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Abstract. Symbolic automata theory lifts classical automata theory to
rich alphabet theories. It does so by replacing an explicit alphabet with
an alphabet described implicitly by a Boolean algebra. How does this
lifting affect the basic algorithms that lay the foundation for modern au-
tomata theory and what is the incentive for doing this? We investigate
these questions here. In our approach we use state-of-the-art constraint
solving techniques for automata analysis that are both expressive and ef-
ficient, even for very large and infinite alphabets. We show how symbolic
finite automata enable applications ranging from modern regex analy-
sis to advanced web security analysis, that were out of reach with prior
methods.

1 Introduction

Classical automata theory makes two basic assumptions: there is a finite state

space; and there is a finite alphabet. Here we challenge the second assumption
by looking at how we can relax it while still maintaining all or most of the
benefits of classical automata theory. One of the drawbacks of classical finite
state automata is that they do not scale well for large alphabets. Although
there are various techniques that address the scalability problem, such as, partial
transition functions to avoid irrelevant or unused characters [3, 13], integer ranges
for succinct representation of contiguous ranges of characters [1], binary decision
diagrams for succinct representation of transition functions [7], as well as various
extensions with registers such as register automata [10, 5] and extended finite
automata [12]. Extensions with registers in general lead to infinite state systems
or lack of closure properties. There is also research on register automata or
automata over data words that focuses on their expressive power and decidability
properties [11].

Our interest in this topic originates from the need to support regular ex-
pressions in the context of program analysis [17]. Regular expressions or regexes
are stated over strings of basic Unicode characters. The runtime representation
of characters in modern runtimes like JVM and .NET, as well as in scripting
languages like JavaScript, uses the UTF16 encoding. From the point of view of
regexes, the alphabet is the set of unsigned integers less than 216 or in other
words 16-bit bitvectors. For example the regex character class [\u2639\u263A]
matches the symbols / and ,. Regexes do not directly support symbols in
the supplementary Unicode planes (i.e. symbols that are formed from surrogate



pairs and whose Unicode code point is ≥ 216). For example, the surrogate pair
\uD83D\uDE0A that also happens to encode a smiley symbol is treated as two
separate characters by a regex, and the regex ^(\uD83D[\uDE00-\uDE4F])*$

matches a string that encodes a sequence of Unicode emoticons [2].1

Symbolic Finite Automata or SFAs were introduced, as an extension of clas-
sical finite state automata that allows transitions to be labeled with predicates
defined in a separate alphabet algebra. The concept of automata with predicates
instead of concrete symbols was first mentioned in [19] and was first discussed
in [14] in the context of natural language processing. The alphabet theory in
SFAs is assumed to be an effective Boolean algebra. The main intuition is that
an SFA uses an alphabet as a plug-in through an API or interface. The only
requirement is that the interface supports operations of a Boolean algebra.

To illustrate the role of the alphabet algebra consider the last regex example
above. The predicate 0xDE00 ≤ x∧x ≤ 0xDE4F is an example of such a predicate
in a character theory that uses linear arithmetic (modulo-216, or bitvector arith-
metic) and one fixed variable x. We abbreviate it by [\uDE00-\uDE4F] using the
standard character class notation of regexes. The following SFA is equivalent to
the above regex of emoticons, say Memoticons:

q0 q1 q2[\uD83D]

[\DE00-\DE4F]

[\uD83D]

The regex character class [\uDE38-\uDE40] matches the set of low-surrogate
halves of a “cat face” emoticon. Suppose we want to construct an SFA that
accepts all strings of emoticons that contain no cat face emoticons. One way to
do this is to construct the SFA Memoticons ×Mnocats, where Mnocats is the SFA:

p0 ¬[\uDE38-\uDE40]

There are many fundamental questions about if and how classical algorithms
and techniques can be lifted to SFAs. Some algorithms depend more on the al-
phabet than others. For example, union of SFAs uses only disjunctions of predi-
cates over characters while intersection uses only conjunctions. Determinization
on the other hand needs all Boolean operations. Satisfiability checking of pred-
icates is used to avoid infeasible transitions. Some tradeoffs of the algorithms,
when applied to string analysis, are studied in [9]. Minimization of SFAs is stud-
ied in [15]. It differs from the classical algorithms [4] with respect to how the
alphabet is being used.

Here we discuss basic properties of SFAs, the role of the alphabet, and we
describe different applications of SFAs, with a focus on the role of the symbolic
alphabet. Two concrete applications are: regex processing and security analysis

of string sanitizers.

1 Emoticons are symbols with code points between 0x1F600 and 0x1F64F. As an ex-
ample, the surrogate pair \uD83D\uDE0A encodes the Unicode code point 0x1F60A

that is the code of a smiley symbol similar to ,.



2 Effective Boolean algebras and SFAs

An effective Boolean algebra A has components (D, Ψ, [[ ]],⊥,⊤,∨,∧,¬). D is an
r.e. (recursively enumerable) set of domain elements. Ψ is an r.e. set of predicates
closed under the Boolean connectives and ⊥,⊤ ∈ Ψ. The denotation function

[[ ]] : Ψ → 2D is r.e. and is such that, [[⊥]] = ∅, [[⊤]] = D, for all ϕ, ψ ∈ Ψ,
[[ϕ ∨ ψ]] = [[ϕ]] ∪ [[ψ]], [[ϕ ∧ ψ]] = [[ϕ]] ∩ [[ψ]], and [[¬ϕ]] = D \ [[ϕ]]. For ϕ ∈ Ψ, we
write IsSat(ϕ) when [[ϕ]] 6= ∅ and say that ϕ is satisfiable. A is decidable if IsSat
is decidable.

The intuition is that such an algebra is represented programmatically as an
API with corresponding methods implementing the Boolean operations and the
denotation function. We are primarily going to use two such effective Boolean
algebras in the examples, but the techniques in the paper are fully generic.

2bvk is the powerset algebra whose domain is the finite set bvk, for some k >
0, consisting of all nonnegative integers less than 2k, or equivalently, all
k-bit bit-vectors. A predicate is represented by a BDD of depth k.2 The
Boolean operations correspond directly to the BDD operations, ⊥ is the
BDD representing the empty set. The denotation [[β]] of a BDD β is the
set of all integers n such that a binary representation of n corresponds to a
solution of β.

SMTσ is the decision procedure for a theory over some sort σ, say integers, such
as the theory of integer linear arithmetic. This algebra can be implemented
through an interface to an SMT solver. Ψ contains in this case the set of
all formulas ϕ(x) in that theory with one fixed free integer variable x. Here
[[ϕ]] is the set of all integers n such that ϕ(n) holds. For example, a formula
(x mod k) = 0, say divk, denotes the set of all numbers divisible by k. Then
div2 ∧ div3 denotes the set of numbers divisible by six.

Extending a given alphabet domain with new characters in the concrete
(classical) case is more or less trivial, while in the symbolic case it may not be
possible at all or is difficult. We are using the following construct for alphabet
extensions.

2 The variable order of the BDD is the reverse bit order of the binary representation
of a number, in particular, the most significant bit has the lowest ordinal.



Definition 1. The disjoint union A+B of two effective Boolean algebras A and
B, is an effective Boolean algebra where,

DA+B
def

= (DA × {1}) ∪ (DB × {2});

ΨA+B
def

= ΨA × ΨB;

[[〈α, β〉]]A+B
def

= ([[α]]A × {1}) ∪ ([[β]]B × {2})

〈α, β〉 ∨A+B 〈α
′, β′〉

def

= 〈α ∨A α′, β ∨B β
′〉;

〈α, β〉 ∧A+B 〈α
′, β′〉

def

= 〈α ∧A α′, β ∧B β
′〉;

¬A+B〈α, β〉
def

= 〈¬Aα,¬Bβ〉;

⊥A+B
def

= 〈⊥A,⊥B〉;

⊤A+B
def

= 〈⊤A,⊤B〉.

It is straightforward to prove by using distributive laws of intersection and union
that the additional conditions of the denotation function hold for the above
definition, i.e., that A+B is indeed an effective Boolean algebra. In particular,
consider conjunction (we drop the indices of the algebras as they are clear from
the context)

[[〈α, β〉 ∧ 〈α′, β′〉]] = [[〈α ∧ α′, β ∧ β′〉]]

= [[α ∧ α′]] × {1} ∪ [[β ∧ β′]] × {2}

= ([[α]] ∩ [[α′]])× {1} ∪ ([[β]] ∩ [[β′]])× {2}

= (([[α]] × {1}
︸ ︷︷ ︸

A

) ∩ ([[α′]] × {1}
︸ ︷︷ ︸

A′

)) ∪ (([[β]] × {2}
︸ ︷︷ ︸

B

) ∩ ([[β′]] × {2}
︸ ︷︷ ︸

B′

))

= (A ∩ A′) ∪ (B ∩B′) ∪ (A ∩B′

︸ ︷︷ ︸

=∅

) ∪ (B ∩ A′

︸ ︷︷ ︸

=∅

)

= (A ∪B) ∩ (A′ ∪B′)

= [[〈α, β〉]] ∩ [[〈α′, β′〉]]

Another useful construct when dealing with effective Boolean algebras is
domain restriction. In SFAs, domain restriction can be used to limit the alphabet
to only those characters that matter.

Definition 2. The domain restriction of an effective Boolean algebra A with
respect to a nonempty r.e. set V ⊆ DA, denoted A↾V , is the same effective

Boolean algebra as A except that DA↾V
def

= DA ∩ V and [[ψ]]A↾V
def

= [[ψ]]A ∩ V .

It is easy to check that A↾V is well-defined. In particular, consider disjunction:

[[ψ ∨ ϕ]]A↾V = [[ψ ∨ ϕ]]A ∩ V = ([[ψ]]A ∪ [[ϕ]]A) ∩ V = ([[ψ]]A ∩ V ) ∪ ([[ϕ]]A ∩ V )
= [[ψ]]A↾V ∪ [[ϕ]]A↾V

and complement:

[[¬ψ]]A↾V = [[¬ψ]]A ∩ V = (DA \ [[ψ]]A) ∩ V = (DA ∩ V ) \ ([[ψ]]A ∩ V )
= DA↾V \ [[ψ]]A↾V



Definition 3. A symbolic finite automaton (SFA) M is a tuple (A, Q, q0, F,∆)
where A is an effective Boolean algebra, called the alphabet, Q is a finite set
of states, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
∆ ⊆ Q× ΨA ×Q is a finite set of moves or transitions.

Elements of DA are called characters and finite sequences of characters, ele-
ments of D∗

A , are called words ; ǫ denotes the empty word. A move ρ = (p, ϕ, q) ∈

∆ is also denoted by p
ϕ
−→M q (or p

ϕ
−→ q when M is clear) where p is the source

state, denoted Src(ρ), q is the target state, denoted Tgt(ρ), and ϕ is the guard

or predicate of the move, denoted Grd(ρ). A move is feasible if its guard is sat-

isfiable. Given a character a ∈ DA, an a-move of M is a move p
ϕ
−→ q such that

a ∈ [[ϕ]], also denoted p
a
−→M q (or p

a
−→ q when M is clear). In the following let

M = (A, Q, q0, F,∆) be an SFA.

Definition 4. A word w = a1a2 · · ·ak ∈ D
∗
A , is accepted at state p ofM , denoted

w ∈ Lp(M), if there exist pi−1
ai−→M pi for 1 ≤ i ≤ k where p0 = p and pk ∈ F .

The language accepted by M is L(M)
def

= Lq0(M).

For q ∈ Q, we use the definitions

−→
∆(q)

def

= {ρ ∈ ∆ | Src(ρ) = q},
←−
∆(q)

def

= {ρ ∈ ∆ | Tgt(ρ) = q}.

The definitions are lifted to sets in the usual manner. The following terminology
is used to characterize various key properties of M . A state p of M is called
partial if there exists a character a such that there is no a-move from p.

– M is deterministic: for all p
ϕ
−→ q, p

ϕ′

−→ q′ ∈ ∆, if IsSat(ϕ ∧ ϕ′) then q = q′.
– M is complete: there are no partial states.

– M is clean: for all p
ϕ
−→ q ∈ ∆, p is reachable from q0 and IsSat(ϕ),

– M is normalized : for all p, q ∈ Q, there is at most one move from p to q.
– M is minimal : M is deterministic, complete, clean, normalized, and for all
p, q ∈ Q, p = q if and only if Lp(M) = Lq(M).3

Determinization of SFAs is always possible and is studied in [16]. Completion
is straightforward: if M is not complete then add a new state q∅ and the self-

loop q∅
⊤
−→ q∅ and for each partial state q add the move (q,

∧

ρ∈
−→
∆(q)
¬Grd(ρ), q∅).

Observe that completion requires complementation of predicates.
Normalization is obvious: if there exist states p and q and two distinct tran-

sitions p
ϕ
−→ q and p

ψ
−→ q then replace these transitions with the single transition

p
ϕ∨ψ
−−−→ q. This does clearly not affect Lp(M) for any p.
Cleaning amounts to running standard forward reachability that keeps only

reachable states, and eliminates infeasible moves. Observe that having infeasible

moves p
⊥
−→ q is semantically useless and may cause unnecessary state space

explosion.

3 It is sometimes convenient to define minimality over incomplete SFAs, in which case
the dead-end state q (q 6= q0 and Lq(M) = ∅) is eliminated if it is present.



3 Applications

The development of the theory of symbolic automata has been driven by several
concrete practical problems. Here we discuss two such applications. In each case
we illustrate what kind of character theory we are working with, and focus on
the benefits of the symbolic representation.

3.1 Regex processing

Practical applications of regular expressions or regexes is ubiquitous. What dis-
tinguishes practical regexes from schoolbook regular expressions (besides non-
regular features that go beyond capabilities of finite state automata represen-
tations) are certain constructs that make them appealing (more succinct) than
their classical counterparts such as bounded quantifiers and character classes.

The size of the alphabet is 216 due to the widely adopted UTF16 stan-
dard of Unicode characters, e.g., as a somewhat unusual example, the regex
^[\uFF10-\uFF19]$matches the set of digits in the so-called Wide Latin range
of Unicode. We let the alphabet algebra be 2bv16. Let the BDD β7

w represent all
ASCII word characters (letters, digits, and underscore) as the set of character
codes {‘0’, . . . , ‘9’, ‘A’, . . . , ‘Z’, ‘ ’, ‘a’, . . . , ‘z’}. (We write ‘0’ for the code
48, ‘a’ for the code 97, etc.) Let also β7

d represents the set of all decimal digits
{‘0’, . . . , ‘9’} and let β represent underscore {‘ ’}. By using the Boolean oper-
ations, e.g., β7

w∧¬(β
7
d ∨β ) represents the set of all upper- and lower-case ASCII

letters. As a regex character class it is expressible as [\w-[\d_\x7F-\uFFFF]].
Regexes are used in many different contexts. A common use of regexes is as

a constraint language over strings for checking presence or absence of different
patterns, e.g., for security validation of packet headers in network protocols.
Another application, is the use of regexes for generating strings that match
certain criteria, e.g., for fuzz testing applications that use regexes. A further
application is password generation based on constraints given in form of regexes.
Here is a scenario:4

1. Length is k and characters are in visible ASCII range: ^[\x21-\x7E]{k}$
2. There are at least two letters: [a-zA-Z].*[a-zA-Z]
3. There is at least one digit: \d
4. There is at least one non-word character: \W

Consider SFAs for each case and build their product. The product is constructed
by using depth-first search. Unsatisfiable predicates are eliminated so that the
result is clean. Dead-end states are also eliminated. Random strings accepted by
the automaton can be generated uniformly from its minimized or determinized
form. Here the canonical structure of BDDs can be exploited to achieve uniformly
random selection of characters from predicates.

4 Recall the standard convention: a regex without the start-anchor ^ matches any
prefix and a regex without the end-anchor $ matches any suffix.



3.2 Sanitizer analysis

Sanitizers are string transformation routines (special purpose encoders) that
are extensively used in web applications, in particular as the first line of defense
against cross site scripting (XSS) attacks. There are at least three different string
sanitizers involved in a single web page (CssEncoder, UrlEncoder, HtmlEncoder)
that have very different semantics and sometimes use other basic encoders, e.g.,
UrlEncoder uses Utf8Encoder as the first step, while the raw input strings are in
fact Utf16 encoded during runtime. A large class of sanitizers (including all the
ones mentioned above) can be described and analyzed by using symbolic finite

state transducers (SFTs) [8]. SFAs are used in that context for certain operations
over SFTs, for example for checking domain equivalence of SFTs [18].

The character algebra here is modular integer linear arithmetic (or bitvec-
tor arithmetic of an SMT solver, the SMT solver used in our implementation is
Z3 [6]). The main advantage of this choice is that it makes it possible to seam-
lessly combine the guards over characters with expressions over yields that are
the symbolic outputs of SFT moves. A concrete example of a yield is the follow-
ing transformation that takes a character and encodes it as a sequence of other
characters:

f : λx.[‘&’, ‘#’, (((x ÷ 10) mod 10) + 48), ((x mod 10) + 48), ‘;’]

In general, a yield denotes a function from an input character to an output word
(of length that is independent of the input character). For example, a yield can
be a function λx.[x, x] that duplicates the input character. Thus, an image of an
SFTs is not necessarily SFA-recognizable, which is unlike the classical case where
the image of a finite state transducer is always regular. In the above example, for
example f(‘a’) is the sequence [‘&’, ‘#’, ‘9’, ‘7’, ‘;’] (or the string "&#97;").
A typical SFT move ρ looks like:

ρ : q
(λx.0<x<32)/λx.[‘&’, ‘#’, (((x÷10) mod 10)+48), ((x mod 10)+48), ‘;’]
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q

that is an HtmlEncoder rule for encoding control characters in state q and re-
maining in that state. For analyzing say idempotence of an encoder with such
rules, the encoder is composed with itself. As a result, this leads to more com-
plex guards and outputs of the resulting composed SFT (SFTs are closed under
such composition). Imagine for example composing the move ρ with itself, i.e.,
roughly speaking, feeding the five output characters as its inputs again five times
in a row. Then the guard of the composed rule will have subconditions such as
0 < (((x ÷ 10) mod 10) + 48) < 32 involving potentially nontrivial arithmetic
operations. (In this particular case the guard of the composed move will be in-
feasible.) One task of idempotence checking is domain equivalence of SFTs that
reduces to language equivalence of SFAs whose guards now involve arithmetic
operations of the above kind. Domain equivalence of SFTs essentially means
that they accept/reject the same input sequences. Note that not all inputs se-
quences are valid. Perhaps a bit surprising, but even raw input strings may
have misplaced characters (e.g. singleton occurrences of surrogates), assuming
the standard Utf16 encoding of characters.
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