
A Data-Driven Finite State Machine Model for
Analyzing Security Vulnerabilities

Shuo Chen, Zbigniew Kalbarczyk, Jun Xu, Ravishankar K. Iyer

Center for Reliable and High-Performance Computing
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign
1308 W. Main Street, Urbana, IL 61801

{ shuochen, kalbar, junxu, iyer} @crhc.uiuc.edu

Abstract

This paper combines an analysis of data on security
vulnerabilities (published in Bugtraq database) and a
focused source-code examination to develop a finite state
machine (FSM) model to depict and reason about
security vulnerabilities. An in-depth analysis of the
vulnerability reports and the corresponding source code
of the applications leads to three observations: (i)
exploits must pass through multiple elementary activities,
(ii) multiple vulnerable operations on several objects are
involved in exploiting a vulnerability, and (iii) the
vulnerability data and corresponding code inspections
allow us to derive a predicate for each elementary
activity.

Each predicate is represented as a primitive FSM
(pFSM). Multiple pFSMs are then combined to create an
FSM model of vulnerable operations and possible
exploits. The proposed FSM methodology is exemplified
by analyzing several types of vulnerabilities reported in
the data: stack buffer overflow, integer overflow, heap
overflow, input validation vulnerabilities, and format
string vulnerabilities. For the studied vulnerabilities, we
identify three types of pFSMs, which can be used to
analyze operations involved in exploiting vulnerabilities
and to identify the security checks to be performed at the
elementary activity level. A demonstration of the
practical usefulness of the FSM modeling approach was
the discovery of a new heap overflow vulnerability now
published in Bugtraq.

Key words: security vulnerabilities, data analysis, finite
state machine modeling.

1. Introduction
Analysis of security vulnerabilities has typically

been approached in one of two ways: (i) using real data
to develop a classification and perform statistical
analysis; examples include Landwehr’s study on security
vulnerabilities [8] and Lindqvist’s study on intrusions
[11], and (ii) providing a degree of formalism by
modeling vulnerabilities and attack characteristics;
representative work includes Ortalo’s Markov model of
UNIX vulnerabilities [17] and Sheyner’s attack graph

constructor [18]. This paper combines the two
approaches: real data is analyzed, in conjunction with a
focused source-code examination, to develop a finite
state machine (FSM) model to depict and reason about
security vulnerabilities.

Using the Bugtraq list maintained in Securityfocus
[13], the study first identifies leading causes of security
vulnerabilities. 1 An in-depth analysis of the reported
vulnerabilities shows:

• Exploits must pass through multiple elementary
activities – at any one of which, one can foil the
exploit.

• Exploiting a vulnerability involves multiple
vulnerable operations on multiple objects.

• Analysis of a given vulnerability along with
examination of the associated source code allows us
to specify predicates that need to be met to ensure
security.

These observations motivate the development of an
FSM modeling methodology capable of expressing the
process of exploitation by decomposing it into multiple
operations, each of which includes one or more
elementary activities. Since each elementary activity is
simple, it is feasible (using the data and the application
code) to develop a predicate and a corresponding
primitive FSM (pFSM) to represent the elementary
activity. The pFSMs can then easily be combined to
develop FSM models of vulnerable operations and
possible exploits.

The proposed FSM methodology is exemplified by
analyzing several types of vulnerabilities reported in the
data: stack buffer overflow, integer overflow, heap
overflow, file race condition, and format string
vulnerabilities. These vulnerabilities include both those
that can be exploited remotely (e.g., those impacting
Internet servers) and those that can be exploited by local
users (e.g., privilege escalation of a regular user to root).
It should be noted that this family of vulnerabilities
constitutes 22% of all vulnerabilities in the Bugtraq

1 CERT and Bugtraq are two of the most comprehensive databases in
which security vulnerabilities are reported. We chose Bugtraq for this
study because its vulnerability reports are better organized and more
amenable to automatic processing and statistical study.

database. For the studied vulnerabilities, we identify
three types of pFSMs that can be used to analyze
operations involved in exploiting vulnerabilities and to
identify the security checks to be performed at the
elementary activity level.

An additional demonstration of the usefulness of the
approach was the discovery of a new heap overflow
vulnerability now published in Bugtraq crediting the
authors [13]. The discovery was made when modeling
another, known vulnerability.

2. Related Work
There has been significant research in modeling,

analysis, and classification of security problems, some of
which is based on real data.

Security Models of Access Control. A number of
studies [1][2][3] have proposed models for access control
that satisfies certain rigorously defined security
properties. Bell and LaPadula [1] proposed a multilevel
model and formally defined a secure system. A summary
of the state of the art is presented in [4].

Classification and statistical analysis of security
vulnerabilities. Several studies have proposed
classifications to abstract observed vulnerabilities into
easy-to-understand classes. Representative examples
include Protection Analysis [10], RISOS [9], Landwehr’s
taxonomy [8], Aslam’s taxonomy [7], and the Bugtraq
classification. Similarly, taxonomies for intrusions have
been proposed. Examples include Lindqvist’s intrusion
classification [11] and the Microsoft STRIDE model [12].
In addition to providing taxonomies, [8] and [11]
perform statistical analysis of actual vulnerability data,
based on the proposed taxonomies.

Modeling security vulnerabilities and intrusions.
Several studies focus on modeling attacks and intrusions
with the objective of evaluating various security metrics.
Michael and Ghosh [19] employ an FSM model
constructed using system call traces. By training the
model using normal traces, the FSM is able to identify
abnormal program behaviors and thus detect intrusions.
In [18], a finite state machine based technique to
automatically construct attack graphs is described. The
approach is applied in a networked environment
consisting of several users, various services, and a
number of hosts. A symbolic model checker is used to
formally verify the system security. Recent studies have
proposed stochastic models to quantitatively evaluate
security metrics. Ortalo et al. [17] develop a Markov
model to describe intruder behavior and evaluate system
security in terms of METF (mean effort to failure).
Madan [20] described a semi-Markov model to evaluate
an intrusion-tolerant system subject to security attacks.
Several security and reliability metrics (e.g., METF and
availability) are defined and shown to be solvable.
Clearly, such a model requires that parameters, e.g.,

probabilities of transitions and sojourn time, be available
or estimated.

There is little work on modeling of discovered
security vulnerabilities to capture how and why an
implementation fails to achieve the desired level of
security. This paper uses actual vulnerability data (e.g.,
reports) and code inspection to derive FSMs to describe
simple predicates, which are used to generate FSM
models. The developed FSMs allow us to reason about
the existing vulnerabilities and also seem to have the
potential for discovering new vulnerabilities.

3. Analysis of the Bugtraq Database
3.1 Statistical Analysis

As of November 30, 2002, the Bugtraq database
included 5925 reports on software-related vulnerabilities
[13]. Each vulnerability report2 in this database provides
information such as version number of the vulnerable
software, date of discovery, an assigned vulnerability ID,
cause of the vulnerability, and possible exploits3. Figure
1 shows the breakdown of the 5925 vulnerabilities
among the 12 defined classes. Observe that the pie-chart
is dominated by five categories: input validation errors
(23%), boundary condition errors (21%), design errors
(18%), failure to handle exceptional conditions (11%),
and access validation errors (10%). The primary reason
for the domination of these categories is that they include
the most prevalent vulnerabilities, such as buffer
overflow (included under boundary-condition errors) and
format string vulnerabilities (included under input-
validation errors). The remaining categories, being very
broadly defined (e.g., access validation errors, design
errors), are more or less all-encompassing.
3.2 An In-depth Analysis of Vulnerability Reports

An in-depth analysis of the data and information
reported in Bugtraq together with a close examination of
the associated application code is essential to
understanding the root causes of the vulnerabilities. By
examining the vulnerability reports and the associated
application source codes, we made three observations:

 Observation 1: Exploits must pass through multiple
elementary activities – at any one of which, one can foil
the exploit. The scenario thus can be described as a serial
chain in which each link (which we model as an
elementary activity) provides a security checking
opportunity: failure at any one elementary activity can
foil the exploit.

2 Note that Bugtraq refers to all vulnerabilities as errors, although these
may not be error in the sense defined in [6].
3 Certain vulnerability reports in Bugtraq include exploits. For example,
an exploit associated with vulnerability #5960 is provided in
http://online.securityfocus.com/bid/5960/exploit

•Access Validation Error: an operation on an object outside its
access domain.
•Atomicity Error: code terminated with data only partially modified
as part of a defined operation.
•Boundary Condition Error: an overflow of a static-sized data
structure: a classic buffer overflow condition.
•Configuration Error: a system utility installed with incorrect setup
parameters.
•Environment Error: an interaction in a specific environment
between functionally correct modules.
•Failure to Handle Exceptional Conditions: system failure to handle
an exceptional condition generated by a functional module, device,
or user input.
•Input Validation Error: failure to recognize syntactically incorrect
input.
•Race Condition Error: an error during a timing window between
two operations.
•Serialization Error: inadequate or improper serialization of
operations.
•Design Error and, Origin Validation Error: Not defined.

Configuration
Error
5%Failure to

Handle
Exceptional
Conditions

11% Environment Error
1%

Atomicity Error
0%

Serialization Error
0% Access

Validation Error
10%

Unknow n
6%

Origin Validation
Error
3%

Race Condition
Error
2%

Boundary
Condition Error

21%

Design Error
18%

Input Validation
Error
23%

Figure 1: Breakdown of Vulnerabilities and Definitions of Vulnerability Categories

We illustrate this observation using data from three
signed integer overflow vulnerabilities given in Table 1.
Here the analysts have used three different activities as
reference points to classify the same type of vulnerability
into three categories, although there is nothing in the data
to indicate the specific elementary activity corresponding
to the observed vulnerability. Thus #3163 has been
classified as input validation error, #5493 as a boundary
condition error, and so on. The existence of three
categories for the signed integer overflow vulnerabilities
suggest that the code executions of the corresponding
applications contain at least three activities: (1) get an
input integer, (2) use the integer as the index to an array,
and (3) execute a code referred to by a function pointer or
a return address.

Data on buffer overflow vulnerabilities also indicates
the existence of at least three potentially vulnerable
activities: (1) get input string (#6157: interpreted as an
input validation error), (2) copy the string to a buffer
(#5960: interpreted as a boundary condition error), and
(3) handle data (e.g., return address) following the buffer
(#4479: interpreted as a failure to handle exceptional
conditions). Again, each elementary activity provides an
opportunity to apply a security check. For example,

programmers can either check the input length in
elementary activity 1, use boundary-checked string
functions (e.g., getns, strncpy) in elementary activity 2,
or deploy return address protection techniques, such as
StackGuard [15] and split-stack [16], in elementary
activity 3.

Similarly, an analysis of format string vulnerabilities
(i.e., user’s input strings containing format directives,
such as %n, %x, %d) reinforces the validity of our
observation: format string vulnerabilities are classified as
input validation error (e.g., #1387 wu-ftpd remote format
string stack overwrite vulnerability), access validation
error (e.g., #2210 splitvt format string vulnerability), or
boundary condition error (e.g., #2264 icecast
print_client() format string vulnerability). Therefore,
format string vulnerabilities also involve at least three
elementary activities.

Observation 1 forms the basis of our FSM model. As
we will see in Section 4, each elementary activity can be
modeled as a primitive finite state machine (pFSM)
defined by a predicate which, if violated, results in an
exploit. Multiple activities performed on the same object
form an operation, which is modeled as a FSM consisting
of multiple pFSMs in series.

Table 1: Example of Ambiguity among Vulnerability Categories
Vulnerability Description Elementary activity Assigned Category

#3163 Sendmail debugging
function signed integer overflow*

A negative input integer accepted as an
array index

Get an input integer Input validation error

#5493 FreeBSD System Call
Signed Integer Buffer Overflow
Vulnerability

A negative value supplied for the
argument allowing exceeding the
boundary of an array

Use the integer as the
index to an array

Boundary condition
error

#3958 rsync Signed Array Index
Remote Code Execution
Vulnerability

A remotely supplied signed value used as
an array index, allowing the corruption of
a function pointer or a return address.

Execute a code referred
by a function pointer or a
return address

Access validation
error

* #3163 denotes the vulnerability with ID 3163 in Bugtraq. The original information about this vulnerability can be found at
http://online.securityfocus.com/bid/3163. Other Bugtraq vulnerabilities are also denoted in this way.

Observation 2: Exploiting a vulnerability involves
multiple vulnerable operations on several objects. Let
consider again the example #3163 Sendmail debugging
function signed integer overflow. This vulnerability
involves two operations: (a) manipulate the input integer
(the object of this operation), consisting of elementary
activity 1 (get an input integer) and elementary activity 2
(use the integer as the index to an array), and (b)
manipulate the function pointer (the object of this
operation), consisting of elementary activity 3 (execute a
code referred by a function pointer).

Similarly, the vulnerability #5774 Null HTTPD
remote heap overflow vulnerability involves three
operations performed on three objects: (i) copying the
oversized user input (the object) to a buffer allocated on a
heap memory, which permits overwriting pointers
following the buffer, (ii) freeing the buffer (the object),
which allows writing a user-specified value to a user-
specified location (e.g., function pointer), and (iii)
executing the malicious code pointed to by the function
pointer (the object). Aside from the heap overflow and
signed integer overflow vulnerabilities shown here, stack
buffer overflow and format string vulnerability also
require multiple vulnerable operations. Thus following
observation 1, since each operation can have multiple
pFSMs, multiple operations will then be a chain of such
pFSMs.

Observation 3: For each elementary activity, the
vulnerability data and corresponding code inspections
allow us to define a predicate, which if violated, results in
a security vulnerability. For example, in the vulnerability
#3163 Sendmail debugging function signed integer
overflow, an integer index x is assumed to be in the range
[0,100], but the implementation only checks to guarantee
that x ≤ 100, hence the problem (the vulnerability):
allowing x to be a negative index and underflow an array.
The correct predicate to eliminate this vulnerability would
be 0 ≤ x ≤ 100.

4. State Machine Approach to Vulnerability Analysis
Our purpose in this section is to use our observations

to develop an FSM characterization of the vulnerable
operations. The goal of this FSM is to reason whether the
implemented operation, or more precisely each elementary
activity within the operation, satisfies the derived
predicate. To this end, we take three steps: (1) we
represent each elementary activity as a primitive FSM
(pFSM) expressing a predicate for accepting an input
object. The predicate is first checked with respect to the
specification and then with respect to the implementation.
(2) We model an operation on an object as a series of
pFSMs. (3) We cascade the operations to model the
vulnerable implementation. While our objective here is to
reason that a vulnerability (violation of a derived
predicate) is not present in the implementation, we shall

see that the process of this reasoning can allow us to
uncover a previously unknown vulnerability.

In order to show how a vulnerability can be analyzed
using an FSM, consider the Sendmail Debugging Function
Signed Integer Overflow Vulnerability (#3163). A signed
integer overflow condition exists in writing the array
tTvect[100] in the function tTflag() of Sendmail
application. As a result, an attacker can overwrite the
global offset table (GOT) entry4 of the function setuid()5 to
be the starting point of attacker-specified malicious code
(Mcode). Two operations are involved in exploiting this
vulnerability: (1) writing debug level i to array location
tTvect[x] (i and x are specified by the user) and (2)
manipulating the GOT entry of function setuid (represented
as addr_setuid for convenience in our description). The
first operation consists of two pFSMs (activities): (i)
pFSM1 – get i and x, and (ii) pFSM2 – write i to tTvect[x] .
The second operation consists of a single pFSM3 – call the
function referred by addr_setuid. Recall that a pFSM
represents a predicate for accepting an input object with
respect to the specification and implementation. This is
explicitly defined as follows:

Primitive FSM (pFSM). The primitive FSM consists of
four transitions and three states. The transitions
SPEC_ACPT and SPEC_REJ depict the specification
predicates of accepting and rejecting objects (e.g., a user or
a request), respectively. The transition IMPL_REJ
represents the condition under which the implementation
rejects what should be rejected according to the
specification. This transition depicts the expected or correct
behavior, i.e., the implementation conforms to the
specification. A dotted transition IMPL_ACPT represents
the condition under which an object that should be rejected
according to the specification is accepted in an actual
implementation. This transition is a hidden path
representing a vulnerability. Three states are identified: (1)
the SPEC check state (where an object is checked against
the specification), (2) the reject state – transition to
reject state indicates that the object is insecure, according to
the specification, and (3) the accept state – transition to
accept state indicates that the object is considered as secure
object. See Figure 2.

Since each elementary activity is simple, it is feasible
(using the data and the application code) to develop a
predicate and a corresponding pFSM. The pFSMs can then
be easily combined to depict FSM, modeling vulnerable
operations and possible exploits.

4 The GOT entry is a function pointer to a specific function. Usually, in
position-independent codes, e.g., shared libraries, all absolute symbols
must be located in the GOT table, leaving the code position-independent.
A GOT lookup is performed to decide the callee’s entry when a library
function is called.
5 The published exploit chooses setuid() as the target function of GOT
entry corruption, although the targets could be other functions.

SPEC_REJ

SPEC_ACPT

IM
PL

_A
C

P
T

IMPL_REJ

SPEC check
state

Reject State

Accept State
SPEC_ACPT

IM
PL

_A
C

P
T

Figure 2: Primitive FSM (pFSM)

Figure 3 uses the semantic of the primitive FSMs and
depicts the complete model of the process of exposing the
Sendmail Debugging Function Signed Integer Overflow
Vulnerability. As in a canonical FSM, we associate a label
Condition♦Action with each transition. (Canonical FSM
uses Condition/Action instead of the symbol ♦. Our
modification is made because some of our examples need
the slash symbol to represent filenames.) Condition refers
to the condition for taking the transition, and Action is the
action performed by the transition.

In the example (#3163), in Operation 1, elementary
activity 1, the user inputs strings str_x and str_i, which are
converted to signed integers x and i. The predicate of
pFSM1 specifies that if str_x represents an integer larger
than 231, it should be rejected, i.e., pFSM1 reaches the
reject state, because signed integer x (4-byte variable)
cannot correctly represent an integer larger than 231. (The
signed integer i can also overflow, although it may not
cause consequences as severe as an overflow of x.) The
real implementation does not check str_x, i.e., the
transition of IMPL_REJ (marked by ?) does not exist, and
the dotted transition (IMPLE_ACPT) is taken, allowing
any str_x to arrive at the accept state of pFSM1. At the
object accept state, str_x and str_i are converted to signed
integers x and i, which may become negative integers if

overflow occurs. The error exposed in pFSM1 is that the
system neglects checking the input str_x.

In Operation 1, pFSM2 depicts the elementary activity
write i to tTvect[x] . The predicate represented in pFSM2 is
the same as in the example in Observation 3, i.e., if an
integer index x is in the range [0,100], accept the x.
However, the implementation checks only for the condition
x ≤ 100. As a result, negative x can be accepted and used in
the operation tTvect[x] =i (arrive at termination state). A
potential security violation in Operation 1 is that the
attacker can overwrite the GOT entry of setuid() so that it
points to the location of a malicious code Mcode.
Summarizing, Operation 1 consists of two pFSMs, each
offering a security check, each, if provided, can foil an
attack.

Operation 2 depicts the manipulation of the GOT entry
corresponding to setuid() (i.e., addr_setuid). When
Sendmail is started, addr_setuid is loaded to the memory.
When setuid() is called, the value of addr_setuid is used as
the function pointer to setuid(). Following the predicate
depicted by pFSM3, the system should check whether the
value of addr_setuid is unchanged since it was loaded to
the memory. If this is not the case (i.e., the addr_setuid has
been tampered), the program should not call to the location
indicated by the corrupted addr_setuid. However, the
corresponding implementation of Sendmail does not
perform the check on the addr_setuid (IMPL_ACPT=-♦-
in pFSM3), and accepts any value of addr_setuid. As a
result, the program again makes the hidden (dotted)
transition and the control jumps to the malicious code
(Mcode) when setuid() is called.

Write debug level i to
tTvect[x]

addr_setuid unchanged ♦-

-♦ tTvect[x] = i

Manipulate the
GOT entry of
function setuid
(i.e., addr_setuid)

Starting
sendmail
program

addr_setuid changed ♦-

♦ Execute code referred
by addr_setuid

-♦-

-♦-

-♦convert str_i and str_x
to integer i and x

(integer represented by str_x) > 231 ♦-

x ≤ 100 ♦-

x > 100 ♦-

?

(SPEC_REJ)

(SPEC_ACPT)

(IMPL_REJ)

(I
M

PL
_A

C
PT

)

(SPEC_REJ)

(IMPL_REJ)

(I
M

PL
_A

C
PT

)

(SPEC_ACPT)

(SPEC_ACPT)

(SPEC_REJ)

(IMPL_REJ)

(I
M

P
L

_A
C

P
T

)

Reject State

Accept StateSPEC Check State

Execute MCode

-♦get text strings
str_x and str_i

?

x < 0 or x > 100 ♦-

0 ≤ x ≤ 100 ♦-

.GOT entry of function setuid (i.e.,
addr_setuid) points to Mcode

-♦ Load addr_setuid
to the memory during
program initialization

(integer represented

by str_x) ≤ 231♦-

pFSM1

pFSM2

pFSM3

Operation 1:

Operation 2:

Elementary
Activity 1

Elementary
Activity 2

Elementary
Activity 3

Figure 3: Sendmail Debugging Function Signed Integer Overflow Vulnerability

The FSM model introduces a notation of propagation
gate (the triangle between FSMs) to depict the causality
of the exploitation of the vulnerabilities in the two
operations. For example, in Figure 3, exploiting
operation 1 (overwrite the addr_setuid) is the
precondition of exploiting operation 2 (execute Mcode),
which is denoted by the upper propagation gate. The
lower propagation gate (denoted as Execute MCode) can
be the precondition for the exploitation in other
operations.

5. Modeling Various Vulnerabilities Using an FSM
This section provides examples of applying the FSM

approach to analyze security vulnerabilities. In each case,
the predicates related to the elementary activities are
determined by examining the vulnerability data and the
corresponding source code of the applications in
question.
5.1 Example 1: NULL HTTPD Heap Overflow

Vulnerability
Null HTTPD is a multithreaded web server for Linux

and Windows platforms. This software was chosen as an
example because in the process of constructing the FSM
model for the known vulnerability of NULL HTTPD, we
discovered a new, as yet unknown vulnerability (Bugtraq
ID 6255). Discovery of the new heap overflow
vulnerability demonstrates an additional potential of the
FSM-based approach.

Null HTTPD 0.5 heap overflow is modeled as a
series of four pFSMs shown in Figure 4a. pFSM1 and
pFSM2 depict the buffer manipulation in the function
ReadPOSTData (the function source code is shown in
Figure 4b), which allocates a buffer (PostData, source
code Line 1) and copies a user specified string from a
socket (source code Line 4), which is marked as input in
Figure 4a. One of the input parameters (contentLen)
provides the length of input, which, by the specification6,
should be a non-negative integer. However, Null HTTPD
allocates (by calling calloc in source code line 1) a buffer
for PostData with size 1024+contentLen without
checking whether contentLen is non-negative. A buffer
overflow occurs when the attacker provides a negative
contentLen (e.g., contentLen = -800) to make PostData a
buffer with only 224 bytes. This results in buffer
overflow (denoted by pFSM1) because Null HTTPD
always copies at least 1024 bytes arriving from the
socket to PostData (source code Line 4).

A New Vulnerability. Version 0.5.1 of Null HTTPD
fixed the above overflow vulnerability by imposing the
appropriate check to block a negative contentLen value
before calling the function ReadPOSTData (this check is
not shown in the source code of Figure 4b). Note that the

6 Although a well-defined specification does not exist, this
particular specification can easily be deduced from the
application.

socket programming style requires the users to specify
the contentLen and input separately, because the socket
has no way of determining the length of the input. The
programmer must ensure that the length of input does not
exceed the supplied contentLen.

We now describe how constructing the FSM model
for the known vulnerability leads to discovery of a new
vulnerability for the same operation. pFSM1 depicts the
predicate to check contentLen against the specification.
Similarly, pFSM2 – the predicate to check the actual
length of the supplied input – should reject input if its
length is larger than allocated buffer size, i.e., it takes the
transition marked “?” . Source code Line 11 controls the
termination condition of recv (source code Line 4).
However, due to a logic error (|| should be && in source
code Line 11), recv never terminates before the entire
input string is read from the socket. Thus, the outgoing
transition (marked with a “?”) from state X does not
exist, and instead the hidden transition to the accept state

 is taken. A malicious user can supply right contentLen
but an arbitrary length string input to overflow the buffer
PostData. Thus, constructing the FSM allowed us to
uncover this new vulnerability.

As indicated earlier, each elementary activity offers
an independent opportunity for checking. If the checks
corresponding to the predicates depicted by pFSM1 and
pFSM2 (in Figure 4a) are not in place, the impact of this
vulnerability is further analyzed using pFSM3, which
describes the operation manipulating the heap layout (as
shown in the left of Figure 4a). The buffer PostData is
allocated on the heap, followed by a free memory chunk
(chunk B). Free chunks are organized as a double-linked-
list by GNU-libc. The beginning few bytes of each free
chunk are used as the forward link (fd) and the backward
link (bk) of the double-linked list. In this case, since free
chunks A, B and C are in the list, B->fd=A, B->bk=C.
The predicate defined in pFSM3 provides a check so that
B->fd and B->bk are not overwritten to an arbitrary value
(i.e., pFSM3 does not transit to the reject state), due to the
overflow of the buffer PostData described in the pFSM1
and pFSM2. However, when the PostData is freed, the
actual implementation does not check the pointer B->fd
and B->bk, causing the transition from the reject state to
the accept state (the hidden or dotted transition in
pFSM3), which allows the attacker to write an arbitrary
value to an arbitrary memory location. Specifically, in
this example, the attacker exploits this vulnerability and
overwrites the GOT entry of the function free() so that it
points to the location of malicious code MCode 7 .

7 Note that the assignment B->fd->bk=B->bk is executed when
PostData is freed. We denote the GOT entry of free() as
addr_free. The attacker sets B->fd=&addr_free – (offset of the
field bk) and B->bk=Mcode, in order to make the GOT entry of
free() pointing to Mcode.

Figure 4: a) NULL HTTPD Heap Overflow Vulnerabilities b) Source Code, Reading input

The pFSM4 depicts the consequence of the corruption
of the GOT entry of free() (i.e., addr_free), which is similar
to the scenario depicted by pFSM3 in the Sendmail
vulnerability shown in Section 4. Finally, when the free() is
called again, Mcode is executed.

In summary, this model consists of three operations.
First operation encompasses two activities, each described
by an independent pFSM (pFSM1 and pFSM2). Operation 2
and operation 3 consist of a single pFSM each. Cascading
these four pFSMs allows us to reason through this entire
vulnerable code.

The purpose of the next set of examples is two-fold:
(1) show that FSM approach can analyze a broad class of
vulnerabilities (specific examples relate to input validation
errors, file race condition errors, stack buffer overflow and
format string vulnerability), and (2) provide additional
examples of different types of pFSMs that broadly model
the studied vulnerabilities.

5.2 Example 2: xterm Log File Race Condition

The program xterm emulates a terminal under the X11
window system. A file race-condition8 exists when xterm
writes messages to the user log file [1]. Figure 5 illustrates
two pFSMs required to describe this vulnerability. Consider
an example scenario: xterm needs to log Tom’s messages to
the log file /usr/tom/x. The predicate, which defines this
operation is depicted in pFSM1, i.e., if Tom has no write

8 File race conditions are also referred as time-of-check-to-time-
of-use vulnerabilities.

permission or the provided filename is a symbolic link, the
pFSM should reach the reject state . The real
implementation follows pFSM1, i.e., the reject condition of
the predicate matches the implementation, hence this check
is secure.

Writing the log file of user Tom

Tom appends his own data
to the file /etc/passwd

Tom has the write permission

and the file is not a symbolic

link ♦-

Tom does not have write permission to

the file or the file is a
 symbolic link ♦-

Create symbolic link from
/usr/tom/x to /etc/passwd

/usr/to
m/x is a

symbolic li
nk ♦-

-♦ open “/usr/tom/x”
with write permission

-♦-
-♦-

Tom does not have write permission to

the file or the file is a
 symbolic link ♦-

A

Possibility of creating
symbolic links

-♦ get the filename
of Tom’s log file

/usr/tom/x is not a

symbolic link ♦-

pFSM1

pFSM2

Figure 5: xterm Log File Race Condition

There is however a problem, which is analyzed in
pFSM2. In state A, Tom can delete the file /usr/tom/x and
create a symbolic link from /usr/tom/x to /etc/passwd, so
long as Tom creates the symbolic link before the system
opens the file, i.e., a race condition exists. This timing
problem is translated into a condition check in PFSM2,
which depicts the condition that Tom cannot create a
symbolic link until the open operation is complete. As
illustrated in this model, although there is no hidden path in
pFSM1, i.e., the implementation corresponding to pFSM1 is
secure, there is a hidden path in pFSM2, indicating the
possible race condition and the associated exploit: Tom
appends his own data to the file /etc/passwd.

Size
(PostD

ata)
<len

gth
(in

put
) ♦

-

Allocate and free the buffer PostData

Free chunk A

Used chunk PostData

Free chunk B
fd=A
bk=C

Free chunk C

−♦−

−♦−

−♦−

contentLen<0 ♦−

contentLen>=0 ♦−

−♦−

length(input) <= Size(PostData) ♦-

Read postdata from socket to
an allocated buffer PostData

−♦get (contentLen, input)
contentLen is an integer,
input is an text string to be
read from a socket

-♦Calloc PostData[1024+contentLen]
-♦ Copy input from the socket
to PostData by recv() call

-♦ B->fd=A
B->bk=C

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode♦-

B->fd=&addr_free-(offset of field bk)
B->bk=Mcode

-♦ When buf is freed,
execute B->fd->bk = B->bkB->fd and B->bk

unchanged ♦-

.GOT entry of function
freepoints to MCode

addr_freechanged ♦-

addr_free
unchanged ♦-

-♦ Execute addr_free when
function free is called

Mcode is executed

Note: addr_free is the .GOT
entry of function free

X
?

Calloc is called

-♦ Load addr_free
to the memory during
program initializationManipulate the

.GOT entry of
function free
(i.e., addr_free)

pFSM1

pFSM2

pFSM3

pFSM4

Heap Layout

Operation 1:

Operation 2:

Operation 3:

1: PostData = calloc(contentLen

+1024,sizeof(char));x=0; rc=0;
 2: pPostData= PostData;
 3: do {
 4: rc=recv(sock, pPostData,

1024, 0);
 5: if (rc==-1) {
 6: closeconnect(sid,1);
 7: return;
 8: }
 9: pPostData+=rc;
10: x+=rc;
11: } while ((rc==1024) ||

(x<contentLen));

5.3 Example 3: Solaris Rwall Arbitrary File Corruption
Vulnerability
Rwall is a UNIX network utility that allows a user to

send a message to all users on a remote system (see [8] and
CA-1994-06 in [14]). The file /etc/utmp on a remote system
contains a list of all currently logged in users. Rwall
daemon on the remote system uses the information in
/etc/utmp to determine the users to which the message will
be sent. A malicious user can edit the /etc/utmp file on the
target system and add the entry “ ../etc/passwd” . When the
malicious user issues the command: “ rwall hostname <
newpasswordfile” , Rwall daemon writes the message (the
newpasswordfile) to all terminals and to the file
/etc/passwd.

In Figure 6, pFSM1 checks if a given user has root
privileges. The predicate dictates accepting the root user
and rejecting a regular user (not having root privilege). In
the real implementation, the write permission of the file
/etc/utmp is set on, allowing a regular user to write this file
(transition to the accept state). Specifically, as denoted by
the propagation gate, a malicious user can add a
“ ../etc/passwd” entry to the file /etc/utmp.

Write to /etc/utmp regular user ♦-

-♦ user request of
writing /etc/utmp root ♦-

-♦-

non-terminal file ♦-

-♦ Get a file from
/etc/utmp terminal ♦-

-♦-

Add “../etc/passwd” entry to the file /etc/utmp

Rwall daemon writes user message
to regular file /etc/passwd

Rwall daemon writes messages

-♦ Open /etc/utmp for the user

-♦ write user message to
the terminal or file

pFSM2

Operation 1:

Operation 2:

pFSM1

Figure 6: Solaris Rwall Arbitrary File Corruption

Vulnerability
The Operation 2 depicts the message write operation

performed by the Rwall daemon. The daemon gets a
filename from the file /etc/utmp. The predicate represented
by pFSM2 states that if the filename refers to a non-
terminal file, e.g., “ ../etc/passwd” , it should be rejected,
and if the filename refers to a terminal, e.g., “ /dev/pts/25” ,
the user specified message should be written to the
terminal.

In the implementation of the Rwall daemon, no file
type check is performed. As a result, given an entry
/etc/passwd added to the /etc/utmp, pFSM2 transits to the
reject state and ends up in the termination state , which
corresponds to a security violation – rwall daemon writes
user messages to regular file /etc/passwd.

5.4 Example 4: Validation Error due to IIS Decoding
Filenames Superfluously after Applying Security
Checks
CGI (Common Gateway Interface) programs under the

directory /wwwroot/scripts are by design executable

through HTTP request from a user. When IIS9 receives a
CGI filename request, it interprets the filepath as a path
relative to /wwwroot/scripts. Therefore, unless the filepath
contains “ ../” , the target file should be under the directory
/wwwroot/scripts (Bugtraq ID 2708).

In Figure 7, pFSM1 depicts the predicate – if the target
file does not reside in the directory /wwwroot/scripts, reject
the request. Because the path is relative to /wwwroot/scripts,
the above predicate is equivalent to – if the path of the target
file does contain “ ../” , reject the request. The IIS
implementation includes two decoding steps. As illustrated
in the pFSM1, IIS implementation checks the following
predicate – if the filepath contains “ ../”after the first
decoding, reject the request. However, the implementation
performs the second decoding step, which results in
violating the predicate depicted by pFSM1, and allows
executing an arbitrary code (not residing in
/wwwroot/scripts). This inconsistency between the predicate
specified by pFSM1 and the implemented predicate allows a
transition from the reject state to accept state (the hidden
path).

The attacker can thus supply a malformed filename
containing sub-string such as “ ..%252f” . After the second
decoding, the string “ ..%252f” becomes “ ../” 10, which allows
the execution of arbitrary programs, even those out of the
directory /wwwroot/scripts. The worm Nimda and its
variants actively exploit this vulnerability.

The file does not reside the

directory /wwwroot/scripts/ ♦-

Execute arbitrry program, even those out of directory /wwwroot/scripts/,
because “../” appears after the second decoding.

Filename containing “ ../” after first decoding ♦-

The file resides in the
directory /wwwroot/scripts/ ♦-

-♦ Decode
filename first time

Filename without “ ../” after first decoding.
(Filename containing “ ..%252f” are
accepted by the implementation)♦-

-♦ Decode filename
second time

-♦ Execute the target
CGI program

-♦ get the filename
of a CGI program

pFSM1

Figure 7: IIS Decodes Filenames Superfluously after

Applying Security Checks

A Stack Buffer Overflow Vulnerability and A Format String
Vulnerability. FSM is also used to model a stack buffer
overflow vulnerability (#5960: GHTTPD Log() Function
Buffer Overflow Vulnerability) and a format string
vulnerability (#1480 Multiple Linux Vendor rpc.statd
Remote Format String Vulnerability). Due to the space
limitation, we do not present the analysis of these two
examples. The details can be found in [21].

6. Common Types of pFSMs
Examples in the previous sections show that the FSM

approach enables a detailed modeling/analysis of several

9 IIS is Microsoft Internet Information Service.
10 Note that “%25” is decoded to a character “%” and “%2f” is
decoded to a character “ /” , so “ ..%252f” becomes “ ..%2f” after the
first decoding, and is interpreted as “ ../” after the second decoding.

types of security vulnerabilities: buffer overflow, race
condition, signed integer, and format string vulnerabilities
(these four account for 22% of all vulnerabilities reported
in Bugtraq). Vulnerabilities including, access validation
errors, input validation errors, failure to handle exceptional
conditions, can also be modeled, if the predicates are
derived from available information vulnerability reports,
exploits descriptions, and application source code.

As seen in the examples, the operations involving each
vulnerability can be modeled as a series of pFSMs – each
corresponding to an elementary activity. The simplicity of
the predicates defining the pFSMs makes the generation of
the overall FSM relatively easy. Since the pFSMs are
critical to the analysis – it is meaningful to ask – Are there
a few pFSMs, which allow us to model the bulk if not all of
the studied data? Our analysis shows that we only require
three types of pFSMs to model the full range of studied
vulnerabilities (i.e., stack buffer overflow, integer overflow,
heap overflow, input validation vulnerabilities, and format
string vulnerabilities).

Object Type Check. This is a predicate to verify
whether the input object is of the type that the operation is
defined on. In many circumstance, performing an operation
on an object of incorrect type results in fail-secure states
[20], i.e., the operation fails without causing security to be
compromised. For example, the object of a ping operation
should be an IP address or a hostname. It is meaningless to
say “ping /etc/passwd” , because this will result in an error
message “unknown host /etc/passwd” . However, as we have
seen in the examples, failure in object type check can be
exploited by attackers, e.g., rwalld (see Figure 6) does not
check whether the file type is a terminal or a non-terminal
file, and Sendmail (see Figure 3) does not check whether
the input represents an integer or a long integer.

Content and Attribute Check. This is a predicate to
verify whether the content and the attributes of the object
meet the security guarantee. Examples of content and
attribute checks include (1) IIS filename decoding (Figure
7), where the program should verify that the request does
not contain substring “ ../” , (2) the system should check
whether format directives are not embedded in the input, in
order to prevent format string vulnerabilities (#1480), and

(3) GHTTPD (#5960) should check whether the length of the
input string is less than 200 bytes.

Reference Consistency Check. This is a predicate to
verify whether the binding between an object and its
reference is preserved from the time when the object is
checked to the time when the operation is applied on the
object. The examples include the return address referring to
the parent function code, the function pointer referring to a
function code, and a filename referring to a file. As shown in
the FSM models, several conditions may result in violating
the reference consistency, including stack smashing (#5960),
signed integer overflow (Figure 3), heap overflow (Figure
4), format string (#1480), and file race condition (Figure 5).

The pFSMs representing the three generic predicates are
depicted in Figure 8, which shows a typical operation (P)
encompassing the three predicates. While all predicates may
not be involved in all operations, the three suffice to model
all the studied vulnerabilities classes (stack buffer overflow,
integer overflow, heap overflow, input validation, and
format string vulnerabilities). Having defined the three types
of predicates, the following lemma is stated. The proof is
straightforward and is given in [21].

Operation P

IM PL_TY PE_A CPT ♦ -

! SPEC_TY PE_A CPT ♦ -
IM PL_TYPE_REJ ♦ -

SPEC_TYPE_ACPT ♦ -

! SPEC_CA _A CPT ♦ -

IM
PL_CA_REJ ♦ -

SPEC_CA _A CPT ♦ -

IM PL_CA _A CPT ♦ -

-♦ apply operation P
on the object

pFSM : O BJECT TYPE CHECK

pFSM : CONTENT/ATTRIBUTE
CHECK

pFSM : REFERENCE
CONSISTENCY
CHECK

-♦ -

IM PL_ CONSTCY _REJ ♦ -

IM PL_ CONSTCY _A CPT ♦-! SPEC_CONSTCY_ACPT ♦ -

SPEC_ CONSTCY _ACPT ♦-

object ♦ -

Figure 8: Types of Generic pFSMs

Lemma: (1) To ensure the security of an operation
requires predicates (represented by pFSMs) constituting the
operation to be correctly implemented. (2) To foil an exploit
consisting of a sequence of vulnerable operations, it is
sufficient to ensure security of one of the operations in the
sequence.

Table 2: Types of pFSMs
Type of pFSM

Vulnerabilities
Object Type Check Content and Attribute Check Reference Consistency Check

Sendmail Signed Integer
Overflow (Figure 3)

pFSM1: Does the input represent a long
integer?

pFSM2: Is the integer in the interval [0 , 100] ? pFSM3: Is GOT entry of setuid()
unchanged?

NULL HTTPD Heap Overflow
(Figure 4)

 pFSM1: contentLen ≥0?
pFSM2 : length(input) ≤ size(buffer)

pFSM3 : Are free-chunk links unchanged?
pFSM4: Is GOT entry of free() unchanged?

Rwall File Corruption (Figure
6)

pFSM2 : Is the target file a terminal? pFSM1: Does the user have a root privilege?

IIS Filename Decoding
Vulnerability (Figure 7)

 pFSM1: Does the filename contain “ ../”?

Xterm File Race Condtion
(Figure 5)

 pFSM1: Does the user have a write permission
to the file?

pFSM2: Does the filename refer to another
unverified file?

GHTTPD Buffer overflow on
Stack [21]

 pFSM1: size(message) ≤ 200 ? pFSM2: Is the return address unchanged?

rpc.statd format string
vulnerability [21]

 pFSM1: Does the filename contain format
directives (e.g., %n, %d)?

pFSM2: Is the return address unchanged?

In Table 2, the pFSMs of the vulnerabilities analyzed
in the previous sections are classified according to the three
types of pFSMs identified above. The most common cause
of the analyzed vulnerabilities is an incomplete content
and/or attribute check. This can be explained by fact that
determining the correctness of an attribute (e.g., a buffer
size) or a content (e.g., input contains a string “%n”) of a
given object may require a comprehensive understanding of
the application. Incompleteness of a reference consistency
check is another frequent reason for the vulnerabilities.
While techniques protecting the return address have been
widely recognized, very few techniques are available to
protect other reference inconsistencies, such as
inconsistency of function pointers, entries in GOT tables,
and links to free memory chunks on the heap.

7. Conclusions
This paper presents a study of the security

vulnerabilities published in Bugtraq database. The
statistical study identifies leading categories of security
vulnerabilities. An in-depth analysis of vulnerability reports
and the corresponding source code of the applications
reveal three characteristics of security vulnerabilities: (1)
exploits must pass through a series of elementary activities,
(2) exploiting a vulnerability involves multiple vulnerable
operations on several objects, (3) the vulnerability data and
corresponding code inspections allow us to derive a
predicate for each elementary activity, and a security
vulnerability is the result of violating the predicate in
implementation. These three observations motivate the
development of the FSM model to depict and reason about
security vulnerabilities. Each vulnerability is modeled as a
series of primitive FSMs (pFSMs), which depicts a derived
predicate. The proposed FSM methodology is exemplified
by analyzing several types of vulnerabilities, such as buffer
overflow and signed integer overflow. The pFSMs are
classified into three types, indicating three common causes
of the modeled vulnerability. These causes reflect different
aspects of security considerations, and suggest
opportunities for providing appropriate checks to protect
the systems.

A future direction of this work is to study the security
predicates specific to different software (e.g., Internet
services, administrative tools and TCP/IP implementation)
in addition to the generic predicates discussed in this paper
(e.g., buffer boundary and array index checks). We hope
that a comprehensive understanding of these predicates will
enable us to build an automatic tool for the vulnerability
analysis.

Acknowledgments
This work is supported in part by a grant from

Motorola Inc. as part of Motorola Center for
Communications, and in part by MURI Grant N00014-01-
1-0576. We thank Fran Baker for her careful reading of an
early draft of this manuscript.

References
[1] D. E. Bell and L. J. LaPadula. Secure computer systems: A

mathematical model Technical report MTR-2547 Vol II. Mitre
Corporation, Bedford, MA, May 1973.

[2] J. Rushby. Security Requirements Specifications: How and
What? Symposium on Requirements Engineering for
Information Security (SREIS), 2001

[3] John McLean. Specifying and Modeling of Computer Security.
IEEE Computer 23(1) pp. 9-16. Jan. 1989.

[4] John McLean. Security Models. In John Marciniak edited,
Encyclopedia of Software Engineering. Wiley Press, 1994.

[5] M. Bishop and D. Bailey, A Critical Analysis of Vulnerability
Taxonomies, Technical Report 96-11, Department of
Computer Science, University of California at Davis (Sep.
1996).

[6] J. –C. Laprie. Dependable Computing and Fault Tolerance:
Concepts and Terminology. Proc. 15th Intl Symposium on
Fault-Tolerant Computing (FTCS-15), pages 2-11, June 1985.

[7] T. Aslam, I. Krsul, E. Spafford. Use of A Taxonomy of
Security Faults. Proc. 19th NIST-NCSC National Information
Systems Security Conference

[8] C. Landwehr, A. Bull, J. McDermott, W. Choi, A Taxonomy of
Computer Program Security Flaws, with Examples, ACM
Computing Surveys 26, no. 3 (Sep 1994).

[9] R. P. Abbott, J. S. Chin, J. E. Donnelley, et al. Security
Analysis and Enhancement of Computer Operating Systems.
NBSIR 76-1041, Institute for Computer Sciences and
Technology, National Bureau of Standards, Apr. 1976.

[10] B. Bisbey II and D. Hollingsworth. Protection Analysis
Project Final Report. ISI/RR-78-13, DTIC AD A056816,
USC/Information Sciences Institute, May 1978

[11] U. Lindqvist and E. Jonsson. How to Systematically Classify
Computer Security Intrusions. In Proc. of the 1997 IEEE
Symposium on Security and Privacy, pages 154-163, Oakland,
CA, May 4-7, 1997.

[12] M. Howard and D. LeBlanc, Writing Secure Code. Microsoft
Press. 2001.

[13] http://www.securityfocus.com
[14] http://www.cert.org
[15] StackGuard Mechanism: Emsi's Vulnerability, http://www.

immunix.org/StackGuard/emsi_vuln.html
[16] J. Xu, Z. Kalbarczyk, S. Patel and R. K. Iyer. Compiler and

Architecture Support for Defense against Buffer Overflow
Attacks. 2nd Workshop on Evaluating and Architecting System
Dependability (EASY), San Jose, CA, October, 2002.

[17] R. Ortalo, Y. Deswarte and M. Kaaniche, Experimenting with
Quantitative Evaluation Tools for Monitoring Operational
Security. IEEE Transactions on Software Engineering, vol. 25,
no. 5, pp.633-650, Sept. 1999

[18] O. Sheyner, J. Haines, S. Jha, et al. Automated generation and
analysis of attack graphs. Proc. 2002 IEEE Symposium on
Security and Privacy. Page(s): 254 –265

[19] C. Michael, A. Ghosh. Simple, state-based approaches to
program-based anomaly detection. ACM Transactions on
Information and System Security. Pages: 203-237. Vol.5 No.3.
Aug. 2002

[20] B. Madam, K. Goseva-Popstojanova, et al. Modeling and
Quantification of Security Attributes of Software Systems.
Proc. 2002 IEEE Intl Conference on Dependable Systems and
Networks. Pages: 505-514. June 2002

[21] S. Chen, Z. Kalbarczyk, J. Xu, R. Iyer. Finite State Machine
Models of Security Vulnerabilities. http://ww.crhc.uiuc.edu/
~shuochen/data-model-full.pdf

