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Abstract-Empirical studies ofthe scaling ofTokamak energy confinement times with machine parameters 
constitute a useful point ofcontact with physics-bssed transport theories. They also form the basis for the 
design of next-step and reactor grade Tokamaks. In most cases a simple power law (or sometimes offset 
linea) functional farm is fitted to the data. Such linear regression techniques have the advantage of 
computational simplicity, but otherwise have little rr-priurijustification. Neural networks provide a powerful 
general purpose technique for nonlinear regression which exhibits no essential limi?ations on the functional 
form which can be fitted. In this paper we apply neural networks to the problem of energy confinement 
scaling and we illustrate the technique using data from the JET (Joint European Torus) Tokamak. The 
results show that the neural network approach leads to a substantial improvement in the ability to predict 
the energy confincment times as compared with linear regression. The significance of this result is discussed. 

I .  I N T R O D U C T I O N  
SUSTAINED THERMONUCLEAR FUSION in a magnetically confined plasma requires that 
the product of temperature, density and energy confinement time should exceed a 
critical threshold (the Lawson criterion). The confinement time is therefore a quantity 
ofcentral importance in the design of next-step and reactor grade Tokamaks. Improve- 
ments in the confinement time can be obtained by increasing the volume of the plasma. 
However, this greatly increases the cost of the system. Indeed, uncertainties in the 
expected confinement time of a large Tokamak system require the inclusion of extra 
margins in the design parameters, and therefore improvements in the ability to predict 
the confinement time accurately can result in substantial cost savings. However, due 
to the present limitations in the theoretical understanding of energy transport pro- 
cesses in a magnetically confined plasma, it is not possible to give a first principles 
calculation of the energy confinement time. 

For these reasons, empirical studies of the dependence of global confinement time 
 on various physical parameters have received considerable attention in recent years 
(see, for example, CONNOR, 1988; KAYE et al., 1990). The resulting scaling relations 
constitute a convenient point of contact with theoretical models of transport, and 
extrapolations of the scaling relations form the basis for the design of future 
Tokamaks. For most such studies a particular functional form for the confinement 
time, in terms of a number of physical variables, is assumed. Free parameters con- 
tained in the expression for T~ are determined by means of a least-squares fit to an 
experimental database. In  general the functional form is taken to be a multivariate 
power law expression which (after taking logarithms) leads to a linear problem to 
determine the unknown exponents. Such a power law expression does not arise from 

'UKAEA copyright 0 1992. 
t Present address: AEA Tcchnology, Harwell Laboratory, Oxon, 0x1 I ORA. U.K 

1291 



I292 L. ALLEN and C. M .  RZSHOP 

any general theoretical constraint, hut rather is chosen for computational convenience. 
Offset linear forms, which also generate linear expressions for the free parameters, 
have also been used. In this paper we exploit neural network techniques to eliminate 
this restriction and thereby allow nonlinear regression using a very general class of 
functional forms. 

In the next section we give a brief introduction to neural networks and describe the 
particular network architecture known as the multilayer perceptron which will form 
the basis of our approach to confinement scaling. Section 3 describes how neural 
networks can he applied to the analysis of confinement scaling in Tokamaks, and in 
Section 4 results obtained using data from the JET experiment are presented. We find 
that the neural network method leads to a significantly better prediction for the energy 
confincmcnt time than does the conventional linear regression approach. Finally, 
conclusions are given in Section 5. 

2 .  T H E  M U L T I L A Y E R  PERCEPTRON 
Neural networks are analogue computational systems whose structure is inspired 

by studies of the brain. Many different architectures of neural network have been 
dcvclopcd to tackle a variety of problcms, and research in this area continues at  a 
rapid pace. For introductory reviews of neural networks see LIPPMANN (1987) or 
RF&I,F. and JAC.KWN (1990)~ !n this scc.tinn we give 8. hrief nverview nf z re!~?i?e!y 
simple hut very widely used network type known as the multilayer perceptron (MLP). 
This class of network will form the basis for our analysis of energy confinement scaling 
in the next two sections. 

An MLP consists of a network of units (also known as processing elements or 
neurons) as illustrated in Fig. 1 ,  Each unit is shown as a circle in the diagram, and 
the lines connecting them are known as weights or links. The network can he thought 
of as describing an analytic mapping between a set of real-valued input variables x ,  
(m = I , .  . . , M )  and a set of output variables y. (n = I , .  . , , N ) .  The input variables 
are applied to the M input units at the bottom of the diagram ( M  = N = 4 in the case 
of Fig. I ) .  These variables are multiplied by a matrix of parameters w,,,, ( I  = I ,  

, M )  corresponding to the first layer of links. Here, L i s  the number o units 
in the middle, or hidden, layer. ( L  = 3 in the example shown in Fig. I . )  This results 
in a vector of inputs to the units in the middle layer. Each component of this vector 

output? 

inputs 

FIG. I.-An example of a multilayer perceptron nctwork. in this rase having four input 
m i l s ,  thrce units in the “hidden” layer, and four output units. 
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is then transformed by a nonlinear function f( ) so that the outputs of the middle 
layer units can be written 

where O, is an offset (or threshold). The function .f( ) is generally chosen to be the 
sigmoid defined by 

1 
I+e-" '  

f ( x )  = ~ 

and this function is plotted in Fig. 2. 
The outputs from the hidden layer units are no multiplied by a : 

parameters Gn,(n = I,. . . , N ;  I = I , .  . . , L),  and ofl ts 4, are added to 
of the resulting vector to generate the network outputs: 

I 

y ,  = 1 ~ i j , , ~ i j + &  (n = I , .  . . , N ) ,  
I =  I 

:ond matrix of 
le components 

(3) 

Combining equations (1) and (3) we see that the entire network corresponds to a 
mapping from inputs x,, to outputs y ,  which is specified by the analytic function 

wheref( ) is defined by equation (2). This mapping is parameterized by the quantities 
wlm, O,, Gnland 0,. 

More complex architectures of MLP, having more than one layer of hidden units, 

-5 a z 5  

FIG. 2.-Plot of thc simnoid funcliuo/(x) dcfincd in equation (2). 



1294 L. ALLEN and C. M .  BISHOP 

or different patterns of connectivity between the units, are also of interest, and an 
example of an alternative architecture will he introduced in Section 5.  Note that MLPs 
can also he used to solve classification problems in which the network outputs are to 
he interpreted as binary quantities according to whether the output is above or below 
some threshold. In this case, it is usual to apply the nonlinear activation function of 
equation (2) to the outputs y,. This would be inappropriate, however, in the present 
conlexl where we are interested in fitting smooth continuous mappings. Neural 
networks, such as the MLP, in  which information is fed from a set of inputs through 
a series of bidden units to a set of outputs are referred to as feedfarw'ard networks to 
distinguish them from more complex networks with feedback loops. 

The functional form in equation (4) appears somewhat arbitrary. Its importance, 
however, stems from two crucial properties: 

( I )  For suitable choices of the parameters IV~,,,, B,, and the mapping can 
approximate, with arbitrary accuracy, any given nonlinear multivariate map- 
ping (subject to some mild restrictions) provided the number L of middle layer 
units is sufficiently large. Formal discussions of this property can be found in 
FUNAHASHI (1989) and HORNIK etal .  (1989). 

( 2 )  Given a set of P exemplar vector pairs {x;, y ; } ,  p = 1,. . . , P, characterizing a 
particular mapping, there exist procedures, based on the technique known as 
error buckpropagation, for determining appropriate values for the parameters 
w,,,,, B,, Q, and fi, so that the network function in equation (4) approximates 
the required mapping. (In the neural network terminology these are referred 
to as training or learning algorithms.) 

Error backpropagation aims to minimize an error function Edefined to be the root- 
mean-square (RMS) error between the output vector y(x") of the network (for given 
input vector x p )  and the corresponding target vector yp, summed over all exemplars 
P: 

Thus, E is a function of the values of w and 0. Backpropagation is a recursive 
procedure for evaluating the derivatives of E with respect to these parameters. A 
detailed account of the backpropagation procedure can he found i n  RUMELHART and 
MCCLELLAND (1986). Knowledge of these derivatives allows E to be minimized 
using standard optimization procedures. We have compared a variety of techniques 

The memoryless BFGS (Broyden-Fletcher-Goldfarb-Shanno) technique (SHANNO, 
1978) was found to be both robust and relatively fast and was used to obtain the 
results presented in Section 4. I t  is described in the neural network context in BATTITI 
and MASULLI (1990). 

The training of an M LP using a set of exemplar vectors can he regarded as analogous 
to the fitting of a polynomial curve through a set of data points. The coefficients of 
the polynomial correspond to the weights and thresholds in the network. In effect, the 
MLP represents an efficient generalization of curve fitting to allow for an arbitrary 

:-nl,.,4:..n e-h....ca-l nrnrlinnt A n - m n t  rnni.,n.i+~ n-,Aiontr onrl r , a , . > c ~ . N s . ~ r ~ ~ n  msthnrlr ,,,C,U",,,~C ,111 " , , C C " ~ , a " , r r r r " r ~ r r , r r , r v r y u g u , r ~ ~ u u . r . l r u u r . ~ \ l u u r ~ ~ i . r " " r " ~ . , r r r r r . ~ " l l .  



Neural nelwork approach to scaling in Tokamaks 1295 

number of independent (input) and dependent (output) variables together with a 
very general class of functional forms (BISHOP and ROACH, 1992). One of the penalties 
to he paid for this generality is that the determination of the weights and thresholds 
in the network (i.e. the training of the network) is a nonlinear optimization problem 
which is computationally intensive, and which can sometimes exhibit sub-optimal 
solutions (corresponding to local minimia in the error function). 

In practical applications of neural networks it is necessary to restrict the class of 
functions which is fitted in order to obtain satisfactory generalization to new data 
which was not included in the training data set. The usual procedure for achieving 
this is to restrict the number of hidden units. This is analogous to limiting the number 
of terms (and hence the number of degrees of freedom) in polynomial curve fitting. 
An alternative approach is to impose directly some constraint on the functional form 
which the network can generate, for instance that it should not have large curvature 

a suitable procedure for determining the appropriate value for this number is dis- 
cussed in the next section. 

(3isHop, ;88G) In :;)is papei -we ha.ve ci.,osei., io limit ihe nuiiiber Uf hidden Uii& and 

3 .  ENERGY CONFINEMENT SCALING I N  TOKAMAKS 
In seeking empirical scaling laws it is convenient to consider expressions for 7ip in 

terms of appropriate dimensionless parameters (CONNOR, 1988 ;THOMAS, 1987). Thus, 
for auxiliary heated plasmas, we would typically consider the form 

T E  = 7 d ( q ,  v*, B,, p.14 (6 )  

where q is the safety factor, R is the major radius, V* = v&J~, wcr is the effective 
electron collisionality for trapped electrons, wb is the trapped electron bounce 
frequency, p, is the poloidal beta, p. is the electron Larmor radius, a is the minor 
radius and 7B0 Rq/TJ'2,  where T, is the electron temperature in keV (note that 
T:'* a u,hc where qhr is the electron thermal velocity, and thus T~~ can be considered 
to have the same dimensions as T J .  Since many of these regressor variables have 
spatial variations, appropriate profile-averaged quantities should he used. The func- 
tion F( ) is to be determined using an experimental database. 

The conventional approach to this problem is to choose a form for F( ) which is 
the product of powers of the independent variables, so that 

in which C,cr,,. ,. ,a4 are unknown parameters. This functional form is com- 
putationally convenient since by taking logarithms of both sides we obtain an 
expression which is linear in C and cti: 

l n ( ~ & ~ ~ )  = In C+a,Inq+a,. lnv,+a,lnP,+a,ln(p,/a).  (8)  

Given an experimental dataset containing sets of values of (4. v*,fi,,p,/a), and the 
corresponding values of x K ,  it is then straightforward to determine the values of C and 
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a; which minimize the RMS error between the experimental values of T~ and those 
predicted by equation (8). Note that this corresponds to the solution of a set of linear 
equations. We shall refer to this approach as linear regression (LR). 

The functional form in equation (7)  is, however, largely arbitrary and is not the 
result of any known physics constraint. Neural networks of the multilayer perceptron 
type represent a powerful technique for exploring a much wider class of functions 
F( ). We shall consider network functions with four inputs In y, In U * ,  In bp and 
In ( ~ J u ) ,  and a single output In ( T ~ / T ~ ~ ) .  The corresponding neural network archi- 
tecture is shown in Fig. 3. The use of logarithms compresses the dynamic range of 
the variables and also allows a closer comparison of the neural network technique 
with LR. Indeed, if we consider a network whose transfer function .f( ) in equation 
(4) is replaced by the identity function, then the network mapping reduces to a simple 
matrix multiplication and the network approach is then equivalent to LR. 

The optimum value for L, the number of hidden units in the network, cannot be 
known in advance since it will depend on the properties of the dataset. In effect L 
determines the number of degrees of freedom (i.e. the number of weights and thresh- 
olds) which parameterize the functional form. We would expect that increasing this 
number would lcad to a steadily smaller value of the residual error. This can, however, 
result in "over-fitting" in which the network tends lo store individual data points 
r'ailrzr' ilrair i.cpL.cscuiiiig iirc uudc~iying iiciiGs in  iiic Gaia. Wc aic iriicir>it.d prirriariiy 
in obtaining a network mapping with the greatest predictive capability, that is one 
which produces the smallest output error when applied to new data which was not 
part of  the training set. For this reason we divide the experimental dataset into two 
(randomly partitioned and therefore nominally equivalent) parts which we shall refer 
to as the training and test sets. The training set is used to determine the values of the 
weights and thresholds in the network, and the test set is used to assess the predictive 
capabilities of the functional form represented by the trained network. We therefore 
compare networks with different numbers of hidden units and select the network 
giving the lowest RMS error with respect to the test data. For comparison, the same 
technique will he applied to linear regression, in which the regression exponents will 
he determined using the training data and the error evaluated for the test data. 

In 4 In v. Ing, ln(p,/aJ 

Fiti. 3.-Thc neural network architccture used 10 implement the scaling relation of 
equation (6).  
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4 .  R E S U L T S  F R O M  JET D A T A  
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Energy confinement data from the JET Tokamak have been used to examine the 
capabilities of the network approach to confinement scaling introduced in thc previous 
section. In this study we are interested primarily in auxiliary heated discharges and 
so data were selected for which the total heating power Pror > 2P,,, where POH is 
the Ohmic heating power. Attention was also restricted to limiter or inner wall deu- 
terium cases during the current Rat top. The resulting dataset consisted of 1,147 
observations which were divided into a training set of 574 points and a test set of 573 
points. Linear regression gave the following results : 

Figure 4 shows the training and test error values obtained from the neural network 
with various numbers L of hidden units. The results from linear regression are plotted 

which consists of .N' line search minimizations, where A' is the total number of 
wcights and thresholds in the network. For each cycle the search direction starts with 
gradient descent and is then updated using the BFGS algorithm. 

It can be seen that the training set error falls as the number L of hidden units is 
increased, as  would he expected since the number of degrees of freedom increases 
with L. The fact that the decrease in error is not strictly monotonic is a consequence 
of the fact that (unlike LR) the training of the network corresponds to the solution 
of a nonlinear optimization problem and so the solution must be found iteratively. 
Insufficient number of iterations, or the presence of local minima in E, can result in 
suh-optimal solutions. The test error also decreases with L at first but then begins to 
saturate. The smallest test error occurs at L = 22, and is significantly smaller (by 

-. .rt r = ~ ll ". F i r h  --_.. netwnrli ..-... "... W ~ Q  .._" ?mind  ..-...-- for .". _"" VI0 r w - 1 ~ ~  nf ". the ...- R F f X  -. -- rrlonrithm, -.~" ........ eirh  -I-.. nf ". 

0.005 1 
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FIG. 4.-Plol of the root-mrsn-square m o r  for both training and lest data sets as a function 
of the number of hidden units in the network. The results from linear regression are plotted 

at L = 0. 
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about 20%) than the corresponding value obtained from linear regression. The error 
values from linear regression and from the optimal neural network are summarized 
in Table I .  

The RMS error obtained for the test data is ahout 20% smaller for the neural 
network compared with linear regression, corresponding to an increased capability 
to predict the confinement time of a new discharge. This suggests that the usual power 
law form used for many confinement scaling sludies may he inadequate. The reason 
that the reduction in error is not larger than this is probably due to the considerable 
random errors (noise) associated with energy confinement data. 

Unlike linear regression, the neural network does not lead to a simple analytic 
expression for the confinement time scaling law. This is hardly surprising since the 
point of using neural networks was to permit a very wide class of functional forms. 
Although an analytic form can he written down using equations (2) and (4), together 
with the values of the weights and thresholds from the trained network, this would 
provide little useful insight. Instead, we compare the LR and neural network results 
by plotting In (7i/r,:o) versus the regressor variables In q, In v * ,  In /I, and In (pJa).  

Principal component analysis applied to the test regressor variables, after first 
normalizing the variables by their mean value, gave the following eigenvalues 

(0.97, 0.24,0.03, 0.02) 

indicating a significantly nonunirorm dislribution of input data. Thus, a plot of 
In ( . rE /zEO)  versus one of the regressor variables, with the other regressor variables 
held fixed, would almost certainly lead to significant extrapolations outside the range 
of the training data. To ensure that we are interpolating within the range of the 
dataset, we plot In (rL./sLO) along the first principal axis, given by 

q = 4.09 + 1 . 4 8 ~  (10) 

v* = 0.072+0.059~ ( 1 1 )  

/I, = 0.270+0. I l8~  (12) 

(13) p./a = 1.72 x 10-5+ 1.39 x 10-%j 

where the parameter q spans the range (- 1.0,3.0). Figure 5 shows T ~ / T ~ , ,  along the 
principal axis for both linear regression (dashed curve) and for the 22-hidden-unit 
neural network (solid curve). It is clear that the neural network has found a functional 
form which is similar to that of LR. Figure 6 shows the value of In (7E/rEO) for each 
point in the test data set plotted against the corresponding value as predicted by linear 
regression. A similar plot for the neural network prediction is shown in Fig. 7. 

TAULE I .  

Error V ~ I U C S  for JET data 

Method Train RMS Test RMS 

Linear regression 0.007995 0.007957 
Neural net (22 hidden units) 0.005207 0.006319 
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FIG. 5.-Graph of (rc/tso) against the parameter 7 along the first principal direction. The 
solid curve corresponds to the nenral network and the dotted curve 10 linear regression. 

.. .- . .._. .. 
-5.6 :. . . ..! h(TE/rEo)Ln 

-5.6 -4 .8  -4.0 -3.2 -2.4 

FIG. 6.-Plat ofln ( r s / zE0)  from the test dataset versus the corresponding quantity predicted 
by linear regression. 

Comparison of Figs 6 and 7 shows the improved predictive capability of the neural 
network as compared with linear regression. 

5 .  CONCLUSIONS 
In this paper we have described the particular architecture ofneural network known 

as the multilayer perceptron and we have shown how it goes beyond the method of 
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.. . .. . 
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-5.6 -4.8 -4.0 -3.2 -2.4 

FIG. 7.-Plol of In from the test dataset versus the corresponding quantity predicted 
by the mural network. 

linear regression by allowing a much larger class of functional forms. We have applied 
this technique to the problem of energy confinement time scaling in Tokamaks. For 
a set of data from neutral beam heated JET plasmas we found a significant improve- 
ment in the confinement time prediction obtained from the neural network as com- 
pared with linear regression. The general form of the scaling relation was similar in 
the two cases. 

One feature of the neural network approach is the lack of a simple analytic 
expression for the resulting “scaling law”. This is an unavoidable consequence of 
having access to a wide range of functional forms. Visualization of the scaling prop- 
erties requires the network mapping to be displayed graphically. 

A second difficulty with the use of neural networks in this context concerns the 
extrapolation of the results outside the ranee of values for the regressor variahles 
spanned by the training data. While any extrapolation is prone to error, the neural 
network is much less likely to produce smooth extrapolations than linear regres- 
sion as a consequence of the much less tightly constrained functional form, and 
also because of the tendency of the hidden units to “saturate” for large inputs 
(see Fig. 2 ) .  

In the present context, however, this problem can be largely circumvented. In  
extrapolating from JET results to a large scale fusion reactor many of the dimensional 
quantities differ significantly, although the dimensionless parameters q, v* and & for 
a reactor lie in the range spanned by the JET data. Thus, for these dimensionless 
variables, the extrapolation problem can be avoided. However, the dimensionless 
parameter p J u  is about a factor 2 smaller in a reactor than in JET. Fortunately, there 
are strong theoretical reasons (CONNOR, 1988) to believe that the dependence of the 
.confinement time on pJu  should follow a simple power law. Thus, we are led to 
consider a scaling relation having the following functional form 
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In (%/.Lo) 

In P In v. W, In (p./a) 

FIG. 8.-The neural network architecture corresponding to equation (14) 

which can be represented in the form of a neural network as shown in Fig. 8. This 
functional form satisfies the power law constraint on p./a, but is otherwise aribtrary. 
The weights and thresholds of the corresponding network can be found using the 
training algorithms discussed in Section 2, and the network function can he extrapo- 
lated to reactor conditions without encountering any of the aforementioned problems. 

In addition, if the energy confinement data from a Tokamak follows the functional 
form of equation (14), and we fit a standard power law of the form of equation (7), 
then the value of n4 obtained from (7) will not in general be equal to the value 
of y in (14). Therefore, studies which use conventional linear regression may ob- 
tain a n  incorrect value for the exponent a4.  This may obscure the true power law 
behaviour of rE/r,, with respect to pJa, and cloud the comparison of theoretically 
predicted scalings with experimental data. The neural network architecture of Fig. 8 
will not suffer from this problem, and it is hoped to pursue this approach further in 
the future. 

One situation in which the neural network would be expected to perform sig- 
nificantly better than linear regression is where the data spans some threshold for an 
additional transport mechanism to switch on or OK Resulting discontinuities in the 
derivatives of the confinement time with respect to one or more regressor variables 
can easily be represented by the neural network but lie outside the scope of standard 
linear regression. 
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