
Memory Model Safety of Programs

Sebastian Burckhardt Madanlal Musuvathi
Microsoft Research

{sburckha,madanm}@microsoft.com

1. Introduction
Concurrency is pervasive in all systems software, including operat-
ing systems, databases, and web servers. With the future hardware
performance improvements coming mainly from additional paral-
lelism in the hardware, system designers will be forced make their
programs more concurrent to exploit this trend.

A particular problem that programmers face when writing con-
current programs is to ensure correctness in the presence of mem-
ory reordering caused by the underlying hardware or the compiler.
Such ordering relaxations are invisible to a single-threaded pro-
gram. However, a concurrent program may exhibit more executions
on a relaxed model than on a sequentially consistent (SC) machine.
This additional behavior can result in subtle bugs that are very hard
to find, understand, and debug.

One way to shield a programmer from these relaxations is to
use appropriate concurrency abstractions, such as locks and trans-
actional memory, provided either by a library or the compiler. Most
programs will (and should) use such high-level concurrency ab-
stractions. However, it is our position that a class of programs
will still bypass these abstractions and use ad-hoc synchronization
techniques. Such ad-hoc techniques include making direct use of
hardware primitives for atomic operations (such as interlocked ex-
change, or compare-and-swap) and employing regular loads and
stores for synchronization purposes. As such, these programs will
be exposed to the effects of the relaxed memory model.

We foresee three kinds of programs that use such ad-hoc syn-
chronization techniques. First, the libraries that implement high-
level concurrency abstractions would obviously use hardware prim-
itives to provide the abstractions. Second, the fast-paths of all sys-
tems will be heavily optimized for performance and programmers
will be unwilling to pay the inherent cost of these abstractions. Last
but not the least, there exists a huge body of legacy code that heav-
ily relies on the strong memory-ordering guarantees provided by
the current x86 architectures. Porting these programs to modern
multi-core architectures, with possibly more relaxed memory mod-
els, remains a big challenge.

While programs with ad-hoc synchronizations are notoriously
hard to get right [2, 8], they will remain crucial to the reliability
of the entire system. Thus, it is necessary to develop verification
methodologies to prove these programs correct. Simultaneously, it
is important for the designers of future compilers and architectures
to define memory models with verification of such programs in
mind.

In our recent work [3], we propose a promising direction for ver-
ifying programs against relaxed memory models. Let T Yπ denote
the set of executions of program π on memory model Y . A program
π is memory model safe for Y , or simply Y -safe, if T Yπ = T SC

π .
In other words, a Y -safe program remains sequentially consistent
when executed on Y . The verification of a Y -safe trivially reduces
to the standard verification problem of checking if every execution
in T SC

π is correct. In addition, we show [3] that checking memory

volatile bool isIdling;
volatile bool hasWork;

//Consumer thread
void BlockOnIdle(){

lock (condVariable){
isIdling = true;
if (!hasWork)

Monitor.Wait(condVariable);
isIdling = false;

}
}

//Producer thread
void NotifyPotentialWork(){

hasWork = true;
if (isIdling)

lock (condVariable) {
Monitor.Pulse(condVariable);

}
}

Figure 1. Violation of TSO -safety in a C# program.

model safety for the TSO (total store order) [10] memory model
can be efficiently combined with a model checker that systemati-
cally enumerates all executions in T SC

π .
The main motivation for memory model safety arises from our

observation that programmers, even those using ad-hoc synchro-
nizations, expect their programs to be sequentially consistent. They
design their programs to be correct for SC executions and insert
memory ordering fences to counter relaxations where necessary. In
particular, any program execution that is not SC is almost always
an error, resulting either from an insufficient use of fences or a mis-
understanding of the underlying memory model.

As an example, Figure 1 describes a program that violates TSO -
safety and contains a serious error. This example is a modified
version of a bug that we found [3] in a production level concurrency
library at Microsoft. The program uses two flags isIdling and
hasWork apart from a condition variable to synchronize between
consumers and producers. An idle consumer waits on the condition
variable if hasWork is false, but only after setting isIdling to
true. To optimize for the common case in which there are no idle
consumers, the producer acquires the lock only when isIdling
is true. Also, to account for a possible race on the isIdling flag,
the producer sets hasWork to true before checking the isIdling
flag. We can see that in all sequentially consistent executions the
producer wakes up the idle consumer, if any. However, this is
not guaranteed in TSO where a store can be reordered with a

subsequent load.1 In particular, the consumer can read hasWork
before its write to isIdling is visible to the producer. Thus, there
is an execution in which the producer erroneously decides that no
consumer is idling and the consumer blocks for ever.

In this paper, we explore the possibility of checking memory
model safety of programs for general memory models. In particu-
lar, we identify a class of memory models for which memory model
safety can be verified by only exploring executions in T SC

π . We be-
lieve that many practical memory models fall in this class, making
this verification approach very promising.

2. Formulation
We now proceed to formulate three wishes to the designers of
memory models, and explain how a model that satisfies all three
wishes simplifies the task of checking the memory model safety of
programs.

First, we believe that many models suffer from being vague
or incomplete. Many official specifications give an informal (and
occasionally mystifying) description accompanied by a number of
examples that convey just enough information to implement basic
synchronization primitives such as locks. However, the information
is usually not sufficient to verify the memory model safety of
arbitrary programs.

Wish 1. Memory model designers should give a formal de-
scription of the core memory model.

A specification for a memory model Y should provide the
following components:

• It should define a set T of memory traces. A memory trace
E ∈ T represents the aspects of a program execution that
are relevant for the purposes of the memory model. Typically,
traces contain information about the execution that is not di-
rectly observable to the program (for example, it may record
information about the order of accesses performed by the pro-
gram), but omits execution details that are not relevant (for ex-
ample, it may abstract data values).

• For each program π, it should define a set T Yπ ⊂ T of traces
that represents all possible partial and complete executions of
π on Y . We call the problem of deciding whether a particular
trace E ∈ T is in T Yπ the membership problem.

Different specification styles of memory models use different
methods to specify the set T Yπ . Operational memory models [4, 9]
employ automata (usually nondeterministic and infinite-state); a
trace is a member if and only if there exists a run of the automaton
that accepts some linearization of the trace. Conversely, axiomatic
memory models [11, 1, 7] directly state the logical requirements
that members have to satisfy. Most memory models found in archi-
tecture manuals follow an axiomatic style.

Deciding membership is not always easy. Operational memory
models often exhibit substantial nondeterminism; for axiomatic
models, expensive decision procedures may be required.

Wish 2. Memory Models should allow us to decide the mem-
bership problem efficiently.

Note that the choice of what information to include in the trace
influences the complexity of the membership problem. For exam-
ple, Gibbons and Korach [5] show that if the trace records the rel-
ative order of stores that target the same location, the membership

1 Unlike Java, the C# does not guarantee strong sequential ordering of
volatile accesses.

problem for sequential consistency can be decided in polynomial
time, but without this information, it is NP-complete.

Our last wish concerns the ability to reason inductively about
memory model safety. To illustrate our point, we first present a
basic formalization of memory traces. Then, we define the notion
of a borderline execution, and show how it can simplify the task of
verifying memory model safety.

A trace is a collection of events, each representing a regular
memory access (store or load), an atomic access (such as compare-
and-swap), or a memory fence. Let N be the set of natural numbers,
and let Proc = {1, . . . , N} be a finite set of processor identifiers
for some fixed bound N ∈ N. Then we define the set of instruction
identifiers Id = Proc×N, where each tuple (p, n) represents the n-
th instruction issued by processor p. We call n the issue index. We
now define a memory trace E to be a tuple E = (I, R,W, src, X)
where

• I ⊂ Id is a set of instruction identifiers such that the indexes is-
sued by each processor p form a contiguous range {1, . . . , np}
for some n1, . . . , nN ≥ 0.

• R and W are the subsets of I corresponding to instructions
that read or write from memory, respectively (R and W may
intersect; for instance, atomic operations both read and write
the same location).

• src is a partial function R ⇀ W . The idea is that for each
instruction r ∈ R, src(r) is the instruction that sourced the
value read by r, or is undefined if r reads the initial value of the
memory location.

• X captures additional properties of the events in I in a way that
we leave purposefully unspecified here for the sake of brevity
and generality. For example, X may track attributes of events
(such as the opcode or the address of the targeted memory
location), and some ordering information (such as the relative
order of stores to the same location).

Now, suppose we are given two traces E = (I, R,W, src, X)
and E′ = (I ′, R′,W ′, src′, X ′). We call E a prefix of E′ (and
write E v E′) if I ⊂ I ′, R ⊂ R′, W ⊂ W ′, src = src′|I , and
(so to speak) X = X ′|I . Then v defines a partial order on traces.
We say E′ is a successor of E if E v E′ and |I ′| = |I| + 1. If
E′ is a successor of E, we call E a predecessor of E′. We say E
is nontrivial if |I| > 0.

We call E ∈ T SC
π a borderline trace for π and Y if there exists

a successorE′ ofE such thatE′ ∈ (T Yπ \T SC
π). We say a memory

model Y guarantees borderline executions if has the following
property for all programs π: if there exists a trace E ∈ T Yπ \ T SC

π ,
then there exists a borderline trace E for π and Y .

Wish 3. Memory Models should guarantee borderline execu-
tions.

A memory model that guarantees borderline executions pro-
vides us a way to check the memory model safety of a program
by only reasoning about successors of executions in T SC

π , instead
of reasoning about all executions in T Yπ .

THEOREM 1. If the memory model Y guarantees borderline exe-
cutions, then a program π is Y -safe if and only if for all sequen-
tially consistent executions E ∈ T SC

π , there exist no successors E′

of E such that E′ ∈ T Yπ − T SC
π .

Because the above definition gives a precise characterization of
memory model safety, we can use it in combination with a variety
of (under- or over-approximating) techniques, such as runtime veri-
fication, model checking, or static program analysis. As a particular

case, see our work on checking TSO-safety using stateless model
checking [3].

For some memory models, it is particularly easy to prove that
they guarantee borderline executions. Specifically, call a memory
model Y inductive if for all programs π and nontrivial traces E ∈
T Yπ , there exists a predecessor E′ of E such that E′ ∈ T Yπ . It is
easy to see that all inductive memory models guarantee borderline
executions: Given a trace E ∈ (T Yπ − T SC

π), we can prove that
there exists a borderline trace by induction over the number of
instructions in E.

To show that a particular memory model is inductive, we need
to show that for any program π and any trace E in T Yπ , there exists
a processor p such that we can remove the last instruction issued by
p from E and obtain a predecessor in T Yπ . Note that we can never
remove stores that are loaded by some load, because the resulting
execution would not be a prefix.

3. Discussion of Memory Models
In this section, we examine some commonly used memory models
in light of the wishes we formulated in the previous section.

3.1 Intel 64
The recent whitepaper by Intel [6] contains a large number of ex-
ample traces (also known as “litmus tests”) to describe the mem-
ory model. It is not formal, and does thus not satisfy wish 1. As
a consequence, we also do not know how to decide the member-
ship problem for general programs. However, we believe that with
some more work, it is possible to develop a formal model that is (1)
consistent with the examples in the paper and (2) for which mem-
bership can be decided with reasonable efficiency. Both wish 1 and
wish 2 thus seem “within reach”. As for wish 3, it appears that it is
indeed satisfied: the model explicitly disallows stores to be ordered
before older loads. This implies that the model is inductive, by the
following argument. For a trace E = (I, R,W, src, X), define a
binary relation →cs on I by specifying that i →cs j if and only
if either (1) i <p j and i ∈ R and j ∈ W , or (2) src(j) = i.
The requirement that stores are not ordered before older loads then
implies that→cs is acyclic, which in turn implies that the memory
model is inductive, as follows: for any trace, look at all the last in-
structions issued by each processor. If any of them is a load, we can
safely remove it, obtaining a predecessor execution. If any of them
is a store that is not the source of any load, it can also be safely
removed. However, if all last instructions are stores that are loaded
by some load, a→cs-cycle results.

3.2 Sparc TSO, PSO, and RMO
All three of these models are formally defined in the SPARC man-
ual [10]. For a detailed description on why TSO (“total store or-
der”) satisfies all our wishes, see our previous work [3]. We believe
that the same results can be obtained for PSO (“partial store or-
der”). Also, we believe that RMO (“relaxed memory order”) satis-
fies wish 2. However, RMO does not satisfy wish 3, as exemplified
by the trace in Fig. 2. RMO allows the reordering of the store in
the third instruction of processor 1 with the load in the first instruc-
tion as there are no dependencies between them. This speculative
store allows process 2 to read the stored value and subsequently set
y to 1. Processor 1 then reads this value to satisfy the final condi-
tions of the trace. However, there exists no SC execution which is
a predecessor of this execution. We believe that this failure to guar-
antee borderline executions is not intentional, and may in fact be an
artifact of the formalization (and could be fixed by a slight modi-
fication of the definition of the dependency relation): our intuitive
understanding suggests that actual hardware implementations guar-

Initially: x[0] == x[1] == y == 0
processor 1 processor 2

(1,1) r1 = y (2,1) r2 = x[0]
(1,2) x[r1] = 1 (2,2) y = r2
(1,3) x[0] = 1

Eventually: r1 == r2 == 1

Figure 2. A program trace that it allowed by RMO, but for which
there exists no borderline execution for RMO.

antee borderline executions because they refrain from performing
speculative stores.

3.3 PowerPC
The PowerPC manual is not formal and gives only very few exam-
ples, leaving some room for guesses. It seems to aim for a similar
position as the RMO model as far as local instruction reorderings
of stores and loads are concerned (independent accesses can be re-
ordered, but not dependent accesses), but takes a much more liberal
approach to store atomicity. Our preliminary experiences suggest
that PowerPC traces can be formalized in a such a way that wishes
1 and 2 are satisfied. As for wish 3, it seems that just like with
RMO, the definition of dependency is not precise enough to guar-
antee borderline executions.

3.4 Java
As typical for a language-level model, the JMM (Java Memory
Model) (formally specified in [7]) distinguishes between synchro-
nization accesses (including locks, unlocks, and volatile loads and
stores) and regular data accesses (all others). It provides very strong
guarantees for synchronization accesses (any projection of a JMM
trace onto the subset of synchronization accesses is sequentially
consistent), and implies full sequential consistency for race-free
programs. However, it provides very weak guarantees for programs
with races. Wish 2 is thus at least partially satisfied: the member-
ship of a trace can be decided efficiently if it is race free; otherwise,
however, the task is daunting, as the justification of a particular
trace requires the construction of a sequence of program traces that
may involve different paths through the program. As for wish 3,
we have not yet determined if it is satisfied (we believe it not to be
satisfied, but have not found a witness yet).

4. Conclusions and Future Work
In this paper, we show that for a general class of memory mod-
els, checking the memory model safety can be efficiently per-
formed while reasoning about the immediate successors of sequen-
tially consistent executions only. We believe that this class includes
many useful memory models and presented various challenges that
stymied our effort. In future, we hope to appropriately characterize
the RMO and the PowerPC memory models so that they admit bor-
derline executions. Also, we would like to explore the possibility
of combining memory model safety verification with a variety of
static and dynamic analysis techniques.

References
[1] H.-J. Boehm and S. Adve. Foundations of the C++ concurrency mem-

ory model. In Programming Language Design and Implementation
(PLDI), 2008.

[2] S. Burckhardt, R. Alur, and M. Martin. CheckFence: Checking
consistency of concurrent data types on relaxed memory models. In
Programming Language Design and Implementation (PLDI), pages
12–21, 2007.

[3] S. Burckhardt and M. Musuvathi. Effective program verification
for relaxed memory models. Technical Report MSR-TR-2008-12,
Microsoft Research, 2008.

[4] D. Dill, S. Park, and A. Nowatzyk. Formal specification of abstract
memory models. In Symposium on Research on Integrated Systems,
pages 38–52. MIT Press, 1993.

[5] P. B. Gibbons and E. Korach. The complexity of sequential
consistency. In Parallel and Distributed Processing, pages 317–325.
IEEE, 1992.

[6] Intel Corporation. Intel 64 Architecture Memory Ordering White
Paper, August 2007.

[7] J. Manson, W. Pugh, and S. Adve. The Java memory model. In
Principles of Programming Languages (POPL), pages 378–391,
2005.

[8] V. Morrison. Understand the impact of low-lock techniques in
multithreaded apps. MSDN Magazine, 20(10), October 2005.

[9] S. Park and D. L. Dill. An executable specification, analyzer and
verifier for RMO (relaxed memory order). In Symposium on Parallel
Algorithms and Architectures (SPAA), pages 34–41, 1995.

[10] D. Weaver and T. Germond, editors. The SPARC Architecture Manual
Version 9. PTR Prentice Hall, 1994.

[11] Jason Yue Yang. Formalizing Shared Memory Consistency Models
for Program Analysis. PhD thesis, University of Utah, 2005.

