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Abstract. Predicate abstraction is a technique for automatically ex-
tracting finite-state abstractions for systems with potentially infinite
state space. The fundamental operation in predicate abstraction is to
compute the best approximation of a Boolean formula ϕ over a set of
predicates P . In this work, we demonstrate the use for this operation of
a decision procedure based on the DPLL(T) framework for SAT Modulo
Theories (SMT). The new algorithm is based on a careful generation
of the set of all satisfying assignments over a set of predicates. It con-
sistently outperforms previous methods by a factor of at least 20, on a
diverse set of hardware and software verification benchmarks. We report
detailed analysis of the results and the impact of a number of variations
of the techniques. We also propose and evaluate a scheme for incremen-
tal refinement of approximations for predicate abstraction in the above
framework.

1 Introduction

In many industrial verification problems, typical logical formulas consist of large
sets of clauses such as:

p ∨ ¬q ∨ a=f(b − c) ∨ read(s, f(b − c) )=d ∨ a − g(c) ≤7
containing purely propositional atoms as well as atoms over (combined) theories,
such as the integers, arrays, or Equality with Uninterpreted Functions (EUF).
Deciding the satisfiability of such clause sets modulo the background theories is
known as the Satisfiability Modulo Theories (SMT) problem, and the systems
for doing so are called SMT solvers. Currently, SMT is a very active area of re-
search, and efficient SMT solvers exist that can handle (combinations of) many
such theories (see also the SMT problem library [TR05] and the SMT Competi-
tion [BdMS05]). One particular SMT solver used in this paper is the Barcelogic-
Tools implementation of the DPLL(T ) approach to SMT [GHN+04, NO05a]. It
consists of a Davis-Putnam-Loveland-Logemann-based DPLL(X) engine, whose
parameter X can be instantiated with a specialized solver Solver

T
for the given

(possibly combined) T under consideration, thus producing a DPLL(T ) system.
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Predicate abstraction [GS97] (an instance of the more general theory of ab-
stract interpretation [CC77]) is a technique for constructing finite-state abstrac-
tions from large or infinite-state systems. The resulting finite-state abstraction
can be analyzed efficiently using Boolean techniques. Predicate abstraction
has been applied successfully in various verification tools to analyze software
[BMMR01, HJMS02, CCG+03, FQ02], hardware [CKSY04] and high-level pro-
tocols [DDP99, LBC03].

Predicate abstraction involves approximating a concrete transition system or
a set of concrete states using a set P of formulas, also called predicates. The
predicates usually denote properties of the state and are expressed as formulas,
modulo some background theory, over the state variables. The abstraction is
defined by the value of these predicates in any concrete state of the system. The
fundamental operation in predicate abstraction can be summarized as follows:

Given a formula ϕ and a set of predicates P in a theory T , generate the
most precise approximation of ϕ using P .

Depending on the nature of the problem domain, one may either want to gen-
erate (i) the best underapproximation of ϕ, i.e., the weakest Boolean combination
of P that implies ϕ (denoted by FP (ϕ)) or (ii) the best overapproximation of ϕ,
i.e., the strongest Boolean combination of P that is implied by ϕ (denoted by
GP (ϕ)). Here, the notions of weakness, strength and implication are with respect
to entailment in the given theory T . These operations are dual of each other —
GP (ϕ) is the same as ¬FP (¬ϕ), and therefore it suffices to provide a procedure
to compute only one of them.

Example 1. Let T be the theory of the integers, and let ϕ be x<y−2 ∨ x>y.
Furthermore, let P be {p1, p2, p3} where p1, p2 and p3 are x< 0 and y = 2 and
x �=4, respectively.

W.l.o.g., we can express FP (ϕ) as a DNF, i.e., as a disjunction of cubes.
Here FP (ϕ) is p1p2 ∨ p2p3. Clearly, both its cubes T -entail ϕ and hence their
disjunction does too. Moreover it is as weak (modulo T ) as possible: all other
cubes that T -entail ϕ either contain one of these two or are T -inconsistent.

The need for efficient predicate abstraction has motivated a significant amount
of work during the last years. For example, Clarke et al. [CKSY04], and Lahiri
and Bryant [LBC03, LB04] perform predicate abstraction by Boolean quantifier
elimination using SAT solvers for propositional and first-order logic respectively.
The idea of using SMT solvers for predicate abstraction has also been explored
repeatedly [DDP99, SS99, FQ02, BCLZ04], but differently from what we do here,
in particular, concerning incrementality. The recent symbolic decision procedure
approach of [LBC05] is a specialized method for predicate abstraction based on
saturating a set of predicates; however, it imposes restrictions on the underlying
theories, it requires an expensive transformation of the queries to a logically
equivalent conjunctive normal form, and combination methods for non-convex
theories would need to be devised for it.

In this paper, we show how to adapt SMT solvers to compute predicate ab-
straction efficiently. The key idea of the procedure is to use the SMT solver to
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enumerate all T -models over P of ϕ (or, sometimes, ¬ϕ). For this purpose, we
have turned our DPLL(X) engine into an AllSAT engine, i.e., an engine that
can enumerate all models. Several ways of doing so are discussed and compared
experimentally in this paper, including some AllSAT techniques that are also
useful for DPLL-based propositional SAT solvers. With no additional work one
can now obtain an efficient tool for predicate abstraction modulo a theory T
by simply instantiating our adapted DPLL(X) engine with the corresponding
Solver

T
as it is used for DPLL(T ).

The key difference of our work with previous SMT solver-based predicate ab-
straction techniques is in the amount of incrementality achieved in enumerating
all the solutions. We show that the incrementality, aggressive theory propagation
and efficient conflict analysis present in the DPLL(T ) framework are crucial for
obtaining an efficient predicate abstraction engine.

In particular, according to our extensive experimental results on large sets of
benchmarks from three completely different sources, using the BarcelogicTools
SMT solver, we always obtain a speedup factor of at least 20 with respect to
the method that was previously best on that benchmark family. This scheme
of using SMT solvers for predicate abstraction is attractive because it allows
us to leverage the advances in the development of SMT decision procedures for
obtaining more efficient predicate abstraction procedures.

We also show how we can adapt the DPLL(T )-based AllSAT engine to com-
pute a series of increasingly precise approximations of GP (ϕ), where for some
k < n, approximations only use cubes of size k. Given a fixed set of predicates
P and a query ϕ, this allows a client of predicate abstraction to first explore
coarser approximations (that can be generated fast) that might suffice for prov-
ing a desired property. In fact, our experiments reveal that (i) for small cube
sizes, the computation times are extremely small, and that (ii) computing the
full GP (ϕ) in successive steps slightly increasing the cube size can be done almost
as efficiently as computing it directly, if each step is done incrementally from the
previous one. Although several approaches have been developed in recent years
to compute coarser approximations [GS97, BMMR01, DD01], the process of re-
fining the approximations is not incremental, and can sometimes be the main
bottleneck in the verification [BCDR04].

The rest of the paper is structured as follows. We first give some background
and definitions about SMT and DPLL(T ) in Section 2. Section 3 is on the encod-
ing in SMT of the under and upper approximation problems. Its Subsections 3.1
and 3.2 discuss the different ways of forcing the enumeration of all cubes over P
and the variations with increasing cube sizes. Section 4 analyzes a large number
of experiments on problems from three completely different applications. Finally,
Section 5 lists future work and conclusions.

2 Background
2.1 Formal Preliminaries

A theory T is a set of closed first-order formulas. A formula ϕ is T -satisfiable
or T -consistent if ϕ ∧ T is satisfiable in the first-order sense. Otherwise, it is
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called T -unsatisfiable or T -inconsistent. In this paper we will deal with (partial)
assignments M , where M is a set (conjunction) of ground literals. If M is a T -
consistent partial assignment and ϕ is a ground formula such that M is a model
of ϕ in the propositional sense, then we say that M is a T -model of ϕ. The SMT
problem for a theory T is the problem of determining, given a formula ϕ, whether
ϕ is T -satisfiable, or, equivalently, whether ϕ has a T -model. As usual in SMT,
here we only consider the SMT problem for ground (and hence quantifier-free)
CNF formulas ϕ. If ϕ and ψ are formulas, then ϕ T -entails ψ, written ϕ |=T ψ,
if ϕ ∧ ¬ψ is T -inconsistent. A theory lemma is a clause C such that ∅ |=T C.

2.2 The DPLL(T ) Approach to SMT

The so-called lazy approach to SMT, in its simplest form, initially considers each
atom occurring in the input formula F simply as a propositional symbol, i.e., it
“forgets” about the theory T . Then it sends the formula to a SAT solver. If the
SAT solver reports propositional unsatisfiability, then F is also T -unsatisfiable.
If it returns a propositional model of F , then this assignment is checked by
a specialized T -solver that can only deal with conjunctions of literals. If the
model is found T -consistent then it is a T -model of F . Otherwise, the T -solver
builds a ground clause that is a logical consequence of T , i.e., a theory lemma,
precluding that assignment. This lemma is added to F and the SAT solver is
started again. This process is repeated until the SAT solver finds a T -model or
returns unsatisfiable.

DPLL-based refinements of the lazy approach use incremental T -solvers that
check the T -inconsistency of the partial models while they are being built. More-
over, the DPLL-based SAT solver is usually on-line: upon each T -inconsistent
assignment it can then backjump to some point where the assignment was still
T -consistent, instead of restarting the search from scratch.

DPLL(T ) is such a new modular lazy-like approach for SMT. It is based on
a general DPLL(X) engine, whose parameter X can be instantiated with a spe-
cialized Solver

T
for conjunctions of (ground) atoms, thus producing a system

DPLL(T ). Once the DPLL(X) engine has been implemented, this approach be-
comes very flexible: a DPLL(T ) system for a theory T is obtained by simply
plugging in the corresponding SolverT . In DPLL(T ), a special attention is de-
voted to theory propagation, a refinement that can have a crucial impact on
performance. The idea is that the T -solver tells the DPLL(X) engine which lit-
erals can be set to true because they are T -consequences of the current partial
assignment. For example, if T is the theory of equality and the current assign-
ment contains the literals b=d, f(b)=d and f(d)=a, then the T -solver may report
a=b as a T -consequence instead of letting DPLL(X) guess a truth value for it.

3 Predicate Abstraction Using SMT

For us, a predicate will be any ground formula. If P is a set of finite predicates,
a cube over P is a conjunction p1 ∧ . . .∧pk ∧¬p′1 ∧ . . .∧¬p′k′ , where all pi and p′j
are distinct predicates of P and k + k′ is the size of the cube. A minterm over
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P is a cube of size |P |. A Boolean formula over P is either a predicate of P or
a conjunction, disjunction or negation of Boolean formulas over P .

Given a theory T , a set of predicates P = {p1, . . . , pn} and a ground formula ϕ,
the central operation in predicate abstraction is to compute the weakest Boolean
formula FP (ϕ) over P that T -entails ϕ. Equally important is the dual operation,
to compute the strongest Boolean formula GP (ϕ) over P that is T -entailed by
ϕ, but this operation can be reduced to the previous one, since it is not difficult
to see that FP (ϕ) is indeed ¬GP (¬ϕ).

FP (ϕ) can be characterized as the disjunction of all the minterms over P that
T -entail ϕ, that is:

FP (ϕ) ≡
∨

{c | c is a minterm over P and c |=T ϕ}

Since each minterm T -entails ϕ, this formula clearly T -entails ϕ as well. Any
other formula over P that T -entails ϕ, when expressed as a disjunction of
minterms, consists only of minterms T -entailing ϕ, all of which belong to FP (ϕ).
Hence, FP (ϕ) is also the weakest such formula. Now we can also easily charac-
terize GP (ϕ) by using its relation to FP (¬ϕ):

GP (ϕ) ≡ ¬FP (¬ϕ)
≡ ¬ (

∨
{c | c is a minterm over P and c |=T ¬ϕ})

≡
∨

{c | c is a minterm over P and c �|=T ¬ϕ}
≡

∨
{c | c is a minterm over P and c ∧ ϕ is T-satisfiable}

i.e., computing GP (ϕ) amounts to enumerating all minterms over P that are
T -satisfiable when conjoined with ϕ.

As in [LBC03, CKSY04], we can introduce a set B of n fresh propositional
variables {b1, . . . bn} and consider the formula ϕ∧

∧n
i=1 bi ⇔ pi. Given a T -model

M of this formula, we collect the conjunction of all B-literals that are true in
M , and replace each bi by its corresponding formula pi. The resulting minterm
c, called the projection of M onto P , is over P and c ∧ ϕ is T -satisfiable.

For enumerating all such c, in principle, every off-the-shelf SMT solver can be
used, by adding, each time a T -model is found whose B-literals are {l1, . . . , ln},
a blocking clause ¬l1 ∨ . . . ∨ ¬ln and then starting the SMT solver from scratch,
and repeating this until no more T -models are found. The number of restarts is
no more than the number of different minterms over P , that is, 2n. Each model
found can be stored, say, in a BDD, or in a file to be treated once the AllSAT
procedure has finished. The computation of FP (ϕ) can be done in a similar way.

3.1 AllSAT and AllSAT over Important Symbols

The complete black-box approach explained above is not very efficient. This is
due to the restarts from scratch, where moreover the lemmas learned by the SMT
solver are not re-used between restarts, and due to the worst-case exponential
growth of the clause set (one additional blocking clause for each model found).
We now show that these problems can be entirely overcome, without modifying
the search behavior of the best DPLL implementations, i.e., using the best known
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conflict analysis techniques and conflict-driven backjumping, and without the
need of keeping the blocking clauses or the learned lemmas.

In this section we focus on the propositional case, since all these results on
AllSAT immediately extend to AllSAT in the SMT case, i.e., for enumerat-
ing all T -models using any of the modern DPLL-based SMT solvers, including
DPLL(T ).

For the general AllSAT problem, i.e., without considering a subset of impor-
tant symbols, the idea is as follows. Each time a model {l1, . . . , ln} is found,
store it and do (e.g., 1UIP) conflict-driven backjumping as if the blocking clause
¬l1 ∨ . . . ∨ ¬ln (which is conflicting in the current DPLL state) belonged to the
clause set; see [ZMMM01, NO05a]. Keeping the lemmas learned in backjump
steps (or the blocking clauses) is optional: as usual, they can be kept only as
long as they are active pruning the search.

Property 1. This AllSAT procedure terminates and enumerates all models.

As pointed out in [JHS05], for Chaff’s DPLL procedure this result easily follows
from the proofs in [ZM03]. For essentially any practical DPLL strategy or vari-
ant, it follows from [NOT05], where the termination proof uses a well-founded
ordering on DPLL search states, based on a lexicographic comparison of the
number of literals in each decision level. Roughly, the intuition is that a search
state is more advanced than another one if it has more information at lower
decision levels, i.e., for some i, it has set more literals at decision level i, and it
has the same number of literals at all decision levels lower than i.

An important variant of the AllSAT problem is, given a subset P of distin-
guished or important symbols (in this paper, the predicates), to enumerate all
(sub)models over P that can be extended to total models over all symbols. This
also has important applications to, e.g., model checking [GSY04]. For this, the
same procedure applies by removing from the blocking clause the non-important
literals, and the same correctness proof based on [NOT05] holds.

Property 2. This AllSAT procedure with distinguished symbols P terminates
and enumerates all models over P that can be extended to total models over all
symbols.

We have not found this observation elsewhere in the literature. E.g., [GSY04]
does chronological backtracking on the important literals, and forces the decision
heuristic to split on important literals first.

Quite surprisingly, if, as proposed here, not all blocking clauses or lemmas
are kept, some model may be found more than once. However, according to our
experiments, this phenomenon appears to be rare and has a very low impact on
performance, see Section 4.

3.2 Incrementally Refining the Approximation

The approaches for predicate abstraction of [DDP99, SS99, FQ02] aim at ex-
plicitly asking an SMT solver for each cube c whether ϕ ∧ c is T -satisfiable or
not. For reducing the number of calls to the SMT solver, they work by starting
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with smaller cube sizes. For example, if P is {p1, . . . , pn}, one can first send
ϕ ∧ p1 to the SMT solver, and only if this is T -satisfiable, try with ϕ ∧ p1 ∧ p2
and with ϕ ∧ p1 ∧ ¬p2, and so on. But this still leads to a large exponential
number of independent calls to the SMT solver, without much incrementality to
be exploited.

In this subsection we also work with increasing cube sizes, but in a completely
different way and with a completely different purpose. Rather than directly com-
puting the strongest overapproximation GP (ϕ), we want to compute a sequence
Gk1

P (ϕ), Gk2
P (ϕ), . . . , Gkm

P (ϕ) of successively stronger (i.e., each one T -entails the
previous ones) overapproximations over P of ϕ, where the last one is GP (ϕ).
Here we will compute each Gk

P (ϕ) by collecting cubes of size k, and the sizes will
be such that k1 < . . . < km = |P |.

The motivation for doing this is that for certain applications, some of the first
few Gki

P (ϕ)’s may already suffice. Moreover, our experiments reveal that for small
k, computing Gk

P (ϕ) is very fast. In addition, computing the whole sequence with
small increments of k can be done almost as efficiently as computing GP (ϕ), if
each step is done incrementally from the previous one.

In the following, let restr be any function such that, given a minterm c over
P and an integer k with k ≤ |P |, restr(c, k) returns a subcube of size k of c.

Theorem 1. For every k1 < . . . < km = |P |, the sequence Gk1
P (ϕ), . . . , Gkm

P (ϕ)
is such that

• Gki

P (ϕ) is T -entailed by ϕ for all i in {1, . . . , m},
• Gki+1

P (ϕ) |=T Gki

P (ϕ) for all i in {1, . . . , m − 1}, and
• Gkm

P (ϕ) is GP (ϕ).

if, for all i in {1, . . . , m}, the following two conditions hold:

1. Gki

P (ϕ) ≡
∨

{restr(c, ki) | c is a minterm over P and c ∧ ϕ is T -satisfiable}
2. For each minterm c over P with c ∧ ϕ T -satisfiable there exists a minterm

c′ over P with c′ ∧ ϕ T -satisfiable such that restr(c, ki) ⊃ restr(c′, ki−1).

Proof. (sketch) Each Gki

P (ϕ) is T -entailed by ϕ, since the disjunction of all
minterms c over P with T -satisfiable c ∧ ϕ is T -entailed by ϕ, and for each
one of these c there is some subcube in Gki

P (ϕ). The increasing strength follows
in a similar way from the second condition, since each disjunct of Gki

P (ϕ) con-
tains a disjunct of Gki−1

P (ϕ). Finally, Gkm

P (ϕ) is GP (ϕ) if km is |P | due to the
characterization of GP (ϕ) given at the beginning of this section. 
�

This theorem gives us a way to use our algorithm of the previous subsections
for computing the successive Gki

P (ϕ)’s. A difference is that, since here we collect
cubes ck of size k instead of the whole minterms, we can, after ck has been
collected, do the conflict analysis with the corresponding blocking clause ¬ck of
size k. Note that this may preclude some minterms c extending ck from later
consideration, but we are still safe since for these c we can assume restr(c, k) to
be ck. Again, as in Properties 1 and 2, termination follows from [NOT05].
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In this algorithm, one could use a function restr such that restr(c, k) always
returns the subset of literals of c over {p1, . . . , pk}, i.e., the first k elements
of P . However, having in each Gk

P (ϕ) only predicates of {p1, . . . , pk} may not
be very useful. This is because in most cases no subset of P will suffice to
construct strong invariants of interest. We believe that it is much more useful
to have most predicates of P appear in some of the k-size cubes. Therefore, in
our implementation we use a random restr function. The second condition of
Theorem 1 can be enforced as follows if one remembers the previous Gki−1

P (ϕ):
for each minterm c considered in the computation of Gki

P (ϕ), we know that a
subcube of c of size ki−1 must belong to Gki−1

P (ϕ). This subcube was added to
Gki−1

P (ϕ) as the restriction restr(c′, ki−1) for some1 minterm c′. The only thing
we have to impose is that restr(c, ki) includes restr(c′, ki−1). This is all clearer
in the example below:

Example 2. Let ϕ be the formula x < y − 2 ∨ x > y and P be {p1, p2, p3}
where p1 is x < 0, p2 is y=2 and p3 is x=4. We will construct the sequence
of approximations G1

P (ϕ), G2
P (ϕ), G3

P (ϕ). For a better understanding of the al-
gorithm, let us present the set of all minterms c such that c ∧ ϕ is T -satisfiable:
{p1p2p3, p1p2p3, p1p2p3, p1p2p3, p1p2p3, p1p2p3}.

For the computation of G1
P (ϕ), the AllSAT procedure first finds the minterm

p1p2p3 and restricts it to p3. After adding the blocking clause p3, the minterm
p1p2p3 is found and restricted to p1. Then, p1 is added as a blocking clause and
since there are no more minterms to be found we finish with G1

P (ϕ) ≡ p3∨p1.
For G2

P (ϕ) we start with the minterms already computed in the previous step.
We can restrict p1p2p3 to p2p3 (note that, due to condition 2 of Theorem 1, p1p2
would not have been a correct restriction), and similarly restrict p1p2p3 to p1p2.
After adding the blocking clauses p2∨p3 and p1∨p2, the AllSAT procedure starts
the search. First, it finds the minterm p1p2p3, and restricts it to p1p3 (again
due to condition 2 of Theorem 1, p1p2 would not have been a correct choice).
Then, after the blocking clause p1∨p3 is added, p1p2p3 is found and restricted
to p1p2. Since the blocking clauses preclude any other possible minterm, G2

P (ϕ)
is p2p3 ∨ p1p2 ∨ p1p3 ∨ p1p2.

Finally, for G3
P (ϕ) we start with the four minterms already computed and

then the AllSAT procedure will compute the two missing ones, namely p1p2p3
and p1p2p3. 
�

The interesting aspect hereby is that, at each incremental step, we reuse from
previous step(s):

1. all lemmas learned by DPLL(T ) that are T -consequences of ϕ, which helps
to speed up the search.

2. all minterms c already computed.

We finish this section with three remarks about the quality of these approx-
imations. First, let us note that the strongest disjunction of cubes over P of
1 Note that we cannot assume c′ to be c because, due to the use of blocking clauses,

c might not have been considered in the computation of Gki−1
P (ϕ).
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size k that is T -entailed by ϕ does not always exist. Second, in CNF it does
exist: the strongest conjunction of clauses over P of size k that is T -entailed
by ϕ is a well-defined concept. Third, let us remark that there are formulas for
which our algorithm would compute a stronger approximation than this CNF
and viceversa.

4 Experimental Evaluation

4.1 Benchmarks and Their Source

The set of benchmarks for evaluating our technique has been generated from
three completely different verification tasks:

1. SLAM: This category contains a set of 665 predicate abstraction queries
generated from Windows device driver verification in SLAM [BMMR01]. In
SLAM, predicate abstraction is used to abstract a Boolean program from
a C program. This set has been previously used to evaluate the predicate
abstraction technique in [LBC05].

2. UCLID Suite: This category contains GP (ϕ) queries generated during the
verification of high-level description of microprocessors, cache-coherence pro-
tocols and other distributed algorithms [LB04]. Each benchmark in this cat-
egory contains around 6 to 19 predicate abstraction queries denoting the
different image computation steps.

3. Recursive Data Structures (RDS): This is a set of benchmarks gen-
erated from the verification of programs manipulating linked lists inside
UCLID [LQ06]. Each benchmark contains a set of GP (ϕ) queries for dif-
ferent abstract image computation steps.

The theories used in all the three categories are combinations of EUF and
difference logic (constraints of the form x ≤ y + c). For the latter two classes of
benchmarks for UCLID and RDS, more complex theories are axiomatized using
quantifiers. However, these quantifiers are eliminated upfront using simple (but
sufficient to prove the properties in the examples) quantifier instantiation within
UCLID, to generate a quantifier-free predicate abstraction query.

4.2 Results and Analysis

We have implemented the procedure described in Section 3.1 on top of the Barce-
logicTools implementation of the DPLL(T ) approach for SMT. Each minterm
was stored in a BDD immediately after finding it. For this, the CUDD [CUD]
BDD package was used. The result was read from the BDD as a disjunction
of prime implicants. This significantly reduced the number of disjuncts (see the
table below) especially when many minterms were stored. For each of the bench-
marks described above, our resulting system was compared with the best existing
competitor by running experiments on a 2GHz 512 MB Pentium 4.

For the SLAM benchmarks we compared our system with the symbolic deci-
sion procedure approach of [LBC05]. This set of benchmarks posed little diffi-
culty to our approach: the whole set of benchmarks (655 queries) was processed
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in less than 5 seconds, whereas the symbolic decision procedure implementation
took 273 seconds. This is a first indication that our approach is superior, but,
since the running time for each single query is negligible, we will concentrate on
analyzing the results obtained from the other two families.

For the UCLID and Recursive Data Structures benchmarks, the table below
lists the number of queries for each family, predicates each query consists of,
and the total number of minterms of the GP (ϕ)’s to be computed. Finally, for
UCLID [LBC03] we give the aggregated running time in seconds and for our
BarcelogicTools implementation, we give the running time, the speedup factor
w.r.t. UCLID, and the number of cubes in the answers. In order to be more
confident about the results, we used CUDD to check whether the output of our
tool was equivalent to UCLID’s output.

Benchmark UCLID BCLT
family #queries #prds. #minterms time time speedup #cubes

UCLID Suite:
aodv 7 21 2916 657 4.6 143x 458

bakery 19 32 426 245 11 22x 294
BRP 10 22 30 3.5 0.1 35x 24

cache ibm 10 16 326 34 1.3 26x 123
cache bounded 18 26 2238 1119 23 49x 1022

DLX 6 23 38080 335 13 26x 2704
OOO 10 25 10728 921 36 26x 242

Rec. Data Struct.:
reverse acyclic 7 16 91 20 0.6 33x 44

set union 6 24 334 22 0.7 31x 60
simple cyclic 5 15 110 3.7 0.11 34x 20
sorted int 10 21 2465 765 19 40x 250

Independently of the benchmark, BCLT is always at least 20 times faster.
Hence, it is also very robust, i.e. it is not tailored towards any specific type of
benchmark.

As mentioned in Section 3.1, a possible drawback of our AllSAT approach is
that the same minterm can be listed more than once. Therefore, we also tried a
mixed approach where, in order to preclude most repeated minterms, blocking
clauses were kept while they were active (as it is done with learned lemmas).
This did not produce any observable improvement. This is probably due to the
fact that even for the DLX and OOO families, where the number of minterms to
be enumerated is significant, the number of repeated minterms did not account
for more than 3 percent of the total.

Profiling shows that the BDD operations (including the computation of prime
implicants) take negligible runtime compared to the rest of the procedure. A
typical distribution of the running time for these benchmarks is to spend 50
percent of the total time in the Boolean reasoning part, 30 percent in the theory
reasoning and the rest mainly on the branching heuristic.

4.3 Results on Alternative Settings and Analysis

In order to understand the reasons behind the performance of our Barcelogic-
Tools implementation (called good in the table below), we also ran it with three
different settings.
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One of them, (black-box in the table) was to use the black-box approach
explained at the beginning of Section 3, where each time a T -model is found
a blocking clause is added and the search is restarted from scratch, with no
possibility to reuse the lemmas already computed. This setting was modified
by allowing the lemmas to be reused (naive in the table). Finally, in order to
analyze the role of theory propagation [NO05b], we also ran BCLT with the
more advanced enumeration algorithm but with theory propagation turned off
(noTP in the table).

Benchmark BCLT
family #queries #preds. #minterms good black-box naive no TP

UCLID Suite:
aodv 7 21 2916 4.6 24 11 11

bakery 19 32 426 11 19 13 14
BRP 10 22 30 0.1 0.12 0.13 0.2

cache ibm 10 16 326 1.3 2.3 2 2.5
cache bounded 18 26 2238 23 63 31 32

DLX 6 23 38080 13 242 63 15
OOO 10 25 10728 36 176 57 615

Rec. Data Struct.:
reverse acyclic 7 16 91 0.6 0.7 0.7 1

set union 6 24 334 0.7 1 0.8 1
simple cyclic 5 15 110 0.11 0.16 0.13 0.2
sorted int 10 21 2465 19 38 24 154

Clearly, the black-box approach is not very competitive. It significantly im-
proves if we allow the reusability of lemmas among the enumeration of models
(naive). In fact, it is not much slower than good: since the number of minterms
is not too large, the useless restarts are not too frequent, and also the explo-
sion in the formula size does not show up in its full extent. Only in the families
with many minterms (DLX and OOO), one starts noticing the benefits of a better
AllSAT algorithm.

Concerning the role of theory propagation in these benchmarks, we can see
that in some families (OOO and sorted int) it is crucial for the success of the
method. This is interesting because these two families are the ones which use
arithmetic symbols most heavily among all. Moreover, applying theory propa-
gation never increases the runtime, because the overhead in time it produces
is always compensated by a reduction in the search space. This confirms, in
another application area, the results presented in [NO05b] with respect to the
importance of theory propagation.

4.4 Results on the Incremental Refinements of the Approximation

The procedure presented in Section 3.2 has also been implemented in order to
evaluate its feasibility. The table below includes, in its third column, the time
(in seconds) needed to directly compute GP (ϕ), as explained in Section 3.1. The
other columns are in groups of two, using different increment steps, compar-
ing the incremental version of the procedure (incr in the table), with a non-
incremental version (n-incr, not reusing lemmas nor minterms from previous
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steps). For example, the column incr below step 2 contains the time needed
to compute, with the incremental algorithm, the whole set of approximations
G2

P (ϕ), G4
P (ϕ), G6

P (ϕ), . . ., until finally computing the exact GP (ϕ).

Benchmark step 1 step 2 step 5
family #preds. exact incr. n-incr. incr. n-incr. incr. n-incr.

UCLID Suite:
aodv 21 4.6 15 47 10 24 7.2 13

bakery 32 11 28 159 21 86 16 40
BRP 22 0.1 1.1 1.7 0.6 1 0.3 0.5

cache ibm 16 1.3 3 8.6 2.2 5.1 1.7 2.8
cache bounded 26 23 71 333 51 185 40 88

DLX 23 13 37 84 26 42 18 21
OOO 25 36 67 368 50 193 43 102

Rec. Data Struct.:
reverse acyclic 16 0.6 1.1 2.4 0.9 1.5 0.7 1

set union 24 0.7 1.7 4.8 1.2 2.7 0.9 1.6
simple cyclic 15 0.11 0.4 0.7 0.3 0.4 0.2 0.3
sorted int 21 19 25 113 20 63 19 36

The first important thing to note is that even when we use an increment of 1,
which means that more than 20 approximations are computed on average, the
time needed in the incremental version only increases by a factor of 2 or 3 with
respect to the time required to directly compute GP (ϕ). One can also notice that
this factor is reduced when we use a bigger increment step. This shows that in
a situation where one wants to use some of these approximations but they do
not suffice, the time needed to compute GP (ϕ) will not be much worse than if
we had tried to directly compute it.

The other important conclusion is that it is essential to use an incremental
algorithm, e.g., using an increment step of 1 and a non-incremental algorithm
requires about 10 times as much time as directly computing GP (ϕ).

5 Conclusions and Further Work

In this paper, we have demonstrated the use of an SMT solver based on the
DPLL(T ) framework for efficient predicate abstraction. The algorithm is based
on a careful generation of the set of all satisfying assignments over a set of pred-
icates, and we have illustrated the impact of the various factors such as theory
propagation, backjumping and incrementality on this approach. We also show
how the technique can be adapted to compute increasingly precise approxima-
tions with respect to a given set of predicates in an incremental fashion, which
provides an alternate method for refining predicate abstractions with a fixed set
of predicates [DD01, JM05].

We are currently investigating exploiting incrementality when computing an
abstraction over an monotonically growing set of predicates, which can be useful
for creating Boolean programs [BMMR01] incrementally. Another area of future
work is to extend a minterm c over P to a larger cube on-the-fly, before starting
the search for a new minterm — this could impact the performance of queries
(e.g. OOO, DLX and sorted int) that have a very large #minterms/#cubes ratio.
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