
A Typed Calculus of Mobile Computation 1

A Typed Calculus

of Mobile Computation
A.D. Gordon (Microsoft)

(based on joint work with L. Cardelli (Microsoft) and G. Ghelli (Pisa University))

Foundations of Mobile Computation

December 16–17, 1999

Institute of Mathematical Sciences

Chennai, India



A Typed Calculus of Mobile Computation 2

Mobile Computation’s Taking Off

Mobile hardware devices are taking off

� devices: laptops, palmtops, smartcards, . . .

� protocols: Mobile IP, WAP, Bluetooth, . . .

Mobile code and mobile software agents are taking off

� Facile, Telescript, Obliq, Java applets, ECMAscript, WAPscript, . . .

� Mobile extensions of Java: Voyager, Odyssey, Aglets, . . .

Security risks arise from both mobile devices and mobile agents

� secrecy risks: e.g., protect login credentials from smartcard reader

� integrity risks: e.g., prevent malicious applet from formatting the hard drive



A Typed Calculus of Mobile Computation 3

Our Aims

Various kinds of places, and of navigation between places, are

fundamental to programming mobile computation.

We formalize these places as ambients , and study a small set of

mobility primitives with a precise semantics: the ambient calculus .

Calculi of functions, processes, and objects clarify existing styles of

computation. Sometimes they suggest better programming habits too.

Our goal is that the theory and implementation of the ambient calculus

will do the same for mobile computation.

Specifically, this talk uses ambients to develop type systems for

mobility, adaptable for use in a bytecode verifier, for example.



A Typed Calculus of Mobile Computation 4

The Untyped

Ambient Calculus



A Typed Calculus of Mobile Computation 5

Orientation: Ambients

An ambient is a named, bounded place where computation happens.

An ambient is both a unit of mobility—of either software and

hardware—and a security perimeter.

Ambient security rests on the controlled distribution of suitable

credentials, or capabilities , derived from unforgeable names .

One goal of our calculus is to develop a flexible, precise, secure, and

typeful programming model for mobile software components.



A Typed Calculus of Mobile Computation 6

Mobile Ambients: a packet from A to B

Machine A

z }| {

A[msg[out A:in B j hMi]

| {z }

A! B : M

] j

Machine B

z }| {

B[open msg:(x):P

| {z }

receive x; P

]

� Ambients may model both machines and packets

� Ambients are mobile: msg[� � �] moves out of A and into B

� Ambients are boundaries: passage is regulated by capabilities

You need capability out A to exit A; you need capability in B to enter B



A Typed Calculus of Mobile Computation 7

Ambient Behaviour, By Example

We illustrate the four basic reduction rules of the calculus:

A[msg[out A:in B j hMi]] j B[open msg:(x):P]

! A[] j msg[in B j hMi] j B[open msg:(x):P]

! A[] j B[msg[hMi] j open msg:(x):P]

! A[] j B[hMi j (x):P]

! A[] j B[Pffx Mgg]



A Typed Calculus of Mobile Computation 8

Mobility and Communication Primitives:
M ::= expression

n ambient name

inM can enter intoM

out M can exit out ofM

open M can open M

P;Q;R ::= process

(�n)P restriction

0 inactivity

P j Q composition

!P replication

M[P] ambient

M:P action

(x1; : : : ; xk):P input action

hM1; : : : ;Mki asynchronous output action



A Typed Calculus of Mobile Computation 9

Example: Semantics of a

Distributed Language



A Typed Calculus of Mobile Computation 10

Programming Model

There is a flat collection of named nodes (or locations), each of which

contains a group of named channels and anonymous threads:

node a [channel c j

thread[chbi] j

thread[c(x):go x]] j

node b []

Heteregeneous models like this underly several distributed

programming systems, and several distributed forms of the �-calculus.



A Typed Calculus of Mobile Computation 11

An Encoding [[-]] in the Ambient Calculus

Ambients model nodes, channels, and threads. For example:

a[[[channel c]]a j

[[thread [chbi]]]a j

[[thread [c(x):go x]]]a] j

b[]

A channel consists of a buffer ambient cb that opens up any packets

named cp sent into it:

[[channel c]]a = cb[!open cp:0]



A Typed Calculus of Mobile Computation 12

A thread is an anonymous ambient, with a fresh name.

An output is a packet that exits its thread, and enters a channel buffer:

[[thread [chbi]]]a = (�t)t[go(out t:in cb):cp[hb; bpi]]

In the untyped calculus, go M:n[P] is short for:

go M:n[P]
�

= (�k)k[M:n[out k:P]]



A Typed Calculus of Mobile Computation 13

An input is a packet that exits its thread, enters the buffer, gets opened,

inputs a message, then returns to its thread. A move to x executes

capabilities to exit the current node, then enter the destination node x.

[[thread [c(x):go x]]]a =

(�t)t[(�s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:0]] j

open s:s[])]

The name s is for synchronisation ambients s[], used to delay the

move until the input has completed.



A Typed Calculus of Mobile Computation 14

A fragment of a distributed programming language:

Net ::= network

node n [Cro] node

Net j Net composition of networks

Cro ::= crowd of channels and threads

channel c channel

thread[Th] thread

Cro j Cro composition of crowds

Th ::= thread

go n:Th migration

chn1; : : : ; nki output to a channel

c(x1; : : : ; xk):Th input from a channel

� � � imperative features (omitted)



A Typed Calculus of Mobile Computation 15

Summary of the Untyped Calculus

The core calculus (without I/O) is Turing complete. The full calculus

(with I/O) can naturally model the �-calculus.

It offers a simple, abstract description of classical distributed

languages, where ambients model both the unit of mobility (threads)

and security perimeters (network nodes).

This description of mobility is more direct and explicit than possible in

most other process calculi.

Several implementations now exist.



A Typed Calculus of Mobile Computation 16

Ambient Types I:

Exchange Types



A Typed Calculus of Mobile Computation 17

Orientation: Types

The purpose of a type system is to prevent execution errors during the

running of well-typed programs.

Typed languages emerged in the 1960s and 70s: Pascal, Algol 68,

Simula, ML. Mostly, typing in these languages prevents accidental

execution errors, e.g., 1:0+ “fred”.

Recently, Java has popularised typing for mobile code. As well as

preventing accidents, typing in Java prevents malicious execution

errors, e.g., formatting the C drive.



A Typed Calculus of Mobile Computation 18

Motivation for Exchange Types

In the untyped calculus, certain processes arise that make no sense:

� Process in n[P] uses a capability as an ambient name

� Process (�n)n:P uses an ambient name as a capability

In an implementation, these processes are execution errors.

To avoid these errors, we regulate the types of messages a process

may exchange , that is, input or output.



A Typed Calculus of Mobile Computation 19

Typing Input and Output

If a message M has message type W, then hMi is a process that

exchanges W messages.

If M : W then hMi : W.

If P is a process that exchanges W messages, then (x:W):P is also

a process that exchanges W messages.

If P : W then (x:W):P : W.



A Typed Calculus of Mobile Computation 20

Typing Parallelism

Process 0 exchanges messages of any type, since it exchanges none.

0 : T for all T.

If P and Q are processes that exchange T messages, so is P j Q.

If P : T and Q : T then P j Q : T.

If P : T then !P : T.

These rules ensure matching of the types of inputs and outputs from

processes running in parallel.



A Typed Calculus of Mobile Computation 21

Typing Ambients

An expression of type Amb[T] names an ambient inside which T

messages are exchanged.

If M is such an expression, and P is a process that exchanges T

messages, then M[P] is correctly typed.

If M : Amb[T] and P : T then M[P] : S for all S.

An ambient exchanges no messages, so it may be assigned any type.



A Typed Calculus of Mobile Computation 22

Typing Capabilities

An expression of type Cap[T] is a capability that may unleash

exchanges of type T.

If M : Cap[T] and P : T then M:P : T.

If ambients named n exchange T messages, then the capability

open n may unleash these exchanges.

If n : Amb[T] then open n : Cap[T].

Capabilities in n and out n unleash no exchanges.

If n : Amb[S] then in n : Cap[T] for all T.

If n : Amb[S] then out n : Cap[T] for all T.



A Typed Calculus of Mobile Computation 23

Exchange Types

Types:

W ::= message types

Amb[T] ambient name allowing T exchanges

Cap[T] capability unleashing T exchanges

S; T ::= exchange types

Shh no exchange

W1 � � � � �Wk tuple exchange

� A quiet ambient, Amb[Shh], and a harmless capability, Cap[Shh]

� An ambient allowing exchange of harmless capabilities: Amb[Cap[Shh]]

� A capability unleashing exchanges of names of quiet ambients: Cap[Amb[Shh]]



A Typed Calculus of Mobile Computation 24

Properties of Exchange Types

Formally, we base our type system on judgments E `M : W and

E ` P : T, where E = x1:W1; : : : ; xk:Wk.

Theorem (Soundness) If E ` P : T and P! Q then E ` Q : T.

Hence, execution errors like in n[P] and (�n)n:P cannot arise

during a computation, since they are not typeable.



A Typed Calculus of Mobile Computation 25

Typing the Packet Example

Packet from A to B:

If A : Amb[Shh], B;msg : Amb[W], and M;P : W then

A[msg[out A:in B

| {z }

Cap[W]

j hMi]]: j B[open msg

| {z }

Cap[W]

:(x:W):P] : Shh.



A Typed Calculus of Mobile Computation 26

Example: The Distributed Language

Each name has a type Ty, either Node or Ch[Ty1; : : : ; Tyk].

Two ambient names represent each source name; e.g., each channel

name is represented by a buffer name and a packet name.

We translate these to ambient types so that [[Node]] = Amb[Shh] and

[[Ch[Ty1; : : : ; Tyk]]] = Amb[[[Ty1]]� [[Ty1]]�� � �� [[Tyk]]� [[Tyk]]].

We can prove that if a program in the distributed language is

well-typed, so is its translation to the ambient calculus.



A Typed Calculus of Mobile Computation 27

Example using Exchange Types

Assume that c:Ch[Node]. The translation of thread[c(x):go x],
(�t)t[(�s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:0]] j

open s:s[])]
has type Shh assuming that:

a : Amb[Shh]; t : Amb[Shh];

cb; cp : Amb[[[Node]]; [[Node]]]; s : Amb[Shh]



A Typed Calculus of Mobile Computation 28

Ambient Types II:

Mobility and Locking

Annotations



A Typed Calculus of Mobile Computation 29

Regulating Mobility and Persistence

We decorate ambient types with annotations

AmbY[ZT]

The locking annotation Y is either locked (�) or unlocked (�).

The mobility annotation Z is either mobile (y) or immobile (Y).

Opening a locked ambient or moving an immobile ambient once its

running is an execution error. Our type system prevents such errors.



A Typed Calculus of Mobile Computation 30

Modifying the Type System

Let an effect of a process be a pair ZT, where T is the type of

exchanged messages, and Z = Y only if no in or out capabilities are

exercised.

Types and judgments acquire the form:

Message type W ::= AmbY[F] j Cap[F]

Exchange type T ::= Shh j (W1 � � � � �Wk)

Good expression E `M : W

Good process E ` P : F

As before, any state reachable from a good process is a good process.



A Typed Calculus of Mobile Computation 31

If n : AmbY[F] then in n : Cap[yT]

If n : AmbY[F] then out n : Cap[yT]

If n : Amb�[F] then open n : Cap[F]

If M : W then hMi : ZW

If P : ZW then (x:W):P : ZW

If M : AmbY[F] and P : F then M[P] : F 0

If M : Cap[F] and P : F then M:P : F

If M : Cap[F] and N[P] : F 0 then go M:N[P] : F 0

If P : F then (�n:W)P : F

If P : F and Q : F then P j Q : F

If P : F then !P : F

0 : F



A Typed Calculus of Mobile Computation 32

Examples of Type Errors

You cannot open a locked ambient:

(�n:Amb�[F])(n[] j hni j (x:Amb�[F]):open x)

You cannot move an immobile ambient once its running:

(x:AmbY[YT]):x[out m]



A Typed Calculus of Mobile Computation 33

Example: Encoding Distribution, Again

Assume that c:Ch[Node]. The translation of thread[c(x):go x],
(�t)t[(�s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:0]] j

open s:s[])]
has effect YShh assuming that:

a : Amb�[YShh]; t : Amb�[yShh];

cb : Amb�[Y[[Node]]b � [[Node]]p]; s : Amb�[yShh];

cp : Amb�[Y[[Node]]b � [[Node]]p]



A Typed Calculus of Mobile Computation 34

Ambient Types III:

Ambient Groups



A Typed Calculus of Mobile Computation 35

Motivating Ambient Groups

We may wish to express that an ambient n can enter the ambient m.

This might be formalised as a property n : CanEnter(m). But this

would divert us into the realm of dependent types.

Instead, we introduce type-level groups of names G, H, and formalise

this property as:

The name n belongs to group G; the name m belongs to

group H. Any ambient of group G can enter any ambient of

group H.



A Typed Calculus of Mobile Computation 36

Generalizing Locking and Immobility Annotations

We decorate an ambient type with its group G, the set G of groups it

may cross once its running, the set H of groups it may open, and the

type T of exchanges within it:

G[yG; �H; T]

Moreover, a new operation, (�G)P, creates a new group G. Within

P, new names of group G can be created. In a well-typed situation,

scoping rules dictate that such names may only be handled within P.



A Typed Calculus of Mobile Computation 37

Adding Groups to the Type System

Types and judgments acquire the form:

Effect F ::= yG; �G; T where G ::= fG1; : : : ; Gng

Message type W ::= G[F] j Cap[F]

Exchange type T ::= Shh j (W1 � � � � �Wk)

Good expression E `M : W
Good process E ` P : F

As before, any state reachable from a good process is a good process.

The effect of a good process is an upper bound on the ambients it

may cross or open, and the messages it may exchange.



A Typed Calculus of Mobile Computation 38

If n : G[F] and G 2 G then in n : Cap[yG; �H; T]

If n : G[F] and G 2 G then out n : Cap[yG; �H; T]

If n : G[yG; �H; T] and G 2 H then open n : Cap[yG; �H; T]

If M : W then hMi : yG; �H;W

If P : yG; �H;W then (x:W):P : yG; �H;W

If M : Amb[F] and P : F then M[P] : F 0

If M : Cap[F] and P : F then M:P : F

If M : Cap[F] and N[P] : F 0 then go M:N[P] : F 0

If P : F then (�n:W)P : F

If P : F and Q : F then P j Q : F

If P : F then !P : F

0 : F



A Typed Calculus of Mobile Computation 39

Example: Encoding Distribution, with Groups

Assume that c:Ch[Node]. The translation of thread[c(x):go x],

(�Sync)(�t)t[(�s)(go(out t:in cb):cp[(x; xp):

go(out cb:in t):s[open s:out a:in x:0]] j

open s:s[])]

has effecty;; �;; Shh assuming that:

a : Node[y;; �Aux; Shh]; t : Thr [yNode; �Sync; Shh];

c
b : Ch[y;; �Pkt; [[Node]]b � [[Node]]p]; s : Sync[yNode; �Sync; Shh];

c
p : Pkt[y;; �Pkt; [[Node]]b � [[Node]]p]



A Typed Calculus of Mobile Computation 40

Conclusions,

Related Work



A Typed Calculus of Mobile Computation 41

Related Work

Several process calculi model distribution and mobility (Boudol;

Amadio and Prasad; Hennessy and Riely; Sewell; Fournet, Gonthier,

and Lévy).

Zimmer has proposed algorithms for our system with mobility and

locking annotations. Few other type systems regulate process mobility.

The idea of groups is related to Milner’s sorts for �, to channels and

binders found in flow analyses for �, and to the regions used for

memory management in ML.



A Typed Calculus of Mobile Computation 42

Theory of Ambients

Untyped ambient calculus (Cardelli and Gordon, FoSSaCS’98)

Abstractions for mobile computation (Cardelli, ICALP’99)

Equational properties (Gordon and Cardelli, FoSSaCS’99)

Safe ambients (Levi and Sangiorgi, POPL’00)

Modal logics (Cardelli and Gordon, POPL’00)

Exchange types (Cardelli and Gordon, POPL’99)

Mobility types (Cardelli, Ghelli, and Gordon, ICALP’99)

Subtyping and algorithms for mobility types (Zimmer, dissertation)

Ambient groups (Cardelli, Ghelli, and Gordon, submitted)



A Typed Calculus of Mobile Computation 43

Implementations of Ambients

Ambit applet (Cardelli)

Ambient language design (Cardelli and Torgersen)

Ambients in Jocaml (Fournet, Lévy, Schmitt)

Reactive ambients (Sangiorgi and Boussinot)

Ambients in Haskell (Peyton Jones)

Model checker for the logic (Gordon)



A Typed Calculus of Mobile Computation 44

Summary

A goal of our calculus is to prototype a flexible, precise, secure, and

typeful programming model for mobile software components.

Types regulate aspects of mobile computation such as exchanging

messages and exercising capabilities for mobility.

Type systems like these could be checked by a bytecode verifier to

better constrain mobile code.

An intriguing possibility: typings for XML. . .

Papers and software available from:

http://www.luca.demon.co.uk/Ambit/Ambit.html

http://research.microsoft.com/users/adg/Publications



A Typed Calculus of Mobile Computation 45

Exiting an Ambient

The capability out A allows the ambient msg to exit the ambient A:
A[msg[out A:in B j hMi]]

! A[] j msg[in B j hMi]

Ambient msg is the unit of mobility, which crosses the perimeter A.



A Typed Calculus of Mobile Computation 46

Entering an Ambient

The capability in B allows the ambient msg to enter the ambient B:

msg[in B j hMi] j B[open msg:(x):P]

! B[msg[hMi] j open msg:(x):P]

Ambient msg is the unit of mobility, which crosses the perimeter B.



A Typed Calculus of Mobile Computation 47

Opening an Ambient

The capability open msg dissolves the boundary around ambient msg:

msg[hMi] j open msg:(x):P

! hMi j (x):P

The ambient msg is the unit of mobility in that as its perimeter is

breached, its subprocesses become subprocesses of the top-level.



A Typed Calculus of Mobile Computation 48

Exchanging a Message

If there is no intervening boundary, messages may be exchanged:

hMi j (x):P ! Pffx Mgg

In the processes below, the boundary n prevents exchange of M:
n[hMi] j (x):P

hMi j n[(x):P]


