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A feed-forward network can be viewed as a graphical representation of parametric function which takes
a set of input values and maps them to a corresponding set of output values (Bishop, 1995). Figure 1 shows
an example of a feed-forward network of a kind that is widely used in practical applications. Nodes in the
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Figure 1: A feed-forward network having two layers of adaptive parameters.

graph represent either inputs, outputs or ‘hidden’ variables, while the edges of the graph correspond to
the adaptive parameters. We can write down the analytic function corresponding to this network follows.
The output of the jth hidden node is obtained by first forming a weighted linear combination of the d

input values xi to give

aj =

d∑

i=1

ujixi + bj . (1)

The value of hidden variable j is then obtained by transforming the linear sum in (1) using an activation
function g(·) to give

zj = g(aj). (2)

Finally, the outputs of the network are obtained by forming linear combinations of the hidden variables
to give

ak =

M∑

j=1

vkjzj + ck. (3)

The parameters {uji, vkj} are called weights while {bj , ck} are called biases, and together they constitute
the adaptive parameters in the network. There is a one-to-one correspondence between the variables and
parameters in the analytic function and the nodes and edges respectively in the graph.
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Historically feed-forward networks were introduced as models of biological neural networks (McCulloch
and Pitts, 1943), in which nodes corresponded to neurons and edges corresponded to synapses, and with
an activation activation function g(a) given by a simple threshold. The recent development of feed-
forward networks for pattern recognition applications has, however, proceeded largely independently of
any biological modelling considerations.

The goal in pattern recognition is to use a set of example solutions to some problem to infer an
underlying regularity which can subsequently be used to solve new instances of the problem. Examples
include hand-written digit recognition, medical image screening and fingerprint identification. In the
case of feed-forward networks, the set of example solutions (called a training set), comprises sets of input
values together with corresponding sets of desired output values. The training set is used to define an
error function in terms of the discrepancy between the predictions of the network, for given inputs, and
the desired values of the outputs given by the training set. A common example of an error function would
be the squared difference between desired and actual output, summed over all outputs and summed over
all patterns in the training set. The learning process then involves adjusting the values of the parameters
to minimize the value of the error function. One the network has been trained, i.e. once suitable values
for the parameters have been determined, new inputs can be applied and the corresponding predictions
(i.e. network outputs) calculated.

The use of layered feed-forward networks for pattern recognition was widely studied in the 1960s.
However, effective learning algorithms were only known for the case of networks in which at most one
of the layers comprised adaptive interconnections. Such networks were known variously as perceptrons
(Rosenblatt, 1962) and Adalines (Widrow and Lehr, 1990), and were seriously limited in their capabilities
(Minsky and Papert, 1969). Research into artificial NEURAL NETWORKS was stimulated during the
1980s by the development of new algorithms capable of training networks with more than one layer of
adaptive parameters (Rumelhart et al., 1986). A key development involved the replacement of the non-
differentiable threshold activation function by a differentiable non-linearity, which allows gradient-based
optimization algorithms to be applied to the minimization of the error function. The second key step was
to note that the derivatives could be calculated in a computationally efficient manner using a technique
called ‘back-propagation’, so called because it has a graphical interpretation in terms of a propagation
of error signals from the output nodes backwards through the network. Originally these gradients were
used in simple steepest-descent algorithms to minimize the error function. More recently, however, this
has given way to the use of more sophisticated algorithms, such as conjugate gradients, borrowed from
the field of non-linear optimization (Gill et al., 1981).

During the late 1980s and early 1990s, research into feed-forward networks emphasised their role as
function approximators. For example, it was shown that a network consisting of two layers of adaptive
parameters could approximate any continuous function from the inputs to the outputs to arbitrary accu-
racy provided the number of hidden units is sufficiently large and provided the network parameters are
set appropriately (Hornik et al., 1989). More recently, however, feed-forward networks have been studied
from the much richer probabilistic perspective (see FOUNDATIONS OF PROBABILITY) which sets
neural networks firmly within the field of statistical pattern recognition (Fukunaga, 1990). For instance,
the outputs of the network can be given a probabilistic interpretation, and the role of network train-
ing is then to model the probability distribution of the target data, conditioned on the input variables.
Similarly, the minimization of an error function can be motivated from the well-established principle of
maximum likelihood which is widely used in statistics. An important advantage of this probabilistic view-
point is that it provides a theoretical foundation for the study and application of feed-forward networks
(see STATISTICAL LEARNING THEORY), as well as motivating the development of new models and
new learning algorithms.

A central issue in any pattern recognition application is that of generalization, in other words the
performance of the trained model when applied to previously unseen data. It should be emphasised that
a small value of the error function for the training data set does not guarantee that future predictions will
be similarly accurate. For example, a large network with many parameters may be capable of achieving
a small error on the training set, and yet fail to model the underlying distribution of the data and hence
achieve poor performance on new data (a phenomenon sometimes called ‘over-fitting’). This problem
can be approached by limiting the complexity of the model thereby forcing it to extract regularities in
the data rather than simply memorising the training set. From a fully probabilistic viewpoint, learn-
ing in feed-forward networks involves using the network to define a prior distribution over functions,
which is converted to a posterior distribution once the training data have been observed. It can be
formalised through the framework of BAYESIAN LEARNING, or equivalently through the MINIMUM
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DESCRIPTION LENGTH approach (MacKay, 1992; Neal, 1996).
In practical applications of feed-forward networks, attention must be paid to the representation used

for the data. For example, it is common to perform some kind of pre-processing on the raw input data
(perhaps in the form of ‘feature extraction’) before they are used as inputs to the network. Often this
pre-processing takes into consideration any prior knowledge we might have about the desired properties
of the solution. For instance, in the case of digit recognition we know that the identity of the digit should
be invariant to the position of the digit within the input image.

Feed-forward neural networks are now well established as an important technique for solving pattern
recognition problems, and indeed there are already many commercial applications of feed-forward neural
networks in routine use.
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