization. We have used a second-
order Newton method related to the ‘iteratively-reweighted least-squares’ algorithm to
find µ̂.

2. Laplace’s method is simply a quadratic approximation to the log-posterior around its
mode. The quantity (47) is differentiated twice to give:

∇
w
∇

w
ln p(w|t,α)

∣∣
µ̂
= −(ΦT

BΦ + A), (48)

where B = diag (β1, β2, . . . , βN ) is a diagonal matrix with βn = σ{y(xn)} [1 − σ{y(xn)}].
This is then negated and inverted to give the covariance Σ̂ for a Gaussian approximation
to the posterior over weights centered at µ̂.
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At the mode of p(w|t,α), using (48) and the fact that ∇
w

ln p(w|t,α)
∣∣
µ̂
= 0, we can see

we have effectively locally ‘linearized’ the classification problem around µ̂ with

Σ̂ = (ΦT
BΦ + A)−1, (49)

µ̂ = Σ̂Φ
T
Bt̂, (50)

and
t̂ = Φµ̂ + B

−1(t − σ {Φµ̂}). (51)

These equations are equivalent to the solution to a generalized least squares problem. Com-
pared with (29), it can be seen that the Laplace approximation effectively maps the classifi-
cation problem to a regression one with targets t̂ and data-dependent (heteroscedastic) noise,
in which the inverse noise variance for εn is given by βn = σ{y(xn)} [1 − σ{y(xn)}].

The quantities Σ̂, µ̂ and t̂ can be substituted into equations (43) and (44) in order to
compute the quantities si and qi which may then be exploited in the algorithm of Section 3.6
exactly as in the regression case.

4 The Relevance Vector Machine in Action

4.1 Illustrative synthetic data: regression

The function sinc(x) = sin(x)/x has been a popular choice to illustrate support vector regres-
sion (Vapnik, Golowich, and Smola 1997; Vapnik 1998), where in place of the classification
margin, the ε-insensitive region is introduced, a ‘tube’ of ±ε around the function within which
errors are not penalized. In this case, the support vectors lie on the edge of, or outside, this
region. For example, using a univariate ‘linear spline’ kernel:

K(xm, xn) = 1+xmxn+xmxn min(xm, xn)−
xm + xn

2
min(xm, xn)2+

min(xm, xn)3

3
, (52)

and with ε = 0.01, the approximation of sinc(x) based on 100 uniformly-spaced noise-free
samples in [−10, 10] utilizes 36 support vectors as shown in Figure 3 (left).

In the RVM, we model the same data with the same kernel (52), which is utilized to de-
fine a set of basis functions φn(x) = K(x, xn), n = 1 . . . N . Typically, we will be tackling
problems where the target function has some additive noise component, whose variance is
represented by σ2. However, for the purposes of comparison with this “function approxima-
tion” SVM example, we model the sinc function with a relevance vector machine but fix the
noise variance in this case at 0.012 and then re-estimate α alone. This setting of the noise
standard deviation to 0.01 is intended to be analogous, in an approximate sense, to the setting
the ε-insensitivity to the same value in the SVM. Using this fixed σ, the RVM approximator is
plotted in Figure 3 (right), and requires only 9 relevance vectors. The largest error is 0.0070,
compared to 0.010 in the support vector case, and we have obtained the dual benefit of both
increased accuracy and sparsity.

Figure 4 illustrates a case which is more representative of real data in which uniform noise
(i.e. not corresponding to the RVM noise model) in [−0.2, 0.2] is added to the targets. Again,
a linear spline kernel was used. The trained RVM uses 6 relevance vectors, compared to 29
for the SVM. The root-mean-square (RMS) deviation from the true function for the RVM
is 0.0245, while for the SVM it is 0.0291. Note that for the latter model, it was necessary
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to tune the parameters C and ε, in this case using 5-fold cross-validation. For the RVM, the
analogues of these parameters (the α’s and σ2) are automatically estimated by the learning
procedure.
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Figure 3: Support (left) and relevance (right) vector approximations to sinc(x) from 100 noise-free examples
using ‘linear spline’ basis functions. The estimated functions are drawn as solid lines with support/relevance
vectors shown circled.
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Figure 4: Support (left) and relevance (right) vector approximations to sinc(x), based on 100 noisy samples.
The estimated functions are drawn as solid lines, the true function in grey, and support/relevance vectors are
again shown circled.

4.2 Illustrative synthetic data: classification

We utilize artificially-generated data in two dimensions in order to illustrate graphically the
selection of relevance vectors for classification. Both class 1 (denoted by ‘×’) and class 2
(denoted by ‘•’) were generated from mixtures of two Gaussians by Ripley (1996), with the
classes overlapping to the extent that the Bayes error is around 8%.

A relevance vector classifier is compared to its support vector counterpart, using a ‘Gaus-
sian’ kernel which we define as

K(xm,xn) = exp(−r−2‖xm − xn‖
2), (53)
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with r the ‘width’ parameter, chosen here to be 0.5. A value of C for the SVM was selected
using 5-fold cross-validation on the training set. The results for a 100-example training set
(randomly chosen from Ripley’s original 250) are given in Figure 5. The test error (from
the associated 1000-example test set) for the RVM (9.3%) is slightly superior to the SVM
(10.6%), but the remarkable feature of contrast is the complexity of the classifiers. The sup-
port vector machine utilizes 38 kernel functions compared to just 4 for the relevance vector
method. This considerable difference in sparsity between the two methods is typical, as the
later results on benchmark data sets support.

Figure 5: SVM (left) and RVM (right) classifiers on 100 examples from Ripley’s Gaussian-mixture data set. The
decision boundary is shown dashed, and relevance/support vectors are shown circled to emphasize the dramatic
reduction in complexity of the RVM model.

Of interest also is the fact that, unlike with the SVM, the relevance vectors are some dis-
tance from the decision boundary (in x-space), appearing more ‘prototypical’ or even ‘anti-
boundary’ in character. A qualitative explanation for this phenomenon, discussed in more
detail in Tipping (2001), is that the output of a basis function centered on or near the decision
boundary is an unreliable indicator of class membership (i.e. its output is poorly-aligned with
the data set in t-space), and such basis functions are naturally penalized (deemed ‘irrelevant’)
under the Bayesian framework. Of course, there is no implication that the utilization of either
boundary-located or prototypically-located functions is ‘correct’ in any sense.

4.3 Benchmark Results

The following tables, taken from Tipping (2001), summarize regression and classification
performance of the relevance vector machine on some example benchmark data sets, com-
paring results for illustrative purposes with equivalent support vector machines. For each data
set the number of training examples (N ) and the number of input variables (d) are given in
the tables. The prediction error obtained and the number of vectors (support or relevance)
required, generally averaged over a number of repetitions, are then given for both models.
By way of summary, the RVM statistics were also normalized by those of the SVM and the
overall average is displayed. A Gaussian kernel was utilized and its input scale parameter
chosen by 5-fold cross-validation.
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errors vectors
Regression Data set N d SVM RVM SVM RVM

Sinc (Gaussian noise) 100 1 0.0378 0.0326 45.2 6.7
Sinc (Uniform noise) 100 1 0.0215 0.0187 44.3 7.0
Friedman #2 240 4 4140 3505 110.3 6.9
Friedman #3 240 4 0.0202 0.0164 106.5 11.5
Boston Housing 481 13 8.04 7.46 142.8 39.0

Normalized Mean 1.00 0.86 1.00 0.15

errors vectors
Classification Data set N d SVM RVM SVM RVM

Pima Diabetes 200 8 20.1% 19.6% 109 4
U.S.P.S. 7291 256 4.4% 5.1% 2540 316
Banana 400 2 10.9% 10.8% 135.2 11.4
Breast Cancer 200 9 26.9% 29.9% 116.7 6.3
Titanic 150 3 22.1% 23.0% 93.7 65.3
Waveform 400 21 10.3% 10.9% 146.4 14.6
German 700 20 22.6% 22.2% 411.2 12.5
Image 1300 18 3.0% 3.9 % 166.6 34.6

Normalized Mean 1.00 1.08 1.00 0.17

In summary, in this small number of experiments, the RVM exhibited 14% lower error
than the SVM and utilized only 15% of the basis functions on average for regression. In
classification, error was 8% greater on average, yet still only 17% of the basis functions were
utilized.

5 Discussion

In this brief tutorial we have outlined some of the basic concepts of regression and classifi-
cation from the Bayesian perspective. We have discussed in detail a specific Bayesian model
called the Relevance Vector Machine, which leads to highly sparse solutions and having ex-
cellent generalization properties.

The treatment of the Relevance Vector Machine given here is not completely Bayesian
since point estimates are made for the hyperparameters, whereas in a fully Bayesian treat-
ment we should define hyperpriors over these hyperparameters, and then integrate out the
hyperparameters in order to make predictions.

However, as we have already noted, it is not possible to integrate out all of the parame-
ters and hyperparameters analytically. This problem can be addressed by using deterministic
approximation schemes based variational inference, in which a factorized approximation to
the full posterior distribution is used (Bishop and Tipping 2000). One consequence of this
more complete treatment of the RVM is confirmation that the approach based on point esti-
mates, as discussed in this tutorial, does indeed give a good approximation to a more complete
Bayesian approach.
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