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Abstract. In this paper, we present a general framework for modularly
comparing two (imperative) programs that can leverage single-program
verifiers based on automated theorem provers. We formalize (i) mutual
summaries for comparing the summaries of two programs, and (ii) rel-
ative termination to describe conditions under which two programs rel-
atively terminate. The two rules together allow for checking correctness
of interprocedural transformations. We also provide a general framework
for dealing with unstructured control flow (including loops) in this frame-
work. We demonstrate the usefulness and limitations of the framework
for verifying equivalence, compiler optimizations, and interprocedural
transformations.

1 Introduction

The ability to compare two programs statically has applications in various do-
mains. Comparing successive versions of a program for behavioral equivalence
across various refactorings and ensuring that bug fixes and feature additions
do not introduce compatibility issues, is crucial to ensure smooth upgrades [3].
Comparing different versions of a program obtained after various compiler trans-
formations (translation validation) is useful to ensure that the compiler does not
change the semantics of the source program [9, 8]. There are two enablers for
program comparison compared to the more general problem of (single) program
verification. First, one of the two programs serves as an implicit specification for
the other program. Second, exploiting simple and automated abstractions for
similar parts of the program can lead to greater automation and scalability.

Although several systems have been developed in recent years for equivalence
checking of imperative programs, there has been a lack of general framework for
comparing programs. Current systems provide solutions to specific instances
of the problem — translation validators focus on intraprocedural loop optimiza-
tions [8], regression verification focuses on simple interprocedural refactorings [3].

In this paper, we describe a framework for comparing programs modularly.
We develop two contracts for comparing two programs: (i) First, we formal-
ize mutual summaries to relate the summaries of two (possibly recursive) pro-
cedures. Mutual summaries naturally generalize postconditions used for single



c ∈ {. . . ,−1, 0, 1, . . .}
x ∈ Vars
R ∈ Relations
U ∈ Functions
e ∈ Expr ::= x | c | U(e, . . . , e) | old(e) | 〈e, e〉 | e.1 | e.2
φ ∈ Formula ::= true | false | e relop e | φ ∧ φ | ¬φ | R(e, . . . , e) | ∀u.φ
s ∈ Stmt ::= skip | assert φ | assume φ | x := e | havoc x |

s; s | 〈s, s〉 | s � s | s ./ s | x := call f(e, . . . , e)
p ∈ Proc ::= int f(x : int, . . .) : r { s }

Fig. 1. A simple programming language.

program verification. (ii) Second, we formalize a relative termination specifica-
tion that describes a condition RT (f, h) on inputs of two procedures f and h
under which the procedure h terminates whenever f terminates. Such contracts
are useful to ensure that transformations do not change the terminating exe-
cutions, and are important for ensuring that two transformations compose. We
then provide a proof rule for checking mutual summaries and relative termination
modularly. We show that these checks can be encoded using modular (single)
program verifiers, and can be discharged efficiently using modern satisfiability
modulo theories (SMT) solvers [2]. Finally, we provide a general framework for
dealing with unstructured control flow (including loops) in this framework.

We demonstrate the usefulness of our approach on illustrative examples from
equivalence checking, including conditional equivalence checking and translation
validation. We encode proofs of various compiler loop optimizations such as
software pipelining and loop unrolling. Our framework currently lacks the au-
tomation provided for specific forms of equivalence checking (e.g. automatically
synthesizing a class of simulation relations for compiler transformations [8]). On
the other hand, we show examples of comparing two programs with interprocedu-
ral changes for eliminating non-tail recursion (§4.3), monotonic behavior (§3.1),
conditional equivalence (§4.3) and refactorings (§4.3) that were not amenable
to automated theorem provers. We are currently incorporating the ideas in this
paper into SymDiff [5], a language agnostic semantic diff framework that uses
the modular program verifier Boogie [1], and the Z3 SMT solver [2].

2 Background

Figure 1 describes a programming language with recursive procedures and an
assertion language. Loops and unstructured jumps can be translated into this
language (§4.1). The language supports variables (Vars) and various operations
on them. Expressions (Expr) can be variables, constants, or the result of applying
a function U to a list of expressions. The expression old(e) refers to the value
of e at the entry to a procedure. The expressions e.1 and e.2 extract the first
and second components of a pair 〈e1, e2〉. Formula represents Boolean valued



〈skip, σ〉 ⇓ σ 〈assert φ, σ〉 ⇓ σ 〈g := e, σ〉 ⇓ eval(e[σ/g ]) 〈havoc g , σ〉 ⇓ σ′

φ[σ/g]

〈assume φ, σ〉 ⇓ σ

〈sf , σ〉 ⇓ σ′

where sf is the body of f

〈call f(), σ〉 ⇓ σ′

〈s1, σ1〉 ⇓ σ′
1

〈s2, σ2〉 ⇓ σ′
2

〈〈s1, s2〉, 〈σ1, σ2〉〉 ⇓ 〈σ′
1, σ

′
2〉

〈s1, σ〉 ⇓ σ′

〈s2, σ′〉 ⇓ σ′′

〈s1; s2, σ〉 ⇓ σ′′
(〈s1, σ〉 ⇓ σ′) ∨ (〈s2, σ〉 ⇓ σ′)

〈s1 � s2, σ〉 ⇓ σ′

〈s1, σ〉 ⇓ σ′

〈s2, σ〉 ⇓ σ′

〈s1 ./ s2, σ〉 ⇓ σ′

Fig. 2. Dynamic semantics.

expressions and can be the result of relational operations on Expr , Boolean
operations ({∧,¬}), or quantified expressions (∀u.φ).

A state σ of a program at a given program location is a valuation of the
variables in scope, which may include procedure parameters, locals and global
variables. Figure 2 presents big-step dynamic semantics 〈s, σ〉 ⇓ σ′, which says
that statement s executes to completion, transforming the initial state σ into
a new state σ′. For simplicity, the formalizations in the paper (e.g. Figure 2)
assume that the program contains only one variable, a global variable named g.
The value of the global implicitly defines the state in such cases. (Note that g
can hold tuples and arrays, which can be used to encode additional variables,
procedure parameters, and procedure return values.) Most statements in Stmt
are standard, we only describe the non-standard ones here: The assignment
statement is standard (we assume an evaluation function eval(e) that evaluates
closed expressions to values). havoc x scrambles the value of a variable x to
an arbitrary value. s � t denotes a demonic non-deterministic choice to either
execute statements in s or t, and can be used to model conditional statements [1].
The statement s ./ t denotes angelic non-deterministic choice, where the choice
of executing s or t may be made in whichever way is most beneficial to the
verification process. Finally, the statement 〈s1, s2〉 requires that the current state
be a pair value (σ = 〈σ1, σ2〉); if this is satisfied, then 〈s1, s2〉 evaluates s1 in state
σ1 to produce a new state σ′

1, separately evaluates s2 in state σ2 to produce a new
state σ′

2, and then combines the two new states into a single new state that is a
pair value: 〈σ′

1, σ
′
2〉. We do not expect programmers to use the statements s ./ t

and 〈s1, s2〉 directly; these statements are used for instrumenting programs when
checking relative termination and mutual summaries respectively.

Figure 3 presents axiomatic static semantics for statements s, expressed as
a weakest (liberal) precondition φ = wp(s, φ′). The definition of wp(s, φ′) is
standard except for the 〈s1, s2〉 statement and call statement. The definition of
wp(〈s1, s2〉, φ)

(wp(s1,wp(s2, φ[〈g1, g2〉/g][g/g2])[g2/g][g/g1])[g1/g])[g.1/g1, g.2/g2]



wp(skip, φ) = φ wp(assert φ′, φ) = φ′∧φ
wp(assume φ′, φ) = φ′ =⇒ φ wp(g := e, φ) = φ[e/g]
wp(havoc g, φ) = ∀g. φ wp(s1; s2, φ) = wp(s1,wp(s2, φ))
wp(s1 � s2, φ) = wp(s1, φ)∧wp(s2, φ) wp(s1 ./ s2, φ) = wp(s1, φ)∨wp(s2, φ)
wp(call f(), φ) = ∀g′. Rf (g, g′) =⇒ φ[g′/g]

wp(〈s1, s2〉, φ) = (wp(s1,wp(s2, φ[〈g1, g2〉/g][g/g2])[g2/g][g/g1])[g1/g])[g.1/g1, g.2/g2]

Fig. 3. Static semantics.

is long but not particularly deep; intuitively, it just extracts the two components
of g.1 and g.2 the input state g into temporary variables g1 and g2, and then
shuffles these values in and out of g to capture the effects of evaluating s1 on g1
and s2 on g2. Similarly, the effect of a call to a procedure f is simply replaced
by an uninterpreted relation Rf (g, g′),

wp(call f(), φ) = ∀g′. Rf (g, g′) =⇒ φ[g′/g]

where g is the state before the call and g′ is the state after the call completes. We
often use R =

⋃
f{Rf} to refer to set of relation symbols over all the procedures.

The following proposition connects the dynamic and static semantics:

Proposition 1. (Basic Soundness) If 〈s, σ〉 ⇓ σ′ and wp(s, φ)[old(g)/g] is valid
and no symbol in R appears free in φ, then φ[σ/old(g), σ′/g] is valid.

In the next section, we will illustrate how the mutual summaries and the
relative termination contracts constrain the relation Rf for a procedure.

3 Mutual summaries and relative termination

A program P consists of a set of procedures {f1, . . . , fk}, identified by their
names. We let f, h, fi, hi range over procedure names. The set P contains a
union of procedures from two versions of a program. We use the notation a

.
=

λf, h. φ(f, h) to be an indexed (by a pair of procedures) set of formulas such
that φ(f, h) denotes the formula for the pair (f, h). We extend this notation to
refer to an indexed set of expressions, constants, sets of states, etc.

3.1 Mutual summaries

For any pair of procedures f ∈ P and h ∈ P , a mutual summary MS (f, h) is a
relation over the input and output states of f and h. It is expressed as a formula
over two copies of the input and the output variables. In general, f and h may
have different sets of parameters and return values. In the case where f and h
both take a single parameter x, return a single return value r, and access a single
global variable g, the relation looks like:

λx1, x2, g1, g2, r1, r2, g
′
1, g

′
2. φ(x1, x2, g1, g2, r1, r2, g

′
1, g

′
2)



int g;
void Foo1(int x){

if (x < 100){
g := g + x;
Foo1(x + 1);

}
}

void Foo2(int x){
if (x < 100){

g := g + 2*x;
Foo2(x + 1);

}
}

Fig. 4. Running example.

where xi, gi, ri and g′i refer to the state of the parameters, input globals, return
and the output globals for the i-th procedure. For brevity, we will identify a
mutual summary directly with φ(x1, x2, g1, g2, r1, r2, g

′
1, g

′
2), instead of the rela-

tion (that is, avoid the λ). The semantics from Figures 2 and 3 contain just one
variable g, so we write (using a curried function that accepts a pair of pre-states
and a pair of post-states):

λg1, g2.λg
′
1, g

′
2. φ(g1, g2, g

′
1, g

′
2)

Definition 1 (mutual summaries). For procedures f and h with bodies sf
and sh, MS (f, h) holds if for every tuple of states (σf , σ

′
f , σh, σ

′
h) such that

〈sf , σf 〉 ⇓ σ′
f and 〈sh, σh〉 ⇓ σ′

h, MS (f, h)〈σf , σh〉〈σ′
f , σ

′
h〉 evaluates to true.

Example 1. Consider the two programs in Figure 4. Consider the following mu-
tual summary MS (Foo1, Foo2) for this pair of procedures:

(x1 = x2 ∧ x1 ≥ 0 ∧ g1 ≤ g2) =⇒ (g′1 ≤ g′2)

The summary states that if the procedures Foo1 and Foo2 are executed in two
states where the respective parameters are equal and greater than 0, and if the
value of the global at entry to Foo1 is less than or equal to the value of the
global at entry to Foo2, and if both procedures terminate, then the value of the
global at exit from Foo1 will be less than or equal to the value of the global at
exist from Foo2.

3.2 Relative Termination

One difficulty with using mutual summaries is that they do not compose, since
they only talk about partial correctness. Consider three procedures A1, A2 and
A3 and mutual summaries MS (A1, A2) and MS (A2, A3) that express that A1 and
A2 (respectively A2 and A3) are equivalent when both procedures terminate on an
input. We cannot conclude that A1 and A3 are equivalent when both procedures
terminate on an input, since A2 may not terminate on any input.

The relative termination specification expresses the circumstances in which
f ’s termination implies h’s termination. For any pair of procedures f ∈ P and
h ∈ P , a relative termination specification RT (f, h) is a relation over the input



AXIOMS = AXIOMSMS∧AXIOMSRT

AXIOMSMS = ∀f1 , f2 , σ1 , σ
′
1 , σ2 , σ

′
2 .

Rf1(σ1, σ
′
1)∧Rf2(σ2, σ

′
2) =⇒ MS(f1, f2)〈σ1, σ2〉〈σ′

1, σ
′
2〉

AXIOMSRT = ∀f1 , f2 , σ1 , σ
′
1 , σ2 .

Rf1(σ1, σ
′
1)∧RT (f1, f2)〈σ1, σ2〉 =⇒ ∃σ′

2. Rf2(σ2, σ
′
2)

CONDITIONS =
R does not occur free in MS , and
R does not occur free in RT , and
∀f1, f2.

(AXIOMS =⇒ wp(〈sf1 , sf2 〉,MS(f1 , f2 ) old(g) g)[old(g)/g ])∧
(AXIOMS∧RT (f1 , f2 ) g =⇒ wp(〈sf1 , at(sf2 )〉, true))

Fig. 5. Conditions and axioms.

states of f and h. It is expressed as a formula over two copies of the input
variables. The relative termination specification RT (f, h) is a relation

λx1, x2, g1, g2. φ(x1, x2, g1, g2)

where xi and gi refer to the state of the parameters and input globals for the i-th
procedure. In general, f and h may have different parameters. For the semantics
from Figures 2 and 3, where there are no parameters, we write:

λg1, g2. φ(g1, g2)

Definition 2 (relative termination). For procedures f and h with bodies sf
and sh, RT (f, h) holds if for every tuple of states (σf , σh) such that there exists
a σ′

f such that 〈sf , σf 〉 ⇓ σ′
f and RT (f, h)〈σf , σh〉 is true, there is some σ′

h such
that 〈sh, σh〉 ⇓ σ′

h.

Note that we do not insist that every execution from a pre-state eventu-
ally terminates, but rather at least one. For the example in Figure 4, although
RT (Foo1, Foo2) = true is the weakest condition for relative termination (since
both Foo1 and Foo2 always terminate), proving such a relative termination spec-
ification requires reasoning about the two programs separately using ranking
functions. We later show that a stronger condition RT (Foo1, Foo2) = x1 ≤ x2
can be proved modularly without any other proof rules.

3.3 Modular checking

We now describe a method to decompose the checking that a program P satisfies
a set of mutual summaries MS and relative termination specifications RT .

Figure 5 expresses the assumptions in AXIOMS and the checks for guarantee-
ing the mutual summaries and relative termination as a condition in CONDITIONS
that must be satisfied. The AXIOMS consists of assumptions for MS and RT
specifications respectively. The AXIOMSMS assumes MS (f1, f2) on the pre-post



states of f1 and f2. The AXIOMSRT assumes f2 terminates whenever it starts
from a state σ2 that is related (by RT (f1, f2)) to a terminating input state σ1
of f1 (we defer discussion of at() until we explain AXIOMSRT ).

The check for mutual summaries is given by:

AXIOMS =⇒ wp(〈sf , sh〉,MS (f , h) old(g) g)[old(g)/g ]

where sf and sh are the bodies of the procedures f and h. Intuitively, this
formula prescribes a sequence of steps for checking that MS (f, h) holds. First,
we assume AXIOMS holds. Second, we assign the global state variable g an
initial value of old(g). Third, we symbolically execute the statement 〈sf , sh〉,
which assigns a new state to the variable g. (This has the effect of executing sf
on g.1 and separately executing sg on g.2.) Finally, we assert that in this new
state g, relative to the old state old(g), the mutual summary MS (f, h) holds.
Observe that this is analogous to modular (single) program verification, where
we symbolically execute a single procedure body sf and than assert that f ’s
postcondition holds. The key novelty in mutual summaries is that the checking
process executes two procedure bodies, and asserts a summary that can mention
the state of both procedures.

The checking procedure ensures that if sf and sg execute on concrete states
σf and σg, then the mutual summary MS (f, h) relates the new states σ′

f and σ′
g

to the old states σf and σg:

Theorem 1. For procedures f and h with bodies sf and sh, if CONDITIONS
is satisfied then MS (f, h) holds; that is, if 〈sf , σf 〉 ⇓ σ′

f and 〈sh, σh〉 ⇓ σ′
h hold

for any σf , σ
′
f , σh, σ

′
h, then MS (f, h)〈σf , σh〉〈σ′

f , σ
′
h〉 is true.

The procedure bodies sf and sh may contain call statements. For example, the
procedure bodies in Figure 4 contain recursive calls to the procedures. Sup-
pose that procedure body sf contains a call statement call f ′() and procedure
body sh contains a call statement call h′(). The weakest precondition (Figure 3)
inserts an assumption Rf ′(gf , g

′
f ), where gf and g′f are the states before and

after the call f ′() statement. Similarly, the weakest precondition inserts an as-
sumption Rh′(gh, g

′
h) for call h′(). These assumption may trigger AXIOMSMS

(Figure 5), which then produces an assumption about MS (f, h)〈gf , gh〉〈g′f , g′h〉.
This assumption may be used to help prove the weakest precondition for 〈sf , sh〉,
so that mutual summaries for recursive procedures are established inductively,
assuming mutual summaries for callees while checking summaries for callers. Ob-
serve that this is analogous to modular (single) program verification, where we
assume the postconditions of callees while checking the contracts in the caller.

We now show how RT are checked modularly. Figure 5 imposes the following
condition for guaranteeing properties of relative termination:

AXIOMS ∧ RT (f , h) g =⇒ wp(〈sf , at(sh)〉, true)

Essentially, the formula requires that the weakest precondition of 〈sf , at(sh)〉 be
implied by the axioms and the termination condition RT (f, h). Figure 6 defines
at(sh) as a transformation on sh that include inserting an assert statement before



at(skip) = skip
at(assert φ) = assert φ
at(assume φ) = assert φ
at(g := e) = g := e
at(havoc g) = havoc g

at(s1 ; s2 ) = at(s1 ); at(s2 )
at(〈s1 , s2 〉) = assert false
at(s1 � s2 ) = at(s1 ) ./ at(s2 )
at(s1 ./ s2 ) = assert false
at(call f ()) = assert (∃g ′. Rf (g , g ′)); call f ()

Fig. 6. Assertions for checking relative termination. at(s) replaces a statement with a
new statement.

each call in sh, and converting each assume statement in sh into an assertion.
The purpose of checking this is to verify that all the termination assertions in
at(sh) hold, where each termination assertion verifies that a potentially non-
terminating statement actually terminates. In particular, call statements may
fail to terminate and assume statements may block. If these inserted assertions
are satisfied, then sh is guaranteed to terminate:

Theorem 2. For procedures f and h with bodies sf and sh, if CONDITIONS
is satisfied then RT (f, h) holds; that is, if 〈sf , σf 〉 ⇓ σ′

f and RT (f, h)〈σf , σh〉 is
valid for any σf , σ

′
f , σh, then there is some σ′

h such that 〈sh, σh〉 ⇓ σ′
h.

As with mutual summaries, relative termination is assumed for callees when
checking termination of the callers, so that relative termination for recursive
procedures can be established inductively.

Given these rules, one can prove that the MS (Foo1, Foo2) = (x1 = x2∧x1 ≥
0 ∧ g1 ≤ g2) =⇒ (g′1 ≤ g′2) holds for Figure 4. One can similarly prove that
RT (Foo1, Foo2) = x1 ≤ x2 holds, assuming it holds for nested pairs of calls.
In both cases, we use the fact that whenever x1 ≤ x2, Foo2 cannot execute the
nested recursive call to itself without Foo1 calling itself. Although the condition
RT (Foo1, Foo2) = x1 ≥ x2 holds, it cannot be proved modularly using only these
proof rules. This is expected, as these rules are only sound, but not complete.

3.4 Proof sketch

We have proven the main theorems (Theorem 1 and Theorem 2).1 The key
lemma is a proof that the axioms in Figure 5 are valid.

Lemma 1. (Full Soundness) If CONDITIONS is satisfied and 〈s, σ〉 ⇓ σ′ and
(AXIOMS =⇒ wp(s, φ)[old(g)/g ]) is valid and no symbol in R appears free in
φ, then φ[σ/old(g), σ′/g] is valid.

The main challenge in the proof of this lemma is that the validity of the
axioms depend on the conditions in Figure 5, which in turn mention the axioms.
To break this circularity, we build up the axiom validity inductively on the call
depth (maximum number of nested calls) in an execution 〈s, σ〉 ⇓ σ′. The base

1 Detailed proofs are available off the extended technical report page at
http://research.microsoft.com/apps/pubs/?id=154989.



void MutualCheck〈f, h〉
(xf : int, xh : int){
chkTerm := false;
gf := g;
inline rf := call f(xf );
g′f := g;
havoc g;
gh := g;
inline rh := call h(xh);
g′h := g;
assert

MS(f, h)(xf , xh, gf , gh,
rf , rh, g

′
f , g

′
h);

}

void RelTermCheck〈f, h〉
(xf : int, xh : int){
gf := g;
chkTerm := false;
inline rf := call f(xf );
g′f := g;
havoc g;
gh := g;
assume

RT(f, h)(xf , xh,
gf , gh);

chkTerm := true;
inline rh := call h(xh);
g′h := g;

}

axiom(
∀x1, x2, g1, g2, r1, r2, g

′
1, g

′
2.

{Rf (x1, g1, r1, g
′
1),

Rh(x2, g2, r2, g
′
2)}

(Rf (x1, g1, r1, g
′
1)∧

Rh(x2, g2, r2, g
′
2))

=⇒
MS(f, h)(x1, x2, g1, g2,
r1, r2, g

′
1, g

′
2))

axiom(
∀x1, x2, g1, g2.
{RT(f, h)(x1, x2, g1, g2)}
(RT(f, h)(x1, x2, g1, g2)
∧Rf (x1, g1, r1, g

′
1))

=⇒
(∃r2, ∃g′

2. Rh(x2, g2, r2, g
′
2)))

free post Rf (x, old(g), r, g)
pre chkTerm =⇒

∃r, ∃g′.Rf (x, g, r, g
′)

modifies g
int f(x : int) : r;

Fig. 7. Encoding the rules into a modular program verifier Boogie.

case uses empty relations Rf1 = ∅, . . . , Rfk = ∅, meaning that there are no calls
(call depth 0). The inductive case assumes relations Rf1 , . . . , Rfk for call depth
n, and increases the membership of these relations to include executions with
call depth n+ 1.

3.5 Encoding in Boogie

By exploiting the close analogy between mutual summaries, relative termina-
tion, and traditional modular (single) program verification, we can use auto-
mated single-program verification tools like Boogie to check mutual summaries
and relative termination for a subset of programs described in Figure 1. We re-
strict ourselves to the case of programs that do not contain any angelic choice
statements (s ./ t), and the only use of a demonic choice (s � t) or an as-
sume statement in the program syntax comes from the modeling of conditional
statements. These restrictions along with absence of loops ensure that the only
source of non-termination comes from nested procedure calls. Figure 7 shows an
encoding of the axioms and conditions from Figure 5.

First, we define the predicate Rf for each procedure f over the input and
output symbols, and add it as a “free” postcondition for f . The “free” post-
conditions of a procedure are unchecked postconditions that are only assumed
at call sites, but never asserted. The precondition (guarded by a ghost global
variable chkTerm) captures the assertion for checking relative termination.

Second, we define a procedure MutualCheck〈f, h〉 that checks a mutual
summary MS (f, h). Note that the global variable chkTerm is set to false — this
has the effect of turning off the relative termination assertions at call-sites. We



write “inline r := call f(x)” to inline the body of f (upto calls). The assert checks
the mutual summary MS (f, h) after executing f and h on their copies of globals.

Third, we define a procedure RelTermCheck〈f, h〉 that defines how to
check the relative termination of h with respect to f under RT (f, h). The set-
ting chkTerm = true enables assertions of termination before potentially non-
terminating statements while checking the body of h.

Finally, the axiom(.) encode the axioms in AXIOMS . Each axiom has a set of
triggers that control when the axioms are instantiated [2]. The triggers represent
a list of expressions inside {.}, containing all the bound variables in a quantified
axiom.

4 Applications

In this section, we show the application of our approach towards various examples
of intraprocedural and interprocedural transformations. 2

4.1 Loops and unstructured control

In this section, we provide a general framework for translating arbitrary un-
structured control flow graphs (including loops) into recursive procedures. Un-
structured control flow is fairly common when dealing with low-level programs
such as binaries. The general scheme requires that certain locations in a program
be decorated as special function labels (FLABEL). Given a program where every
cycle passes through at least one function label, the following simple algorithm
transforms this program into a set of mutually recursive procedures. First, each
function label becomes a procedure, whose parameters are all local variables and
procedure parameters in scope. Second, the body for each procedure is the col-
lection of statements reachable from that procedure’s function label via paths
that do not pass through a function label. Finally, each goto statement to a func-
tion label (or implicit fall-through to a function label) becomes a tail-recursive
call to the procedure for that function label. Notice that in the second step, the
same statements might be included separately in different procedures, if those
statements are reachable from different function labels. In the worst case, each
statement could be included in each generated procedure, so the worst-case size
of the resulting program is the product of the original program size and the
number of function labels. Figure 8 shows an example of such loop extraction.

Although the general scheme allows the user flexibility in the choice of
FLABELS to eliminate loops, one can automate the extraction for structured pro-
grams. For such programs, it suffices to identify the set of loop heads as FLABEL.
We have implemented a variant of this scheme in Boogie to automate the trans-
lation of structured loops into tail-recursive procedures. 3 For the examples in
this paper, we however explicitly mention the set of FLABEL locations.

2 Detailed Boogie examples used in this paper are available off the extended technical
report page at http://research.microsoft.com/apps/pubs/?id=154989.

3 The exact Boogie options to be specified are ‘‘/printInstrumented /extractLoops

/deterministicExtractLoops ’’.



4.2 Intraprocedural translation validation

This section describes the use of mutual summaries to perform (intraprocedural)
translation validation [9], focusing on the validation of compiler loop optimiza-
tions. The validation consists of three steps: (1) eliminating unstructured control
(including loops), (2) providing mutual summaries, (3) user-specified inlining of
calls to recursive procedures zero or more times to express the effect of loop
optimizations such as loop unrolling.

In describing the examples in this section, we follow the approach by Kundu
et al. [4] to express parameterized versions of programs, where the effect of a
loop-free and call-free block of statements is modeled as an application of an
uninterpreted function. The type of the globals is an uninterpreted type T, and
there is a single global g of this type representing the global state unless otherwise
noted.

void A(){
i := 0;

While1:
if(i < E(n)){

g := S1(g,i);
g := S2(g,i);
i := i + 1;

L1: //FLABEL
goto While1;

}
}

void B(){
i := 0;
g := S1(g,i);

While2:
if(i < E(n)-1){

g := S2(g,i);
i := i + 1;

L2: //FLABEL
g := S1(g,i);
goto While2;

}
g := S2(g,i);
i := i + 1;

}

(a)

void A’(){
i := 0;
if(i < E(n)){

g := S1(g,i);
g := S2(g,i);
i := i + 1;
r := call L1(i);

}
}

int L1(int i){
i’ := i;
if(i’ < E(n)){

g := S1(g,i’);
g := S2(g,i’);
i’ := i’ + 1;
r := call L1(i’);
return r;

}
}

(b)

void B’(){
i := 0;
g := S1(g,i);
if(i < E(n)-1){

g := S2(g,i);
i := i + 1;
r := call L2(i);
return ;

}
g := S2(g,i);
i := i + 1;

}

int L2(int i){
i’ := i;
g := S1(g,i’);
if(i’ < E(n)-1){

g := S2(g,i’);
i’ := i’ + 1;
i’ := call L2(i’);
return i’;

}
g := S2(g,i’);
i’ := i’ + 1;
return i’;

}

(c)

Fig. 8. Example of software pipelining. (a) Input programs and (b,c) programs after
loop extraction for A and B respectively.

Software pipelining Figure 8 describes the encoding of software pipelining,
where E, S1 and S2 represent uninterpreted predicates or functions. The op-
timization can be expressed as a composition of two transformations [4] (a)
transformation from A to B, and (b) replacing the sequence of statements

g := S2(g, i); i := i + 1; g := S1(g, i);



in B with

g := S1(g, i + 1); g := S2(g, i); i := i + 1

We only describe the proof of the transformation from A to B. The latter fol-
lows under the assumption that the call-free statements g := S1(g,i+1) and
g := S2(g,i) commute. Although it is easy to see that the second transforma-
tion cannot affect termination, a rigorous proof of the composed transformation
would need the use of relative termination (omitted for brevity).

Apart from the use of FLABEL to extract loops into recursive procedures, the
interesting part of the proof is in the following mutual summaries used to express
the relationships between the two versions:

– MS (A′, B′)
.
= (E(n) > 0 ∧ g1 = g2) =⇒ g′1 = g′2

– MS (L1, L2)
.
= (E(n) > 0∧i1 = i2∧g1 = g2∧ i2 < E(n)) =⇒ (g′1 = g′2 ∧ r1 = r2)

– MS (L1, L1)
.
= i1 ≥ E(n) =⇒ (g′1 = g1 ∧ r1 = i1)

The constraint E(n) > 0 present in the summaries is the condition under which
the transformation is sound. The constraint i2 < E(n) is a precondition for
L2 that is expressed as an antecedent in the mutual summary for MS (L1, L2).
Finally, the MS (L1, L1) is a postcondition for L1 that is required to reason about
the last iteration of the loop in L1 — it expresses that when input i ≥ E(n), then
L1 does not transform the state and returns the input i. We believe that only
the last postcondition is the additional price paid for using mutual summaries
instead of traditional simulation relations in earlier works [4].

Loop unrolling Figure 9 describes the example of loop unrolling, where B

performs two iterations of the loop whenever i + 1 < E(n). The interesting
part for the proof is that the body of extracted procedure L1 has to be inlined
once inside itself to match it up with L2. We omit the resulting mutual summaries
that express (A′, B′) and (L1, L2) are equivalent (modulo termination).

void A(){
i := 0;

L1: //FLABEL
if(i < E(n)){

g := S1(g,i);
i := i + 1;
goto L1;

}
}

void B(){
i := 0;

L2; //FLABEL
if(i + 1 < E(n)){

g := S1(g,i); i := i + 1;
g := S1(g,i); i := i + 1;
goto L2;

}
if(i < E(n)){

g := S1(g,i); i := i + 1;
}

}

Fig. 9. Example of loop unrolling. Input programs A and B.



T a, b; //globals
void A(){

i := 0;
L1: //FLABEL

if(i < E(n)){
a := S1(a,i);
if (F(b)){

a := S2(a,i);
}
i := i + 1;
goto L1;

}
}

void B(){
i := 0;
if (F(b)){

L2: //FLABEL
if(i < E(n)){

a := S1(a,i); a := S2(a,i); i := i + 1;
goto L2;

}
} else {

L3: //FLABEL
if(i < E(n)){

a := S1(a,i); i := i + 1;
goto L3;

}
}

}

Fig. 10. Example of loop unswitching.

Loop unswitching Figure 10 describes the example of loop unswitching. Here
the loop in A (at L1) is split into two loops in B since the condition F(b) does
not change in the loop. The mutual summaries for this proof are:

– MS (A′, B′)
.
= (a1 = a2 ∧ b1 = b2) =⇒ a′1 = a′2

– MS (L1, L2)
.
= (F (b1) ∧ i1 = i2 ∧ a1 = a2 ∧ b1 = b2) =⇒ (a′1 = a′2 ∧ r1 = r2)

– MS (L1, L3)
.
= (¬F (b1) ∧ i1 = i2 ∧ a1 = a2 ∧ b1 = b2) =⇒ (a′1 = a′2 ∧ r1 = r2)

The interesting part of the mutual summaries is the presence of the conditions
under which the loop L1 matches with L2 or L3. This is also one of the instances
where the mutual summaries relate one procedure (L1) to multiple procedures
(L2 and L3).

Other compiler optimizations. In addition to the optimizations shown
in this section, we have been able to prove many other examples of loop opti-
mizations handled by previous works [13, 4]. The notable exceptions are trans-
formations such as loop reversal and loop interchange that may change the order
of updates to an array. Previous works have used a special Permute rule [13],
that tries to permute the order of updates in a loop. We are currently inves-
tigating encoding this rule using mutual summaries and relative termination.
Nevertheless, our approach already handles many examples of interprocedural
transformations that are beyond the ability the Permute rule (§ 4.3).

4.3 Interprocedural transformations

In this section, we show the applications of our approach towards instances of
interprocedural transformation.

Compiler optimizations Our approach can be used to prove various com-
piler optimizations that require global (or interprocedural) analysis. The proof
of tail recursion elimination can be done easily after the loop is extracted into



T a, b; //globals
void A(){

call B(0);
}
void B(int i){

if(i < E(n)){
call B(i+1);
a := S1(a,i);
b := S2(b,i);

}
}

void C(){
call D(0); call E(0);

}
void D(int i){

if(i < E(n)){
call D(i+1); a := S1(a,i);

}
}
void E(int i){

if(i < E(n)){
call E(i+1); b := S2(b,i);

}
}

Fig. 11. Example of restricted interprocedural loop fission.

a tail-recursive procedure using FLABEL. The proof for inlining will be similar
to the proof of loop unrolling discussed in earlier section. Similarly, global con-
stant propagation can be encoded using mutual summaries that express that a
particular global or return variable has a constant value.

In addition to common compiler optimizations, Figure 11 demonstrates a
transformation of a single non-tail recursive procedure into two non-tail recur-
sive procedures (corresponds to a restricted interprocedural version of loop fis-
sion optimization). This can be handled using mutual summaries (omitted).

f1(n) {
if (n == 0) {

return 1;
} else {

return
n * f1(n - 1);

}
}

f2(n, a) {
if (n == 0) {

return a;
} else {

return
f2(n - 1, a * n);

}
}

Fig. 12. Example for tail vs. non-tail recur-
sive factorial.

Figure 12 shows two imple-
mentations of factorial, one tail
recursive and one not tail recur-
sive. We can prove that these
compute the same result (f1(n) =
f2(n, 1)) using the following mu-
tual summary: MS (f1, f2)

.
=

(n1 = n2) =⇒ (r1 ∗ a2 = r2).

Conditional equivalence Bug
fixes and feature additions result
in two versions of a program that

are behaviorally equivalent only under a subset of inputs. We show that mutual
summaries can be used for showing conditional equivalence even for recursive
procedures. Figure 13 contains two versions of a procedure f (denoted as f1 and
f2 respectively) that recursively evaluates an expression rooted at the argument
x. The new version differs in functionality when an additional argument u is
provided that indicates “unsigned” arithmetic instead of the signed arithmetic
represented by {+,-}. The following mutual summary MS (f1, f2) validates that
the two procedures agree when u is off: (x1 = x2 ∧ u = 0) =⇒ r1 = r2.

Most examples in this Section have different set of inputs for the two ver-
sions, and thus not amenable to be abstracted with a common uninterpreted
function [3]. Let us briefly comment on the relationship with previous works



int f1(int x){
if (Op[x] = 0)

return Val[x];
a := f1(A[x]);
b := f1(B[x]);
if (Op[x] = 1)

return a + b;
else if (Op[x] = 2)

return a - b;
else

return 0;
}

int f2(int x, int u){
if (Op[x] = 0)

return Val[x];
a := f2(A[x], u);
b := f2(B[x], u);
if (Op[x] = 1){

if (u) return uAdd(a,b);
else return a + b;

} else if (Op[x] = 2){
if (u) return uSub(a,b);
else return a - b;

} else return 0;
}

Fig. 13. Example for feature addition and conditional equivalence.

void D(ref x){
d[x] := U(d[x]);

}
void A(ref x){

if (x != null){
call A(next[x]);
call D(x);

}
}
void B(ref x){

if (x != null){
call D(x);
call B(next[x]);

}
}

(a)

void AD(x,y){
inline call A(x);
call D(y);

}
void DA(x,y){

call D(y);
inline call A(x);

}
void DD(x,y){

inline call D(x);
inline call D(y);

}

(b)

Mutual summaries (A vs. B)
MS(A, B) : (x1 = x2 ∧ d1 = d2) =⇒ d′

1 = d′
2

MS(A, A) : (x1 = x2 ∧ d1 = d2) =⇒ d′
1 = d′

2
MS(D, D) : (x1 = x2 ∧ d1 = d2) =⇒ d′

1 = d′
2

MS(AD, DA) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2) =⇒
d′
1 = d′

2
MS(DA, AD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2) =⇒
d′
1 = d′

2
MS(DD, DD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2) =⇒
d′
1 = d′

2

Relative termination conditions (A vs. B)
RT(AD, DA) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2)
RT(DA, AD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2)
RT(DD, DD) : (x1 = x2 ∧ y1 = y2 ∧ d1 = d2)
(c)

Fig. 14. Example of list traversal transformation. (a) Two different implementations
A, and B of list traversal, (b) auxiliary procedures introduced during the proof, (c) MS
and RT used to prove A and B equivalent.

that use identical uninterpreted functions to abstract equivalent procedures [8,
3]. Using an uninterpreted function (instead of mutual summaries) to represent
equivalent procedures is an optimization for the purpose of equivalence checking;
it avoids introducing the implication ((x1 = x2∧g1 = g2) =⇒ r1 = r2∧g′1 = g′2)
explicitly in the formula to the theorem prover. However, the use of an unin-
terpreted function is restricted to modeling deterministic procedures, and only
works when compared procedures have identical sets of arguments and globals.

List traversal Finally, we describe an example that requires careful interplay
between mutual summary and relative termination specifications and well be-
yond the realm of present approaches using automated provers. Consider the
two versions A and B of a program in Figure 14. Each version traverses elements
in a list following the next field and updates the data field by an uninterpreted
function U in the procedure D. The procedure B is a tail-recursive version of A.
The transformation can be applied (either manually or by a compiler) to opti-
mize the performance of the implementation. Preservation of semantics includes



showing that the two versions diverge on the same inputs; it is easy to see that
neither program terminates when the input is a cyclic list.

Although the change from A to B just swaps the order of calls to D and the
recursive call, it has a global impact. Figure 15 demonstrates that the order of
invoking the procedure D differs when A and B are invoked on the same input
u0

.
= x, u1

.
= next[u0], . . . , uk+1

.
= next[uk]. This makes proving the semantic

equivalence of such transformations non-trivial. An intuition to understand the
transformation from A to B is to think of creating intermediate programs that
progressively transform an execution of A to an execution of B. Figure 15 shows
the execution of such an intermediate program T that follows B’s execution and
then follows A’s executions.

D(u0) 

D(u1) 

D(uk) 

D(uk+1) 

A(u0) 

D(u0) 

D(u1) 

D(uk) 

D(uk+1) 

B(u0) 

D(uk) 

D(uk+1) 

D(u0) 

D(u1) 

T(u0) 

Fig. 15. Executions of different procedures over
time.

To handle such transfor-
mations, we need to provide a
specification that allows com-
muting the calls to A and D.
Such a specification can be
obtained by introducing com-
posed procedures AD, DA (Fig-
ure 14(b)) and writing mu-
tual summary specifications
on them. The procedure AD

invokes A followed by D, and
inlines the body (not nested
callees) of A. The mutual
summaries MS (AD, DA) and
MS (DA, AD) (Figure 14(c)) ex-
press the fact that the sum-

maries of AD and DA are equal on any input — in other words, A and D commute.
To leverage these auxiliary composed procedures in the proof, we have to

relate the summary relations of these procedures (e.g. RAD) with that of the un-
derlying procedures (RA and RD). For a procedure fh composed of f and h, we
automatically introduce the following axiom, which says that fh has a termi-
nating execution if and only if f and h have a terminating execution through
some intermediate global value g2:

∀x1, x2, g1, g′1. Rfh(x1, x2, g1, g
′
1)⇐⇒ (∃g2. Rf (x1, g1, g2) ∧ Rh(x2, g2, g

′
1))

For this axiom to be sound, we require that at least one of f and h be inlined
in fh. Although we do not yet have a formal proof of soundness for this axiom,
we require the inlining for the axiom to fit within the inductive framework of
Section 3.4. Intuitively, before the inductive step adds (x1, x2, g1, g

′
1) to Rfh , the

proof considers Rfh(x1, x2, g1, g
′
1) to be false, and thus requires that at least one

of Rf (x1, g1, g2) and Rh(x2, g2, g
′
1) be false for the axiom to hold, meaning that

there cannot be calls in fh that introduce both the assumptions Rf (x1, g1, g2)
and Rh(x2, g2, g

′
1).

We need similar specifications for showing that D commutes with itself. Fig-
ure 14(c) contains all the mutual summary specification for this proof. The mu-



tual summaries such as MS (A, A) are needed to express that A is deterministic,
a requirement to be able to prove the commute mutual summaries described
above. Figure 14(c) also lists the relative termination conditions that were spec-
ified for this proof. Given the above mutual summaries and relative termination
conditions (all of which express equality of inputs and outputs), we can show
that all these specification are true to establish that if A and B start out with
the same inputs and A terminates, then so does B with equal outputs.

5 Related work

Our work is most closely related to work on proving equivalence in the context
of compiler validation. Translation validation [9] is an approach for validating
compilers by ensuring that each pair of source and target programs produced by
the compiler are semantically equivalent. Necula [8] provided techniques to in-
fer simulation relations by performing a lock-step analysis of the two programs,
that generates simulation relations for simple compiler optimizations. Mutual
summaries can capture such proofs that are based on establishing simulation
relations. Zuck et al. [13] provide a rule Permute that allows proving more
complex optimizations that permute order of execution of loops (e.g. in loop
reversal optimization). Tate et al. [11] provide an approach called equality sat-
uration where an equality saturated program expression graph (PEG) can be
used to capture equivalent programs. Tristan et al [12] instead provide rules
for normalizing PEGs to perform translation validation. These approaches are
automated and have been applied on various production compilers. Various do-
main specific languages (Cobalt [6], PEC [4]) have been devised to express com-
piler transformations as rewrite rules in a language. However, these approaches
cannot validate interprocedural transformations (§ 4.3). Finally, the CompCert
project [7] uses interactive theorem provers to provide an end-to-end correct-
ness guarantee of semantic preservation by a compiler; this results in greater
flexibility but less automation than approaches based on automated theorem
provers. Pnueli and Zaks [10] generalize simulation-relation based translation
validation to check simple interprocedural optimizations such as tail-recursion
elimination, global constant propagation and inlining. However, program trans-
formations such as translating a non tail-recursive procedure to its tail-recursive
counterparts (Figure 14, Figure 12) will not be possible in this approach. Godlin
and Strichman [3] describe automated methods for checking equivalence and
mutual termination (under equal inputs) of mutually recursive procedures using
uninterpreted functions as summaries. Our approach is not limited to proving
equivalence but can be used to compare arbitrary mutual summaries. Mutual
summaries provide more extensibility (at the cost of automation) by relating the
summaries of two procedures with an arbitrary relation. This allows us to not
only prove intraprocedural optimizations (that are not possible in [3]), but also
new examples of interprocedural transformations (§4.3), including those that
cannot be proved earlier (§6 in [3]). Relative termination allows reasoning about
termination under specific conditions and generalizes the earlier work of checking
mutual termination [3].



6 Conclusion

In this paper, we provided a general framework for comparing programs using
program verifiers and automated theorem provers. We are currently working on
extending the framework to handle more complex program transformations (e.g.
the Permute rule [13]), and automating the generation of mutual summary
and the relative termination specifications. For most of the simple equality spec-
ifications used in this paper, we expect to leverage existing invariant synthesis
techniques (e.g. predicate abstraction) to infer a majority of these specifications.
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7 Detailed proof

SYNTAX

States (or values) σ, ς

expressions e

e = x | c | U(e, . . . , e) | g | gold | 〈e, e〉 | e.1 | e.2

propositions φ, ϕ

φ = . . . | φ ∧ φ | φ ∨ φ | ¬φ | true | false | R(F, e, e) | ∀z.φ | ∃z.φ

statements s

s = skip | g := e | havoc g | assert φ | assume φ | call F | s1; s2 | s1 � s2 | s1 ./ s2 | 〈s1, s2〉

procedure names F,G

procedure declarations F{sF }
mutual summaries MS(F,G)(may contain gold, g as free variables)

relative termination RT (F,G)(may contain g as free variable)

Substitution φ[e/x]

Notation :

RF (σ, ς) = R(F, σ, ς)

φ σ = φ[σ/g]

φ σ ς = φ[σ/gold, ς/g]

φ r σ = φ[r/R, σ/g]

φ r σ ς = φ[r/R, σ/gold, ς/g]

DEFINE DYNAMIC SEMANTICS : 〈s, σ〉 ⇓ ς calling r depth n

〈skip, σ〉 ⇓ σ calling {} depth 0

〈g := e, σ〉 ⇓ eval(e[σ/g]) calling {} depth 0

〈havoc g, σ〉 ⇓ ς calling {} depth 0

〈assert φ, σ〉 ⇓ σ calling {} depth 0



φ[σ/g]

〈assume φ, σ〉 ⇓ σ calling {} depth 0

〈sF , σ〉 ⇓ ς calling r depth n

〈call F, σ〉 ⇓ ς calling r ∪ {(F, σ, ς)} depth n+ 1

〈s1, σ〉 ⇓ σ′ calling r1 depth n1
〈s2, σ′〉 ⇓ ς calling r2 depth n2

〈s1; s2, σ〉 ⇓ ς calling r1 ∪ r2 depth max(n1, n2)

(〈s1, σ〉 ⇓ ς calling r depth n) ∨ (〈s2, σ〉 ⇓ ς calling r depth n)

〈s1 � s2, σ〉 ⇓ ς calling r depth n

〈s1, σ〉 ⇓ ς calling r1 depth n1
〈s2, σ〉 ⇓ ς calling r2 depth n2

〈s1 ./ s2, σ〉 ⇓ ς calling r1 ∪ r2 depth max(n1, n2)

〈s1, σ1〉 ⇓ ς1 calling r1 depth n1
〈s2, σ2〉 ⇓ ς2 calling r2 depth n2

〈〈s1, s2〉, 〈σ1, σ2〉〉 ⇓ 〈ς1, ς2〉 calling r1 ∪ r2 depth max(n1, n2)

Notation :
〈s, σ〉 ⇓ ς ⇔ ∃r, n.〈s, σ〉 ⇓ ς calling r depth n

DEFINE WEAKEST PRECONDITION : wlp(s, ϕ)

wlp(skip, ϕ) = ϕ
wlp(g := e, ϕ) = ϕ[e/g]
wlp(havoc g, ϕ) = ∀g.ϕ
wlp(assert φ, ϕ) = φ ∧ ϕ
wlp(assume φ, ϕ) = φ =⇒ ϕ
wlp(call F,ϕ) = ∀z.R(F, g, z) =⇒ ϕ[z/g]
wlp(s1; s2, ϕ) = wlp(s1, wlp(s2, ϕ))
wlp(s1 � s2, ϕ) = wlp(s1, ϕ) ∧ wlp(s2, ϕ)
wlp(s1 ./ s2, ϕ) = wlp(s1, ϕ) ∨ wlp(s2, ϕ)
wlp(〈s1, s2〉, ϕ) = wlp(s1, wlp(s2, ϕ[(g1, g2)/g][g/g2])[g2/g][g/g1])[g1/g][g.1/g1, g.2/g2]



DEFINE ASSERT TERMINATION : at(s)

at(skip) = skip
at(g := e) = g := e
at(havoc g) = havoc g
at(assert φ) = assert φ
at(assume φ) = assert φ
at(call F ) = assert(∃z.R(F, g, z)); call F
at(s1; s2) = at(s1); at(s2)
at(s1 � s2) = at(s1) ./ at(s2)
at(s1 ./ s2) = assert false
at(〈s1, s2〉) = assert false

DEFINE AXIOMS : AXIOMS

AXIOMS = AXIOMSMS ∧AXIOMSRT

axioms for all pairs F,G :
AXIOMSMS = ∧AXIOMSMS(F,G)
AXIOMSRT = ∧AXIOMSRT (F,G)

axioms for each pair F,G :
AXIOMSMS(F,G) = ∀σ1, ς1, σ2, ς2.R(F, σ1, ς1) ∧R(G, σ2, ς2) =⇒MS(F,G) 〈σ1, σ2〉 〈ς1, ς2〉
AXIOMSRT (F,G) = ∀σ1, ς1, σ2.R(F, σ1, ς1) ∧RT (F,G) 〈σ1, σ2〉 =⇒ ∃ς2.R(G, σ2, ς2)

DEFINE CLOSURE : closure(r, n)

(F, σ, ς) ∈ r
(F, σ, ς) ∈ closure(r, n)

(F, σ1, ς1) ∈ closure(r, n)
RT (F,G) 〈σ1, σ2〉

〈sG, σ2〉 ⇓ ς2 calling r2 depth n2
r2 ⊆ closure(r, n)

n2 < n

(G, σ2, ς2) ∈ closure(r, n)



GLOBAL CHECKS (assumed by lemmas)

The verification process checks all of the conditions below .

for each F,G :

MS(F,G) does not contain R

RT (F,G) does not contain R

AXIOMS =⇒ wlp(〈sF , sG〉,MS(F,G))[gold/g]

AXIOMS ∧RT (F,G) =⇒ wlp(〈sF , at(sG)〉, true)
(these encapsulate the effect of our ” check procedures ”)

LEMMA (WP-SOUNDNESS)

If

〈s, σ〉 ⇓ ς calling r depth n

then

∀r′ superset r.wlp(s, ϕ)r′ σ =⇒ ϕ r′ ς

Proof : induction on 〈s, σ〉 ⇓ ς calling r depth n

Case

〈assert φ, σ〉 ⇓ σ calling {} depth 0

Assume wlp(assert φ, ϕ)r′ σ

wlp(assert φ, ϕ)r′ σ = (φ ∧ ϕ)r′ σ

(φ ∧ ϕ)r′ σ

ϕ r′ σ

Case

〈g := e, σ〉 ⇓ eval(e[σ/g]) calling {} depth 0

Assume wlp(g := e, ϕ)r′ σ

wlp(g := e, ϕ)r′ σ = ϕ r′ σ[e/g]

(ϕ r′ σ)[e/g]

(ϕ r′)[e/g][σ/g]

(ϕ r′)[e[σ/g]/g]

ϕ r′(e[σ/g])

By assumption of soundness for eval(e′) for all e′ :

ϕ r′ eval(e[σ/g])

Case



φ[σ/g]

〈assume φ, σ〉 ⇓ σ calling {} depth 0

Assume φ[σ/g]
This means for all r′, φ r′ σ is true

Assume wlp(assume φ, ϕ)r′ σ
wlp(assume φ, ϕ)r′ σ = (φ r′ σ =⇒ ϕ r′ σ)
wlp(assume φ, ϕ)r′ σ =⇒ (true =⇒ ϕ r′ σ)
wlp(assume φ, ϕ)r′ σ =⇒ ϕ r′ σ

Case

〈sF , σ〉 ⇓ ς calling rf depth n

〈call F, σ〉 ⇓ ς calling rf ∪ {(F, σ, ς)} depth n′

r′ supserset rf ∪ {(F, σ, ς)}
wlp(call F,ϕ)r′ σ
(∀z.R(F, x, z) =⇒ ϕ[z/x])r′ σ
∀z.r′(F, σ, z) =⇒ ϕ[r′/R, z/x]
r′(F, σ, ς) =⇒ ϕ[r′/R, ς/x]
r′(F, σ, ς) =⇒ ϕ r′ ς
true =⇒ ϕ r′ ς
ϕ r′ ς

Other cases are similar .

COROLLARY (WP-SOUNDNESS-2)
If
〈s, σ〉 ⇓ ς calling r depth n

then
∀r′ superset r.(wlp(s, ϕ)[gold/g])r′ σ ς =⇒ ϕ r′ σ ς

Proof :

(wlp(s, ϕ)[gold/g])r′ σ ς
= wlp(s, ϕ)[gold/g][r′/R, σ/gold, ς/g]
= wlp(s, ϕ)[gold/g][r′/R, σ/gold]
= wlp(s, ϕ)[σ/gold][r′/R, σ/g]
= wlp(s, ϕ)[r′/R, σ/gold, σ/g]



By lemma (WP-SOUNDNESS) , wlp(s, ϕ)r′ σ =⇒ ϕ r′ ς
wlp(s, ϕ)[r′/R, σ/g] =⇒ ϕ[r′/R, ς/g]
wlp(s, ϕ)[r′/R, σ/g][σ/gold] =⇒ ϕ[r′/R, ς/g][σ/gold]
wlp(s, ϕ)[r′/R, σ/gold, σ/g] =⇒ ϕ[r′/R, σ/gold, ς/g]
(wlp(s, ϕ)[gold/g])r′ σ ς =⇒ ϕ r′ σ ς

LEMMA (AT-TERMINATION)
If

wlp(at(s), ϕ)r σ
∀(F, σ′, ς ′) ∈ r.∃r′ ⊆ r, n′ < n.〈sF , σ′〉 ⇓ ς ′ calling r′ depth n′

then
∃r′, n′, ς

r′ ⊆ r
n′ ≤ n
〈s, σ〉 ⇓ ς calling r′ depth n′
ϕ r ς

Proof : induction on s

case s1; s2
wlp(at(s1; s2), ϕ)r σ
wlp(at(s1), wlp(at(s2), ϕ))r σ

induction : ∃r1 σ′.r1 ⊆ r ∧ n1 ≤ n ∧ 〈s1, σ〉 ⇓ σ′ calling r1 depth n1 ∧ wlp(at(s2), ϕ)r σ′

induction : ∃r2 ς.r2 ⊆ r ∧ n2 ≤ n ∧ 〈s2, σ′〉 ⇓ ς calling r2 depth n2 ∧ ϕ r ς
choose r′ = r1 ∪ r2
choose n′ = max(n1, n2)
r′ ⊆ r
〈s1; s2, σ〉 ⇓ ς calling r1 ∪ r2 depth max(n1, n2)
ϕ r ς

case
(base case due to induction on s)
wlp(at(call F ), ϕ)r σ
wlp(assert(∃z.R(F, x, z)); call F,ϕ)r σ
(∃ς.r(F, σ, ς)) ∧ wlp(call F,ϕ)r σ
r(F, σ, ς)

r′ ⊆ r
n′ < n
〈sF , σ〉 ⇓ ς calling r′ depth n′
r′ ∪ {(F, σ, ς)} ⊆ r
n′ + 1 ≤ n
〈(call F ), σ〉 ⇓ ς calling r′ ∪ {(F, σ, ς)} depth n′ + 1
lemma (WP-SOUNDNESS) : ∀r′′ superset r′ ∪ {(F, σ, ς)}, wlp(call F,ϕ)r′′ σ =⇒ ϕ r′′ ς



wlp(call F,ϕ)r σ =⇒ ϕ r ς
wlp(call F,ϕ)r σ
ϕ r ς

Other cases are similar .

LEMMA (SUBCALL)
If
〈s, σ〉 ⇓ ς calling r depth n

then
∀(G, σ′, ς ′) ∈ r.∃r′ ⊆ r, n′ < n.〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′

Proof : induction on 〈s, σ〉 ⇓ ς calling r depth n

Case

〈s1, σ〉 ⇓ σ′ calling r1 depth n1
〈s2, σ′〉 ⇓ ς calling r2 depth n2

〈s1; s2, σ〉 ⇓ ς calling r1 ∪ r2 depth max(n1, n2)

By induction :
∀(G, σ′, ς ′) ∈ r1.∃r′ ⊆ r1, n′ < n1.〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′
∀(G, σ′, ς ′) ∈ r1.∃r′ ⊆ r1 ∪ r2, n′ < max(n1, n2).〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′

By induction :
∀(G, σ′, ς ′) ∈ r2.∃r′ ⊆ r2, n′ < n2.〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′
∀(G, σ′, ς ′) ∈ r2.∃r′ ⊆ r1 ∪ r2, n′ < max(n1, n2).〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′

∀(G, σ′, ς ′) ∈ r1 ∪ r2.∃r′ ⊆ r1 ∪ r2, n′ < max(n1, n2).〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′

Case

〈sF , σ〉 ⇓ ς calling r0 depth n− 1

〈call F, σ〉 ⇓ ς calling r depth n
r = r0 ∪ {(F, σ, ς)}

∀(G, σ′, ς ′) ∈ {(F, σ, ς)}.〈sF , σ〉 ⇓ ς calling r0 depth n− 1
∀(G, σ′, ς ′) ∈ {(F, σ, ς)}.∃r′ ⊆ r, n′ < n.〈sG, σ〉 ⇓ ς calling r′ depth n′

By induction :
∀(G, σ′, ς ′) ∈ r0.∃r′ ⊆ r0, n′ < n− 1.〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′



r′ ⊆ r0 ⊆ r
n′ < n− 1 < n
∀(G, σ′, ς ′) ∈ r0.∃r′ ⊆ r, n′ < n.〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′

∀(G, σ′, ς ′) ∈ r0 ∪ {(F, σ, ς)}.∃r′ ⊆ r, n′ < n.〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′

Other cases are similar .

LEMMA (SUBCALL-CLOSURE)
If
〈s, σ〉 ⇓ ς calling r depth n
(G, σ′, ς ′) ∈ closure(r, n)

then
∃r′ ⊆ closure(r, n), n′ < n.〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′

Proof : induction on (G, σ′, ς ′) ∈ closure(r, n)

Case
(G, σ′, ς ′) ∈ r
By lemma (SUBCALL) :

r′ ⊆ r
n′ < n
〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′
r′ ⊆ closure(r, n)

Case

(F, σ1, ς1) ∈ closure(r, n)
RT (F,G) 〈σ1, σ′〉

〈sG, σ′〉 ⇓ ς ′ calling r′ depth n′
r′ ⊆ closure(r, n)

n′ < n

(G, σ′, ς ′) ∈ closure(r, n)

LEMMA (CLOSURE-SUBSET-1)
If

r1 ⊆ closure(r0, n0)
(G, σ2, ς2) ∈ closure(r1, n1)
n1 ≤ n0

then



(G, σ2, ς2) ∈ closure(r0, n0)

Proof : induction on (G, σ2, ς2) ∈ closure(r1, n1)

Case
(G, σ2, ς2) ∈ r1
(G, σ2, ς2) ∈ closure(r0, n0)

Case

(F, σ1, ς1) ∈ closure(r1, n1)
RT (F,G) 〈σ1, σ2〉

〈sG, σ2〉 ⇓ ς2 calling r2 depth n2
r2 ⊆ closure(r1, n1)

n2 < n1

(G, σ2, ς2) ∈ closure(r1, n1)

By induction , (F, σ1, ς1) ∈ closure(r0, n0)

r2 ⊆ closure(r1, n1)
∀(F ′, σ′, ς ′) ∈ r2.(F ′, σ′, ς ′) ∈ closure(r1, n1)
By induction :
∀(F ′, σ′, ς ′) ∈ r2.(F ′, σ′, ς ′) ∈ closure(r0, n0)
r2 ⊆ closure(r0, n0)

n2 < n1 ≤ n0

(F, σ1, ς1) ∈ closure(r0, n0)
RT (F,G) 〈σ1, σ2〉

〈sG, σ2〉 ⇓ ς2 calling r2 depth n2
r2 ⊆ closure(r0, n0)

n2 < n0

(G, σ2, ς2) ∈ closure(r0, n0)

COROLLARY (CLOSURE-SUBSET-2)
If

r1 ⊆ closure(r0, n0)
r2 ⊆ closure(r1, n1)
n1 ≤ n0

then
r2 ⊆ closure(r0, n0)



LEMMA (AXIOM ADMISSIBILITY)
If
〈s, σ〉 ⇓ ς calling r depth n

then
AXIOMS closure(r, n)σ′ ς ′

Proof : induction on n

(Note that σ′ and ς ′ are irrelevant)

Goal :
(MS) (∀σ1, ς1, σ2, ς2.R(F, σ1, ς1) ∧R(G, σ2, ς2) =⇒MS(F,G) 〈σ1, σ2〉 〈ς1, ς2〉)[closure(r, n)/R]
(RT) (∀σ1, ς1, σ2.R(F, σ1, ς1) ∧RT (F,G) 〈σ1, σ2〉 =⇒ ∃ς2.R(G, σ2, ς2))[closure(r, n)/R]
Goal :
(MS) ∀(F, σ1, ς1) ∈ closure(r, n).∀(G, σ2, ς2) ∈ closure(r, n).MS(F,G) 〈σ1, σ2〉 〈ς1, ς2〉
(RT) ∀(F, σ1, ς1) ∈ closure(r, n).∀σ2.RT (F,G) 〈σ1, σ2〉 =⇒ ∃ς2.(G, σ2, ς2) ∈ closure(r, n)

Proof for (MS) :
Assume (F, σ1, ς1) ∈ closure(r, n)
Assume (G, σ2, ς2) ∈ closure(r, n)
By lemma (SUBCALL-CLOSURE) :

n1 < n
〈sF , σ1〉 ⇓ ς1 calling r1 depth n1

By lemma (SUBCALL-CLOSURE) :
n2 < n
〈sG, σ2〉 ⇓ ς2 calling r2 depth n2

Let r′ = r1 ∪ r2
Let n′ = max(n1, n2)
n′ < n
By dynamic semantics for 〈sF , sG〉 :
〈〈sF , sG〉, 〈σ1, σ2〉〉 ⇓ 〈ς1, ς2〉 calling r′ depth n′

By induction :
AXIOMS closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉

By global check :
AXIOMS =⇒ wlp(〈sF , sG〉,MS(F,G))[gold/g]

By valuation :
(AXIOMS =⇒ wlp(〈sF , sG〉,MS(F,G))[gold/g])closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉

(AXIOMS closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉) =⇒ wlp(〈sF , sG〉,MS(F,G))closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉[gold/g]
wlp(〈sF , sG〉,MS(F,G))closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉[gold/g]

By lemma (WP-SOUNDNESS-2) : (using closure(r′, n′) superset r′)
(wlp(〈sF , sG〉,MS(F,G))[gold/g])closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉 =⇒MS(F,G) closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉
MS(F,G) closure(r′, n′)〈σ1, ς1〉 〈σ2, ς2〉



By global check MS(F,G) does not contain R so :
MS(F,G) 〈σ1, ς1〉 〈σ2, ς2〉

Proof for (RT) :
Assume (F, σ1, ς1) ∈ closure(r, n)
Assume RT (F,G) 〈σ1, σ2〉
By lemma (SUBCALL-CLOSURE) :

r1 ⊆ closure(r, n)
n1 < n
〈sF , σ1〉 ⇓ ς1 calling r1 depth n1

By induction :
AXIOMS closure(r1, n1)〈σ1, ς1〉

By global check :
AXIOMS ∧RT (F,G) =⇒ wlp(〈sF , at(sG)〉, true)

By valuation :
(AXIOMS ∧RT (F,G) =⇒ wlp(〈sF , at(sG)〉, true))closure(r1, n1)〈σ1, σ2〉

(AXIOMS closure(r1, n1)〈σ1, σ2〉)∧(RT (F,G) closure(r1, n1)〈σ1, σ2〉) =⇒ wlp(〈sF , at(sG)〉, true)closure(r1, n1)〈σ1, σ2〉
By global check RT (F,G) does not contain R

(AXIOMS closure(r1, n1)〈σ1, σ2〉)∧(RT (F,G) 〈σ1, σ2〉) =⇒ wlp(〈sF , at(sG)〉, true)closure(r1, n1)〈σ1, σ2〉
true ∧ true =⇒ wlp(〈sF , at(sG)〉, true)closure(r1, n1)〈σ1, σ2〉
wlp(〈sF , at(sG)〉, true)closure(r1, n1)〈σ1, σ2〉

(wlp(sF , wlp(at(sG), true[(g1, g2)/g][g/g2])[g2/g][g/g1])[g1/g][g.1/g1, g.2/g2])closure(r1, n1)〈σ1, σ2〉
(wlp(sF , wlp(at(sG), true[(g1, g2)/g][g/g2])[g2/g][g/g1])[g1/g][σ1/g1, σ2/g2])closure(r1, n1)
(wlp(sF , wlp(at(sG), true)[σ2/g][g/g1])[σ1/g])closure(r1, n1)
(wlp(sF , wlp(at(sG), true)[σ2/g][g/g1]))closure(r1, n1)σ1
(wlp(sF , ϕ1))closure(r1, n1)σ1
where ϕ1 = wlp(at(sG), true)[σ2/g][g/g1]

By lemma (WP-SOUNDNESS) : (where closure(r1, n1) superset r1)
wlp(sF , ϕ1)closure(r1, n1)σ1 =⇒ ϕ1 closure(r1, n1)ς1
ϕ1 closure(r1, n1)ς1
wlp(at(sG), true)closure(r1, n1)[σ2/g][ς1/g1]
wlp(at(sG), true)closure(r1, n1)[σ2/g]
wlp(at(sG), true)closure(r1, n1)σ2

By lemma (SUBCALL-CLOSURE) :
∀(F ′, σ′, ς ′) ∈ closure(r1, n1).∃r′ ⊆ closure(r1, n1), n′ < n1.〈s′F , σ′〉 ⇓ ς ′ calling r′ depth n′

By lemma (AT-TERMINATION) :
∃r2, n2, ς2

r2 ⊆ closure(r1, n1)
n2 ≤ n1
〈sG, σ2〉 ⇓ ς2 calling r2 depth n2

n2 ≤ n1 < n
r1 ⊆ closure(r, n)
r2 ⊆ closure(r1, n1)
By lemma (CLOSURE-SUBSET-2) : r2 ⊆ closure(r, n)
By definition of closure(r, n) :



(F, σ1, ς1) ∈ closure(r, n)
RT (F,G) 〈σ1, σ2〉

〈sG, σ2〉 ⇓ ς2 calling r2 depth n2
r2 ⊆ closure(r, n)

n2 < n

(G, σ2, ς2) ∈ closure(r, n)

THEOREM (r-SOUNDNESS)
If
〈s, σ〉 ⇓ ς calling r depth n
AXIOMS =⇒ wlp(s, ϕ)[gold/g]

then
ϕ closure(r, n)σ ς

Proof :

By valuation :
(AXIOMS =⇒ wlp(s, ϕ)[gold/g])closure(r, n)σ ς
AXIOMS closure(r, n)σ ς =⇒ (wlp(s, ϕ)[gold/g])closure(r, n)σ ς

By lemma (AXIOM ADMISSIBILITY) , AXIOMS closure(r, n)σ ς
So (wlp(s, ϕ)[gold/g])closure(r, n)σ ς

closure(r, n) is a superset of r
By lemma (WP-SOUNDNESS-2) , (wlp(s, ϕ)[gold/g])closure(r, n)σ ς =⇒ ϕ closure(r, n)σ ς
Therefore , ϕ closure(r, n)σ ς

COROLLARY (SOUNDNESS)
If
〈s, σ〉 ⇓ ς
AXIOMS =⇒ wlp(s, ϕ)[gold/g]
R 6∈ ϕ

then
ϕ σ ς

Proof : by theorem (r-SOUNDNESS)

THEOREM (MUTUAL SUMMARIES)



If
〈sF , σ1〉 ⇓ ς1
〈sG, σ2〉 ⇓ ς2

then
MS(F,G) 〈σ1, σ2〉 〈ς1, ς2〉

Proof :

By dynamic semantics :

〈sF , σ1〉 ⇓ ς1 calling r1 depth n1
〈sG, σ2〉 ⇓ ς2 calling r2 depth n2

〈〈sF , sG〉, 〈σ1, σ2〉〉 ⇓ 〈ς1, ς2〉 calling r1 ∪ r2 depth max(n1, n2)

By global checks :
AXIOMS =⇒ wlp(〈sF , sG〉,MS(F,G))[gold/g]

By global checks , R is not free in MS(F,G)
By theorem (SOUNDNESS) :

MS(F,G) 〈σ1, σ2〉 〈ς1, ς2〉

THEOREM (RELATIVE TERMINATION)
If
〈sF , σ1〉 ⇓ ς1
RT (F,G) 〈σ1, σ2〉

then
∃ς2.〈sG, σ2〉 ⇓ ς2

Expand 〈sF , σ1〉 ⇓ ς1 to :
〈sF , σ1〉 ⇓ ς1 calling r1 depth n1

By lemma (AXIOM ADMISSIBILITY) :
AXIOMS closure(r1, n1)〈σ1, σ2〉

By global checks :
AXIOMS ∧RT (F,G) =⇒ wlp(〈sF , at(sG)〉, true)

By global checks , R is not free in RT (F,G)
By valuation :

(AXIOMS ∧RT (F,G) =⇒ wlp(〈sF , at(sG)〉, true))closure(r1, n1)〈σ1, σ2〉
(AXIOMS closure(r1, n1)〈σ1, σ2〉)∧(RT (F,G) 〈σ1, σ2〉) =⇒ wlp(〈sF , at(sG)〉, true)closure(r1, n1)〈σ1, σ2〉
(true) ∧ (true) =⇒ wlp(〈sF , at(sG)〉, true)closure(r1, n1)〈σ1, σ2〉
wlp(〈sF , at(sG)〉, true)closure(r1, n1)〈σ1, σ2〉

(wlp(sF , wlp(at(sG), true[(g1, g2)/g][g/g2])[g2/g][g/g1])[g1/g][g.1/g1, g.2/g2])closure(r1, n1)〈σ1, σ2〉
(wlp(sF , wlp(at(sG), true[(g1, g2)/g][g/g2])[g2/g][g/g1])[g1/g][σ1/g1, σ2/g2])closure(r1, n1)



(wlp(sF , wlp(at(sG), true)[σ2/g][g/g1])[σ1/g])closure(r1, n1)
(wlp(sF , wlp(at(sG), true)[σ2/g][g/g1]))closure(r1, n1)σ1
(wlp(sF , ϕ1))closure(r1, n1)σ1
where ϕ1 = wlp(at(sG), true)[σ2/g][g/g1]

By lemma (WP-SOUNDNESS) : (where closure(r1, n1) superset r1)
wlp(sF , ϕ1)closure(r1, n1)σ1 =⇒ ϕ1 closure(r1, n1)ς1
ϕ1 closure(r1, n1)ς1
wlp(at(sG), true)closure(r1, n1)[σ2/g][ς1/g1]
wlp(at(sG), true)closure(r1, n1)[σ2/g]
wlp(at(sG), true)closure(r1, n1)σ2

By lemma (SUBCALL-CLOSURE) :
∀(F ′, σ′, ς ′) ∈ closure(r1, n1).∃r′ ⊆ closure(r1, n1), n′ < n1.〈s′F , σ′〉 ⇓ ς ′ calling r′ depth n′

By lemma (AT-TERMINATION) :
∃r2, n2, ς2

r2 ⊆ closure(r1, n1)
n2 ≤ n1
〈sG, σ2〉 ⇓ ς2 calling r2 depth n2


