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Abstract—Cipherbase is a comprehensive database system
that provides strong end-to-end data confidentiality through
encryption. Cipherbase is based on a novel architecture that
combines an industrial strength database engine (SQL Server)
with lightweight processing over encrypted data that is per-
formed in secure hardware. Cipherbase has the smallest trusted
computing base (TCB) among comparable systems and provides
significant benefits over the state-of-the-art in terms of security,
performance, and functionality.

This paper presents a prototype of Cipherbase that uses
FPGAs to provide secure processing and describes the system
engineering details implemented to achieve competitive perfor-
mance for transactional workloads. This includes hardware-
software co-design issues (e.g. how to best offer parallelism),
optimizations to hide the latency between the secure hardware
and the main system, and techniques to cope with space in-
efficiencies. All of these optimizations were carefully designed
not to affect end-to-end data confidentiality. Our experiments
with TPC-C show that when customer data is strongly encrypted
in Cipherbase, it provides 90% the throughput of SQL Server
operating over unencrypted data. Even when all data is strongly
encrypted, Cipherbase achieves 40% the throughput of plaintext
SQL Server.

I. INTRODUCTION

Concerns over data security and data breaches [1] hinder
the adoption of cloud technologies. Data is a valuable asset
and unprotected data in the cloud is vulnerable to hackers
and snooping administrators. This motivates database systems
that can guarantee strong data confidentiality, where an ad-
versary, ideally, cannot learn anything about the data. This
would address security vulnerabilities and could spawn new
opportunities in cloud database-as-a-service.

There is a rich body of academic [2], [3], [4], [5] and
industry efforts [6], [7] that seek to ensure database data
confidentiality using encryption. The general idea is that by
keeping data encrypted and limiting access to encryption
keys, we can keep the data confidential. In the end, we want
database systems that, while preserving data confidentiality,
are general and performant. General means that the system
supports full SQL and rich features such as stored procedures,
transactions, and recovery. Furthermore, a legacy application
should run unchanged, except for a thin shim to handle
encryption/decryption. Performant means that throughput and
latency should be competitive with a state-of-the-art database
system that does not provide confidentiality. In Section I-A we
argue that all prior work suffers from fundamental limitations
in the three desired dimensions: data confidentiality, generality,
or performance.

This paper introduces Cipherbase, a new database sys-
tem for achieving data confidentiality through encryption.
Cipherbase is the first system that provides industrial strength

transactional functionality with competitive performance while
keeping all data that might be accessible to an adversary
strongly encrypted. Cipherbase is based on a novel ar-
chitecture that extends a traditional database system with
lightweight trusted computation running on secure hardware.
This lightweight trusted computation is a unique design point
and provides a number of security, functionality, performance,
and software engineering benefits. This basic architecture can
be modified to build other interesting systems that trade off,
e.g., performance for stronger data confidentiality; see [8] for
initial conceptual ideas.

A. Prior Work and Limitations

Query processing is a fundamental challenge for database
systems that use encryption to provide confidentiality—
encryption “hides” data, making it difficult to perform oper-
ations over it. There are two broad techniques for addressing
this [9]: (1) use homomorphic encryption schemes that allow
computation directly over ciphertext, or (2) use a trusted
module that is inaccessible to the adversary to temporarily
operate on data in plaintext. All prior systems, including
Cipherbase, can be viewed as instantiations of (1) and (2).

Fully homomorphic encryption schemes [10] that allow
arbitrary computation over ciphertext are currently very slow.
However, there are practical partial homomorphic encryption
(PHE) schemes that support limited operations. CryptDB is
a recent system that relies purely on PHE for query process-
ing [3]. Since PHE schemes do not support all operations, there
exist simple queries (including many in the TPC-C benchmark)
that such systems cannot support without giving up confiden-
tiality. Another limitation of the PHE-only approach is that
data confidentiality is closely tied to, and thus limited by, the
operations performed over the data. For example, if we need
to apply equality predicates on a column, the values must be
stored using deterministic encryption, thereby revealing the
frequency distribution.

Some prior work [2], [4] adds the capability to use the client
for trusted computation. These systems use PHE to perform
encrypted query processing in the server, to the extent possible,
and then use a fallback plaintext database system running on
the client to perform any remainder query processing. Again,
since PHE schemes do not support all operations, there exist
simple queries that require extensive data movement or a large
number of roundtrips over a relatively low-bandwidth, high-
latency network. In [11] we have shown that client-based
approaches can incur up to two orders of magnitude slowdown
on TPC-C with strong encryption.



TrustedDB [5] is a recent system that introduces the idea of
adding a trusted module to the server, using secure hardware to
provide a protected location in which to perform processing.
The server-based trusted module has higher communication
bandwidth and lower latency compared to the client ma-
chine, thereby addressing a fundamental limitation. However,
TrustedDB runs a complete database system within its trusted
module, leading to fundamental drawbacks: (1) the trusted
computing base (TCB) of TrustedDB (i.e. the code with access
to client encryption keys and plaintext that needs to be free
of vulnerabilities) is an entire database system. Ensuring and
convincing the cloud consumer that such a large code base is
free of vulnerabilities seems unrealistic. (2) Current secure
hardware such as the cryptographic co-processors used in
TrustedDB are an order-of-magnitude slower than regular
(e.g., Intel) processors. Because of this the performance of
TrustedDB suffers considerably when most of the data is
confidential and must be handled in the co-processor. (3) The
resource constraints of the secure hardware forces TrustedDB
to run SQLite [12], limiting functionality.

B. Cipherbase: Salient Features

The basic architecture of Cipherbase confers several advan-
tages over current state-of-the-art systems:

1. Lightweight Trusted Computing Base: Like TrustedDB,
Cipherbase relies on in-server secure hardware. Unlike
TrustedDB, the logic in the trusted hardware is a simple stack
machine used to evaluate expressions over encrypted values
and not perform full query processing. The overall size of
TCB is a few thousand lines of Verilog. Code of this size is
amenable to formal verification to prove it is free from bugs
and backdoors. This verification is currently underway.

2. Rich Functionality: The architecture of Cipherbase mini-
mally modifies an industrial-strength database system (SQL
Server), farming out low-level expression evaluation logic to
the trusted module. This design allows Cipherbase to inherit
rich functionality from SQL Server for “free”. For example,
Cipherbase supports all of the concurrency and recovery
features of SQL Server without any additional code. Currently,
Cipherbase can run the full TPC-C benchmark with all data
strongly encrypted, while supporting all necessary features
such as stored procedures, indexes, and recovery.

3. Strong, Interpretable Data Confidentiality: Like most prior
systems, Cipherbase supports column-level encryption and an
application can pick different encryption schemes for different
columns. Unlike most previous systems where the choice of
encryption seriously influences performance and/or function-
ality, the performance of Cipherbase remains robust and the
functionality unaffected. For example, when all columns in
TPC-C are changed from plaintext to strongly encrypted, the
performance drops by about a factor 2. This number can be
around 100 for a client-based system [11].

At the same time though, reasoning about end-to-end data
confidentiality is subtle for any system that uses secure
hardware. This is because an adversary may learn about the

underlying data just by looking at patterns of data movement
to and from the trusted module. In spite of such dynamic infor-
mation leakage, the end-to-end confidentiality of Cipherbase
can be simply and favourably characterized using previous
well-understood systems such as CryptDB [3] (Section II).

4. Performant: The lightweight trusted module helps Ci-
pherbase achieve high performance. All but a tiny fraction
of the actual processing happens in the insecure host system,
which has significantly more computational and memory re-
sources. This division of labor between untrusted and trusted
hardware is carefully engineered to ensure that end-to-end data
confidentiality is not undermined.

5. FPGA as Secure Hardware: While most of the design of
Cipherbase is agnostic to the choice of secure hardware, our
current prototype relies on a PCIe-based FPGA board. While
FPGAs have a history of use in database systems [13], our use
is novel and non-standard. Unlike prior systems which place
the FPGA along the datapath to the main processing system,
our FPGA are part of the inner loop of query processing. For
example, in the TPC-C NewOrder transaction, there are about
1000 (unoptimized) roundtrips to the FPGA. At first glance, it
appears that the latency associated with this many roundtrips
should affect Cipherbase performance. However, we show that
with careful hardware-software co-design these roundtrips can
be managed without seriously degrading performance.

II. END-TO-END FUNCTIONALITY AND SECURITY

This section presents the end-to-end functionality of Ci-
pherbase, discussing data confidentiality and the threat model.

A client application interacts with Cipherbase just as it
would with a standard database system: using ad-hoc queries,
stored procedures, and SQL scripts. A client library (Ci-
pherbase client) mediates between the application and the
Cipherbase server, providing the application with a transparent
interface.

The data confidentiality requirement for each column can
be independently specified using a column-level encryp-
tion scheme. Informally, Cipherbase ensures that whenever
a value (or derived value) is in the cloud, outside of the
secure hardware module, it is encrypted using the specified
(or stronger) encryption scheme. The supported encryption
schemes are vetted standards: (1) strong encryption, which
is non-deterministic (meaning that multiple encryptions of the
same plaintext will produce different ciphertext). This provides
strong data-at-rest security—formally, indistinguishability un-
der chosen-plaintext attack (IND-CPA). It is implemented in
Cipherbase with AES in CTR mode [14]; (2) deterministic
encryption, which always generates the same ciphertext from
a given plaintext value. This allows plaintext equality to be
checked without first decrypting by directly comparing ci-
phertext values—useful for operations such as equality filters,
joins, and grouping. It is implemented in Cipherbase with AES
in ECB mode and format-preserving encryption [15].

Figure 1 illustrates columnar encryption for an example
instance of the the Account table of the TPC-C benchmark.



AcctID AcctBal Branch
1 100 Seattle

2 200 Seattle

3 200 Zurich

AcctID AcctBal Branch
(RND) (DET)

1 !@#$xyz 0x123

2 @%ˆabc 0x123

3 *&#pqr 0x363

Fig. 1. (a) Example Plaintext and (b) Encrypted Database

Figure 1a shows the original, plaintext instance of the table.
Figure 1b shows the encrypted version of that table using
a policy that specifies that the AcctID column is stored in
plaintext, the AcctBal column is probabilistically encrypted
(RND), and the Branch column is deterministically encrypted
(DET).

A. Threat Model

Our goal is to ensure data confidentiality from entities with
privileged OS and database access. To characterize this threat,
we introduce the strong adversary, who has unbounded obser-
vational power of a cloud server and can view the contents of
the server’s memory/disk at every instant, along with all ex-
ternal and internal communication. A strong adversary cannot
observe state or computations within the secure hardware—as
discussed in Section IV, it is specifically designed to provide
such protection.

We also consider a related threat, exemplified by a datacen-
ter operator with physical access to a cloud server and who can
walk away with the contents of the server’s disk/memory (e.g.,
using a cold boot attack). To model this threat, we introduce
the weak adversary, who can obtain a one-time snapshot of
data-at-rest. Data-at-rest refers to any data that persists across
query lifetimes such as data in disk and buffer pool. As the
naming suggests, a strong adversary can learn anything a weak
adversary is able to learn.

Both strong and weak adversaries are idealizations that help
characterize data confidentiality, and the power of real-world
adversaries would be in-between these two. For example, the
data center operator above might get access to the state of
some queries running at the time of the snapshot, so he is
slightly stronger than a weak adversary. We assume that both
strong and weak adversaries are passive (honest but curious)
and do not tamper with contents of the database or influence
query processing; extending Cipherbase to address an active
adversary is future work.

B. Data Confidentiality

We specify Cipherbase’s data (and query) confidentiality
guarantees by describing what an adversary can (and cannot)
learn. For presentation simplicity, we only cover the case in
which all columns are strongly encrypted.

As a starting point, Cipherbase does not provide metadata
confidentiality beyond name anonymization. Thus, even a
weak adversary learns the number of tables, the number of
columns in each table, (primary) key properties, the cardinal-
ities of tables and the lengths of data values. Beyond this,
though, Cipherbase provides high data confidentiality against
the weak adversary that directly corresponds to the encryption

level specified for each column. In particular for strongly
encrypted columns, data remains strongly encrypted in the
server’s disk and memory, so a weak adversary cannot learn
anything additional from a system snapshot. One exception to
this is range indexes, which will be discussed shortly.

Against a strong adversary, Cipherbase provides operational
data confidentiality; i.e. the adversary learns some information,
based on the operations performed over the data. Ideally, we
would want semantic security where a strong adversary does
not learn anything. However, this is an impractical goal since
even communicating encrypted results over an untrusted net-
work reveals some information. In Section VII-A, we consider
proposals for stronger-than-operational data confidentiality and
argue why they are impractical for a transactional system.

Operational data confidentiality has been discussed in prior
work. We adapt the formalization presented by CryptDB [3].
The data confidentiality provided by Cipherbase is equivalent
to that of an abstract system that uses an oracle for compu-
tations over strongly encrypted values. For non-boolean oper-
ations such as addition, the oracle takes in encrypted inputs
and produces encrypted outputs—thus, the adversary does not
learn any additional information. For boolean operations such
as checking a filter condition or checking equality for joins and
grouping, the oracle returns the boolean result in plaintext—
thus, the strong adversary learns certain relations for encrypted
values.

Figure 2 summarizes the information leaked to a strong
adversary by various relational operators. For example, to
evaluate σA=5(R), the abstract system provides encrypted A
values to the oracle, which returns true if a value is 5 and false
otherwise. Since the details of the predicate are internal to the
oracle, the adversary only learns the value of some unknown
predicate p(A) over R tuples. For the join R ./A S, the oracle
is used to check equality of A values for the R and S tuples.
This reveals the join graph and the equivalence relations of
column A values for the R and S tuples participating in the
join. Grouping on attribute R(A) likewise invokes the oracle
for checking equality of A values, revealing the equivalence
relation of R(A); note that this reveals the number of distinct
values and their frequencies. Finally, the query πA+B(R) does
not involve any boolean operations. Thus, it does not leak any
information to the strong adversary. (The above information
leakage is reference based, not value-based, which can used
to show that it subsumes access pattern leakage.)

Indexes on tables have different data confidentiality guar-
antees. Cipherbase supports two kinds of indexes: equality
indexes that support equality lookups and range indexes that
support range lookups. An equality index provides operational
data confidentiality against a strong adversary; i.e. when
Cipherbase uses an equality index for the lookup σA=5(R),
the adversary learns which of the R records have the same
A value, but does not learn the common value (5). In the
limit, if the entire key space is queried, the adversary learns
the full equivalence relation of column A. At the same time,
a weak adversary does not learn anything from an equality
index. On the other hand, for a range index Cipherbase reveals



Operation Strong Weak

σA=5(R) Unknown predicate p(A) over R tuples Nothing
R./A S (hash-based) The join graph and the equivalence re-

lations over R(A) and S(A) for joining
A values.

Nothing

πA+B(R) Nothing Nothing
GbySUM(B)

A (R)
(hash-based)

The equivalence relation over R(A) Nothing

σA=5(R) using an
equality index on A

Set of R tuples having an unknown
common A values

Nothing

σA=5(R) using a
range index on A

Set of R tuples having an unknown
common A values (& ordering)

Ordering of R tuples
based on A values

Strong ' Weak#

Equivalence relation over R(A)

The join graph and the equivalence
relation over R(A) and S(A) for
all A values.
Nothing
The equivalence relation over
R(A)

The equivalence relation over
R(A)

The ordering of R tuples based on
A values

(a) Cipherbase (b) CryptDB

Fig. 2. Operational Data Confidentiality of Cipherbase and CryptDB. #Strong adversary, in addition, learns queries and their access patterns.

the full ordering information of the index keys, even to a
weak adversary. In other words, range indexes in Cipherbase
provide similar confidentiality guarantees as order preserving
encryption (OPE) [16]. However, existing constructions of
OPE either leak higher-order bits of plaintext values [16] or
require a client-side component and do not guarantee encryp-
tion immutability [17]. (Informally, in a mutable encryption
scheme, the encryption of a value could change when other
values are inserted.) The range indexes of Cipherbase do not
have these limitations (there is an additional distinction for
non-clustered indexes which we discuss in Appendix A).

Comparison with prior work: All prior systems using PHE [3],
[4] provide weaker operational data confidentiality (summa-
rized in Figure 2 using CryptDB as a representative). Their
guarantees are weaker since (1) operational information is
leaked even to the weak adversary and (2) the scope of
information leakage is an entire column, not just the data
touched during query processing. As an example, to be able
to evaluate σA=5(R), values of column A need to be stored
on disk using deterministic encryption. This reveals the full
equivalence relation. For the same query, if Cipherbase uses
a scan-based plan, only the truth values of a hidden predicate
p(A) over R tuples are revealed (an index-based plan would
reveal the equivalence relation, limited to the records in the
output). Client-based systems [2], [4] can avoid operational
information leakage, but only at the cost of extensive data
shipping. TrustedDB has similar operational guarantees as
Cipherbase since it does not hide data access patterns.

III. OVERVIEW

This section presents the architecture of Cipherbase and
gives an overview of query and transaction processing.

A. Design Philosophy

A large part of database processing does not deal with data
value semantics. This includes moving data, query setup/result
communication, and almost all of concurrency control and re-
covery. Almost all of this processing is unaffected whether we
are handling plaintext or encrypted data. Cipherbase exploits
this observation and uses a regular database system (SQL
Server) to realize this functionality.

At the same time, a core part of database processing
does depend on data value semantics, including query ex-
pression evaluation over tuples and comparisons during index
traversals. In general, this cannot be performed directly over
encrypted data (e.g. for strongly encrypted data we cannot
perform basic operations such as equivalent plaintext compar-
ison or addition). In Cipherbase we factor out such processing
and run it in a trusted module (TM). The trusted module is
designed to be inaccessible to the adversary, allowing us to
securely decrypt data and perform operations on plaintext.

More concretely, the Cipherbase TM only supports simple
expression evaluation over encrypted basic types—no other
aspect of database functionality. Such a small TM not only
provides well-recognized security advantages [18], [19], it
also provides benefits related to concurrency/recovery, multi-
tenancy, and database administration. A detailed discussion of
these advantages is beyond the scope of this paper.

A small TM containing only expression evaluation does
introduce performance challenges: we potentially need to
make one TM roundtrip for every operation—for the TPC-C
NewOrder transaction this translates to over 1000 roundtrips.
When the TM runs on a separate device, this design could
incur large latencies. The technical core of this paper presents
optimizations that manage this latency for an FPGA-based
trusted module that demonstrates the viability of this design.

B. Architecture

Figure 3 presents the Cipherbase architecture. An ap-
plication interacts with Cipherbase through the Cipherbase
client module. The Cipherbase client presents a plaintext
database interface and hides data confidentiality details from
the application. This client performs query encryption before
sending the request to the Cipherbase server and decrypts
returning results before forwarding them to the application. To
implement this functionality, the Cipherbase client takes the
encryption schema (see Section II) and the client encryption
key as input. The Cipherbase server consists of the trusted
module (TM) and a modified (SQL Server) database system
(the untrusted module, UM or UMDBMS).

Design of the TM: Figure 4 shows the design of the Cipherbase
TM. The TM is a simple stack machine that can evaluate stack
programs using an instruction set that supports comparison,
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Fig. 4. Design of the Trusted Machine

arithmetic, and cryptographic operations. The TM stack pro-
grams are used to evaluate expressions over encrypted data
during query processing. For example, a scan-based evaluation
of σA=5(R) might use a stack program that takes in an
encrypted A value, decrypts it and outputs true if the value is
5 and false otherwise. This stack program would be invoked
once for each tuple of R. As this example suggests, the
same stack program is typically invoked multiple times. To
accommodate this usage pattern, a stack program is registered
once and invoked subsequently using the handle returned by
the register method. The TM also supports a data cache that
we leverage for performance. Apart from the data cache and
the registered programs, the TM is stateless. In our current
prototype, the TM is realized using FPGA as secure hardware
(Section IV), but most of our design is agnostic to the choice
of secure hardware; see Section IV for a discussion.

Design of the UMDBMS: The UMDBMS is a regular database
system (SQL Server) modified to farm out expression evalua-
tion to the TM. These changes are discussed below.

C. Implementation of Core Functionality

Encryption Key Management: For clarity, in this paper we
assume that a single master key is used for encrypting the
database, relevant portions of the query, and the results. In
practice, the system could use multiple keys, either derived
from one customer’s master key or keys for different cloud
co-tenants. Handling the former case is straightforward [3],
but performance engineering for the latter is beyond the scope
of this paper. These keys are securely communicated to the
trusted module using standard key-exchange techniques; the
manufacturer of the secure hardware device assigns a public-
key identity for running the TM.

Data Encryption: Cipherbase uses cell-level encryption for
data in the UM, meaning that each column of each record is
encrypted independently. For base table columns the encryp-
tion scheme is specified (Section II) and for derived columns
the encryption scheme is inferred from its lineage. Internally,
encrypted data types are aliased to binary data types, so most
of the UMDBMS code can handle these types transparently.
Cell-level encryption allows each cell to be accessed inde-
pendently, minimizing TM traffic during query processing.
This design also means that database loading and insertions
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p1

p2 p3 p4

s1 s2 s3 s1 s2 s3 s1 s2 s3

Fig. 5. A single-column range index. Strongly encrypted ciphertext is shown
with a blue circle over the plaintext (not visible to the adversary). Page ids
(p1-p4) and slot ids (s1-s3) within pages are also shown. Also shown are
comparisons and their plaintext results while inserting (encrypted) key 7. The
results of comparisons ensure that key 7 is inserted between keys 6 and 8.

(when not concerning an index) do not involve the TM. One
drawback of cell-level encryption is the storage overhead for
smaller data types: e.g. a 4-byte integer encrypted with AES-
CTR produces a 12-byte ciphertext (with IV inlined). We
address this by exploiting the prefix-compressibility of IVs
in the CTR mode using SQL Server compression feature (see
Section VII-B for more details).

Indexing: As discussed in Section II, Cipherbase supports
equality and range indexes, which differ in terms of sup-
ported functionality and confidentiality guarantees. Cipherbase
supports indexes over multiple columns and they can be
primary or secondary, clustered or non-clustered. All variants
are implemented using B-trees in the UMDBMS.

Although what is stored for a range index over strongly en-
crypted columns is strongly encrypted ciphertext, the indexed
keys in the B-tree are ordered by their plaintext values. When
building the index or performing operations such as lookups
or updates, comparisons are routed to the TM. The TM has
pre-registered programs that decrypt the provided ciphertext
pair and return the comparison result (<,=, >) as plaintext.
The TM comparisons during an index build or update ensure
the indexed keys are ordered by their plaintext values. Figure 5
shows a sample range index and the comparisons performed on
ciphertext values while inserting a new key. Note that the vast
majority of index processing, including latching/locking for
concurrency and managing page splits/merges during updates,
remains unchanged, regardless of encryption. Also note that
since the B-tree is stored in the UM, a weak adversary
can learn the plaintext ordering of indexed keys. However,
a weak adversary does not learn equality relationships: E.g.,
in Figure 5, the adversary knows that the key stored in slot
s1 is ≤ the key in slot s2, but cannot determine if these
two encrypted keys are equal. A strong adversary learns the
equality relationships of keys, but only for the queried ranges.

An equality index is implemented by first deterministically
encrypting index keys and then storing them in the range
index. Note that the index keys are still stored strongly
encrypted, but their relative ordering in the B-tree is deter-
mined by their deterministic encryption, not plaintext values.
Using the conjectured pseudo-random permutation properties
of standard deterministic encryption schemes, we can show
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that a weak adversary does not learn any ordering or equality
information. A strong adversary learns equality information
for the queried portion of the index key space.

Transaction Processing: In Cipherbase, query processing hap-
pens in two steps: a one-time prepare step, followed by any
number of parametrized execution steps. During the prepare
step for a query Q, the Cipherbase client first identifies all
the TM programs required to evaluate expressions in Q and
registers these programs with the TM. The Cipherbase client
encrypts the programs to be registered to ensure that an
adversary does not learn their details. In particular, a TM
program can include internal constants and we leverage this to
hide query constants. After the TM programs are registered,
the client rewrites Q to reference the program handles returned
during registration. Consider the following parametrized query
Qex:

UPDATE Accounts SET Balance = Balance + @Amt
WHERE Id = @Id

Assume both Balance and Id columns are strongly en-
crypted, with an equality index on Id. This query requires
a TM program that takes in two strongly encrypted integers
and returns the strongly encrypted sum. Let 21 be the handle
for this program returned by the TM during registration1. The
original query is rewritten2 as Q′

ex:

UPDATE Accounts
SET Balance = TMEval(21, Balance, @Amt)
WHERE Id = @Id

where TMEval is a new built-in function we have added
to SQL Server; TMEval is an n-ary function that invokes
a TM stack program. The rewritten query is PREPAREd in
the Cipherbase UMDBMS (SQL Server), which compiles and
caches the query plan. This PREPARE step has no knowledge
of encryption and is unmodified SQL Server code.

In our example query, assuming an index-based plan, the
equality index identifies the record with Id equal to the
encrypted @Id parameter. The encrypted Balance of this
record and the encrypted @Amt parameter are passed as inputs
to TM stack program 21, which returns the encrypted sum
of the two, which is used to update the Balance field. This
update happens in the UM and the Update operator “thinks”
it is replacing one binary value with another.

1We have added a new built-in function TMRegister() to SQL Server to
register stack programs.

2For simplicity, we show rewritten queries - see Appendix D for more
details.

During query execution, the Cipherbase client encrypts
any query parameters and runs the rewritten query at the
UMDBMS3. Query execution at the UMDBMS proceeds
largely agnostic to encryption, using unmodified SQL Server
code except for the two cases described earlier : (1) index
lookups over strongly encrypted data involve comparisons in
the TM and (2) any calls to the TMEval function are routed to
the TM. To the rest of the query processing system, TMEval
looks like any other n-ary built-in function.

Note that partial homomorphic encryption schemes such as
OPE or DET encryption can help avoid round-trips to the
TM. For instance, in the above example, if the Id column
is deterministically encrypted, then the index lookup does not
need to involve the TM (similar to the case when Id is in
plaintext).

The Cipherbase client ensures that the output of a TM
program is a strongly encrypted value, a cryptographic hash, or
a plaintext boolean. Specifically, the output of a TM program is
plaintext only for boolean operators (equality for joins/group-
by and filter predicates), which are consistent with the data
confidentiality guarantees in Section II-B.

Concurrency and Recovery: One of the main advantages of
our minimal TM design is that we inherit almost all SQL
Server concurrency and recovery features without making
any encryption-related modifications. SQL Server, like most
modern databases, uses a combination of latching and locking
to ensure physical and logical consistency. These primitives
are almost always acquired on physical structures, even for
logical concepts (e.g., physical record address for record level
locking), and work correctly since encrypted data is simply
stored as binary values. One subtlety relates to key-range
locking [20], where locks are obtained on leaf-level key values.
However, the correctness of this scheme relies only on the
keys being unique (the ordering information is implicit in the
position of the keys in the B-tree). Since uniqueness remains
unaffected when we replace plaintext keys with ciphertext
values, we do not require encryption-specific modifications for
key-range locking.

The ARIES-style recovery of SQL Server relies on physical
page-oriented redos and logical undos [21]. The correctness of
page-oriented redos relies only on the binary representation
of data and is unaffected by encryption. Logical undos are
affected by encryption, but use the same code path as regular
transaction processing. Thus, the query processing modifica-
tions described earlier are sufficient.

3We omit details of “type inferencing” to infer @Amt and @Id in the
example require strong encryption.



Feature UMDBMS (Sql Server) TM (FPGA)
SELECT query Storage engine(IO, Buffer pool, locking, latching) Query expressions (e.g., equality, range comparisons,

Query Processing (Operator memory management, spooling, GetHashCode, Addition, Multiplication,
data flow, admission control, inter-query resource governance) String Concatenation)

UPDATE query All of the above + Data update + Query expressions (same as above)
Constraint checking + logging and recovery

B-Tree Indexing Page organization, Tree organization, Page splits and merges, Comparison
Concurrency control (including key value range locking)

SQL Extensions Program control flow, memory management Program expressions
(e.g. loops, if-then-else)

Fig. 6. Summary of division of work between UMDBMS and TM in Cipherbase

IV. FPGA AS SECURE HARDWARE

The TM is an abstraction that provides a location for code
execution and data that is not accessible to the adversary;
Cipherbase relies on this abstraction to provide data con-
fidentiality. The current Cipherbase prototype uses FPGA-
based secure hardware to realize the TM. The use of special
purpose hardware to provide isolation (e.g. memory protec-
tion) is established practice. The use of FPGAs for security
applications also has precedence [22]. In particular, there are
several benefits to using an FPGA as secure hardware in a
cloud setting, as discussed in [23].

At the same time, the design of Cipherbase allows other
physical realizations of the TM. This flexibility is a conse-
quence of our minimal TM design—e.g., running a TrustedDB
style full DBMS on an FPGA would be impractical. An
interesting future instantiation possibility is the recently an-
nounced Intel Software Guard Extensions (SGX) [24]. This is
a set of new instructions that allow the creation of a process
within a protected address space, known as an enclave. Data
and computation within an enclave is shielded from all other
processes, including the OS. The TM is a natural candidate
for execution within an enclave and exploring this when SGX-
enabled processors are available is future work.

Our FPGA platform communicates with the host CPU
over a standard PCIe bus. Other alternative communication
mechanisms exist, such as HyperTransport/QPI or deploying
an array of FPGAs as a network appliance. Exploring these
architectures is future work, and [25] offers a general discus-
sion of the pros and cons of these types of systems.

Regardless of the specific platform used, any instantiation
of the TM will have two performance characteristics that
are relevant to the optimizations we present in Section V:
the bandwidth of communication and latency of round-trip
communication between the UM and the TM. Since the
TM must be isolated from the UM to provide the desired
confidentiality guarantees, this implies data transfer and/or
synchronization. Thus, both bandwidth and latency concerns
are likely fundamental to the architecture and apt to determine
the performance of the overall system.

There are also some performance characteristics that may be
specific to the FPGA/PCIe platform we have used to prototype.
For example, there are two alternative ways of communi-
cating over PCIe: (a) MMIO (memory-mapped IO) and (b)
DMA (direct memory access). As shown in Figure 7, MMIO
communication is only suitable for very small transfers. On
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the other hand, DMA offers much better performance for
larger transfers, but has non-trivial startup cost; in the platform
used for our testing, DMA transfers from 4B-16KB incurred
the same latency. Another potential issue is that FPGAs are
inherently highly parallel, but have limited sequential compute
power [26]. Lastly, FPGAs have a small amount of fast on-
chip memory and much larger, slower off-chip memory (on
the order of a few MBs vs. GBs respectively).

V. IMPLEMENTATION DETAILS AND OPTIMIZATIONS

This section presents system engineering details and opti-
mizations that we implemented to achieve competitive trans-
action processing performance. We note that the the goal of
this section (and next) is to establish the viability of the overall
Cipherbase design and not necessarily be exhaustive in the set
of optimizations.

A. Transaction Processing Challenges

Cipherbase farms out expression evaluation over encrypted
data to the TM. Although expression evaluation comprises a
relatively small part of the processing in a typical transac-
tion [27], there are generally a large number of individual ex-
pressions and they are interspersed with other processing, such
as getting locks, latches, and moving pages to the buffer pool.
As an example, the TPC-C NewOrder transaction has more
than 1000 distinct expressions, including index comparisons.
In Cipherbase, this can translate to a large number of fine-
grained TM accesses, shown schematically in Figure 8. Note
that each (unoptimized) TM call involves a relatively small
amount of data; e.g. encrypted addition requires sending 12×2
bytes of input to the TM and receiving 12 bytes of output.



UM

TM

UM

(b) Cipherbase processing on encrypted data

(a) Plaintext processing

Dec/ExpEval/Enc Dec/ExpEval Dec/IndexVec

Fig. 8. Transaction processing in Cipherbase involves a large number of
fine-grained TM accesses.

Such tight-coupling of UM processing with TM roundtrips
naturally increases transaction latency as compared to plaintext
processing. This is both because every TM roundtrip incurs
a PCIe transfer latency and because computation performed
over encrypted data in the FPGA is likely to be slower than
plaintext computations performed locally on the server. While
adding even a few milliseconds might be acceptable in terms
of an individual query’s latency (especially in a cloud setting),
as we will discuss, added latency in expression evaluation can
indirectly reduce throughput.

TM is a shared resource in Cipherbase and this can affect
concurrency and potentially reduce throughput. For concrete-
ness, assume a naı̈ve implementation where the FPGA/PCIe
subsystem appears as an undivided shared resource to the rest
of the system. Every transaction now requires exclusive access
(e.g., using a lock) to make a TM call. If each of 1000 TM calls
in the NewOrder transaction takes 10 µsec, using Amdahl’s
law, the maximum throughput we can achieve is 100 tps.
To achieve higher throughput, we need to enable concurrent
access to the TM, and we achieve this through a combination
of parallelism at the FPGA and PCIe communication batching.
Batching is a general technique that leverages the DMA
characteristics shown in Figure 7, by sending and receiving
multiple work units in a single communication over the PCIe.
(We use the term work unit to refer to the payload—input
parameters and output result—of a TM call.) Several of our
optimizations build upon this general idea.

Increasing TM concurrency increases the utilization of
different components and can expose newer bottlenecks. In
our naı̈ve example, the compute resources at the FPGA and
the PCIe bandwidth do not form a bottleneck since they are
masked by a bigger bottleneck, the PCIe latency. But the
batching optimization could expose these two components as
bottlenecks. As more transactions concurrently access the TM,
data is transferred and stack programs are invoked at the FPGA
at a higher rate. Some of our optimizations are designed to
better utilize resources at these components: e.g., we cache
data in the FPGA to reduce PCIe traffic and we add special
instructions to the stack machine to enable computation reuse.
These optimizations increase the achievable throughput before
a component becomes a bottleneck.

Finally, the increased latency discussed earlier could itself
reduce throughput since transactions hold on to locks (and
sometimes latches) longer, which increases data contention
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and reduces throughput. Some of our optimizations are there-
fore designed to reduce latency.

B. Optimizations

The optimizations we present are based on the general prin-
ciples outlined above. An optimization can provide more than
one benefit: e.g., data caching in the FPGA not only reduces
PCIe bandwidth, it also reduces FPGA computation since
cached data is stored as plaintext (eliminating the need for
additional decryption). Figure 9 summarizes our optimizations
with benefits they provide.

Multiple FPGA stack machines: A simple way to increase TM
parallelism is to have multiple stack machine instances on the
FPGA that can process up to n TM calls independently. This
optimization increases the overall compute resources on the
FPGA. Parallel processing cores are feasible since the FPGA
resources required for each stack machine is quite small; for
details see [28].

Work unit batching: This optimization was briefly mentioned
in Section V-A. Whenever all stack machines (SMs) are
busy, the UM enqueues transaction work units. When an SM
becomes available, all queued work units are sent as a batch.
A SM processes all the work units in a batch before returning
the results as a single PCIe communication. In addition to
latency advantages based on the non-linear characteristics
of DMA transfers mentioned earlier, this design also helps
improve throughput—each SM is computing for a longer
duration, minimizing PCIe traffic and freeing the bus for other
SMs. Note that this optimization could sometimes increase
transaction latency, since a work unit waits for all other
work units in its batch to complete. However, empirically we
found that the throughput advantages outweigh any potential
latency penalty. Beyond this, there are other low-level system
engineering details required to implement this optimization
that we cannot cover in detail. These include (1) asynchronous
communication to enable a single “controller” on the UM to
feed multiple TM stack machines; (2) techniques to minimize
context switches when enqueueing; (3) details of switching
between DMA and MMIO transfers based on the batch size.

Expression folding: In Section III-C we mentioned that the Ci-
pherbase client rewrites query expressions involving encrypted
data to use the TMEval function and that each invocation of



TMEval translates to a TM call during execution. In expression
folding, the Cipherbase client folds “adjacent” expressions
into a single TMEval call. Expression folding can be viewed
as intra-transaction batching and provides similar benefits to
those discussed above, including: (1) reduced FPGA computa-
tion due to computational reuse; (2) reduced PCIe traffic; and
(3) lower transaction latency due to fewer TM calls.

To illustrate expression folding and its benefits, consider
the query shown in Figure 10(a) that has two expressions
in its UPDATE clause, and assume all columns are strongly
encrypted. The naı̈ve execution, shown in Figure 10(b), eval-
uates the two expressions using two TMEval calls. Expression
folding, shown in Figure 10(c), rewrites this to use a single
TMEval call. The corresponding combined stack program
(7) evaluates both expressions and returns two concatenated
encrypted outputs, which are separated in the UM.

This expression folding rewriting, apart from eliminating
one TM call and the associated latency, has two other benefits.
First, the encrypted parameter @l_qty can be decrypted once
and used for both expression evaluations; in the naı̈ve rewriting
we require two decryptions. This is an example of common
sub-expression elimination (CSE). Implementing CSE requires
us to go beyond a classic stack machine, since we need to
store expression results outside the stack and reference them.
The second benefit is that the parameter @l_qty only needs
to be communicated to the TM once, thereby reducing the
consumption of PCIe bandwidth.

Index lookup vectorization: The naı̈ve (range or equality) index
lookups presented in Section III invokes a TM call for every
comparison. For a 3-level B-tree with 512 index keys per index
node, this translates to 3 log 512 = 27 calls per lookup. With
index lookup vectorization, the search key and the vector of all
keys stored in a B-tree node are passed to the TM in a single
call. The corresponding stack program performs a binary
search over the (sorted) vector and returns the position of the
search key. Only the keys touched during the binary search
need to be decrypted. This change greatly reduces the number
of TM calls, from 27 to 3 in our example, reducing transaction
latency. It also reduces the work done at the TM since the
search key is only decrypted once and used for all comparisons
within a single node. At the same time, though, it increases
the amount of data shipped to the TM—from 9 + 1 keys per
node to 512 + 1 keys in our example. Empirically, though,
the benefits far outweigh the disadvantages. Furthermore, data
caching, discussed in the next section, partially addresses this
problem.

Data caching: As discussed, FPGAs have a limited amount
of on-chip memory. We exploit this memory to implement a
simple form of data caching, specifically designed to address
the data shipping costs of index lookup vectorization. To
accomplish this, we identify commonly accessed index key
vectors and cache them in plaintext within the FPGA (note
that on-chip memory cannot be observed by the adversary,
so sending ciphertext that is decrypted and cached inside
the FPGA meets our confidentiality requirements). When we

encounter a B-tree node that is cached, we only send the
search key and a (single word) handle for the cached vector
to the TM. This optimization reduces both the amount of data
transferred over PCIe and the work done in the FPGA, since
no decryptions are required for cached keys.

Our implementation of data caching is an initial step with
several avenues for future explorations: (1) FPGAs have access
to much larger off-chip memory where greater amounts of
data can be cached and accessed with fairly low latency. This
memory is insecure, though, so any cached data needs to be
kept as ciphertext. (2) We currently divide the available on-
chip memory among different stack machines and replicate the
data cache at each of them. Other alternatives are possible,
such as sharding the cache or sharing a common cache.

Function result caching: A TM stack program is purely
functional, in the sense that different invocations of a program
with the same encrypted parameters will produce outputs cor-
responding to the same underlying plaintext (the actual cipher-
text output might vary due to non-deterministic encryption).
We use this property to implement a function result cache in
the UM. The function result cache is more general than the
data cache and works for all TM programs, not just index-
related ones. A function result cache clearly helps avoid TM
roundtrips for operations over deterministically encrypted data
(other than equality, which does not require the TM). However,
there are subtle benefits even for operations over strongly
encrypted data. First, when a lock is not immediately granted
in SQL Server(particularly relevant during index lookups), an
operation can be repeated with the same input ciphertext. Such
repetitions hit in the function result cache. Second, strongly
encrypted loop counters in stored procedures start with the
same initialization constants and can benefit from a function
result cache (see Appendix C for an example).

Impact of optimizations on data confidentiality: All of the
optimizations we discuss here have been carefully designed to
preserve data confidentiality. Batching and parallelism within
FPGA do not change the operations being performed. Expres-
sion folding actually slightly increases data confidentiality: e.g.
when two expressions are folded together, any intermediate
data is kept within the TM where it is invisible to an adversary.
For index vectorization, we can show that an adversary learns
the same information at every node, whether or not vectoriza-
tion is used. For data and function result caching, we can show
that as long as the caching strategy only relies on the access
patterns of data (information already available to an adversary)
and not the index plaintext values, data confidentiality remains
unaffected. (On the other hand, for example if we were to
compress cached plaintext index key vectors, the adversary
could learn something based on the aggregate amount of data
we are able to cache.)

VI. PERFORMANCE EXPERIMENTS AND RESULTS

In this section we present an empirical evaluation of
Cipherbase. The goal of this evaluation is to quantify the
overhead of transaction processing on encrypted data and study



UPDATE STOCK
SET s_ytd = s_ytd + @l_qty
SET s_qty = s_qty - @l_qty
WHERE s_id = @li_id

UPDATE STOCK
SET s_ytd = TMEval(5, s_ytd, @l_qty)
SET s_qty = TMEval(6, s_qty, @l_qty)
WHERE s_id = @li_id

UPDATE STOCK
SET @var0 = TMEval(7, s_ytd, s_qty, @l_qty)
SET s_ytd = UMExtract(@var0, 0)
SET s_qty = UMExtract(@var0, 1)
WHERE s_id = @li_id

(a): Original (b): Naı̈ve rewriting (c): Rewriting under expression folding

Fig. 10. Illustration of expression folding

the effects of different optimization techniques. As mentioned
earlier, a key emphasis is to establish the viability of our
architecture.

A. Software and Hardware Components

We include a brief description of the implemented function-
ality and optimizations (summarized in Figure 11):

Cipherbase Client: This is a small C# library that relies on
a SQL parsing library for query rewriting and identifying
expressions. It also contains a simple compiler to produce TM
stack programs for single and folded expressions, and code for
identifying common sub-expressions and performing simple
type inferencing used to determine the encryption scheme for
various query identifiers.

UMDBMS (modified SQL Server): We added a new module
called the TM Manager to handle communication with the
TM. The TM Manager lives within the “SQL OS” layer that
provides low-level primitives to the rest of the SQL Server
code. Most of the optimizations discussed in Section V are
also implemented within the TM Manager, including batching,
routing work to different stack machines, and managing the
function result/data cache. Outside the TM Manager, we
modified some parts of the SQL Server storage engine to
handle index vectorization and route SARGable predicate
evaluations to the TM. The primary change to the query
engine is the addition of the TMEval function, which hides
the details of TM calls from the rest of the query engine4.
Outside of the TM Manager, our changes to the SQL Server
code were fairly modest (≤ 1000 line of code); however, this
was still a fairly challenging software engineering effort since
the changes spanned multiple layers of the stack spread over
millions of lines of C++ code.

TM (FPGA): We used a Xilinx Virtex 6 FPGA board
(XC6VLX240T). We programmed four stack machines on
the board, each clocked at 150 MHz and with a data cache
of 64 KB. The four stack machines and 64 KB cache is
a skyline point; increasing the number of stack machine
would have decreased the available cache, and vice-versa. The
specific numbers were determined based on experimentation
(the utilization of the FPGA is summarized in Appendix B). As
summarized in Figure 11, some of our optimizations required
changes in the hardware. These include new instructions for
optimizations such as index vectorization, an out-of-stack
scratch memory to enable shared computations, and a data
cache. The hardware implementation was around 6000 lines

4Other changes handle non index-nested loop joins and grouping, but are
not central to this paper.

of Verilog. We have presented more details on the FPGA
implementation and its resource requirements in a separate
paper [28].

UM Hardware: All testing was performed on a dual-processor,
16-core Intel Xeon E5-2640v2 server with dual banks of 32GB
quad-channel DDR3 memory. The FPGA board was connected
to the server via x4 PCIe v2.0.

B. Encryption Policies

We compare the performance of production SQL Server
operating on plaintext TPC-C data with Cipherbase operating
on TPC-C data encrypted using the following policies:
• Customer: All personally identifiable information (PII)

columns in the Customer table (all columns except
C_ID) are strongly encrypted. All other columns are in
plaintext.

• Strong/Weak: Index key columns and foreign key columns
that reference them are encrypted using deterministic
encryption. All other columns are strongly encrypted.

• Strong/Strong: All columns are strongly encrypted.
These three policies are interesting points in the data con-

fidentiality spectrum both for practical applicability and for
illustrating specific aspects of Cipherbase performance. Recall
from Section II that the encryption policy determines the
protection we get against the weak adversary. The Customer
policy is interesting since keeping PII data confidential is
often required for compliance reasons (e.g., HIPAA). But
identifying PII columns might not be straightforward [29], so
schemes that keep all columns encrypted such as Strong/Weak
and Strong/Strong are interesting. The Strong/Weak policy
keeps index columns encrypted using deterministic encryption,
so equality index lookups do not require roundtrips to the
TM; Strong/Strong requires roundtrips for all operations. The
relative performance of Cipherbase on these policies therefore
helps separate the overhead of indexing and non-indexing
operations for strongly encrypted data. Strong/Weak reveals
the join graph of tables related by referential integrity to
the weak adversary, and this level of data confidentiality
might be sufficient for most transactional applications. Finally,
Strong/Strong represents the upper limit of (operational) data
confidentiality and competitive performance with strong/strong
would simplify physical design, obviating the need to identify
a suitable encryption policy for each column.

C. TPC-C Benchmark Environment

We use transactions from the TPC-C benchmark for our
evaluation. Our evaluation is not a complete run of the
TPC-C benchmark and in particular we used the following



Feature Client UMDBMS (Sql Server) TM (FPGA)

Basic Functionality
Compile, register stack programs QE: New functions TMEval & TMRegister Stack machine
Query rewrite, PREPARE SE: Send index comparisons & SARGable
Encrypt parameters predicates to TM

FPGA Parallelism TMM: Route work to different SMs Replicate stack machines
Work unit batching TMM: Queueing, batching work units Batched SM input and output
Index vectorization SE: Batched search at B-tree node level Binary search instruction

Expression folding Compile Multi-expressions Scratch for temp results
Identify common sub-exprs Instr. to reference temp results

Data caching TMM: Cache update policy API to update cache
TMM: Replace cached params with refs Instr. to reference cache data

Function result caching TMM: Function result cache lookup/update

Fig. 11. Summary of hardware-software codesign. For UMDBMS column: SE = storage engine, QE = query engine, TMM = TM Manager.

simplifications. We ran a mix of the NewOrder, OrderStatus
and Payment transactions with the same relative distribution
as the original benchmark. These transactions account for
nearly 90% of the transactions in the original benchmark and
have stringent response time and consistency requirements.
We assume that the data is completely cached in memory
and as a result we varied the parameter W (the number of
warehouses) from 10 to 100. We used a driver that runs
a number of workers continuously issuing transactions. The
throughput was measured by averaging multiple one-minute
runs with checkpointing turned off.

We ran experiments varying the workers (N) from 10 to 500
and we pick a particular data point (W=10, N = 100) to discuss
our results—these numbers were fairly representational of the
results for other parameters and give a good sense of how
Cipherbase performs for transactional workloads. We defer a
more thorough evaluation including examining sensitivity to
different parameters such as I/O, and data skew to future work.

D. Experiment 1: TPC-C Throughput

Figure 12 shows Cipherbase throughput for the three
encryption schemes, normalized to SQL Server plaintext
throughput. (We show normalized throughput since Microsoft
policy does not allow publication of absolute numbers.) When
all optimizations turned on, Cipherbase achieves 90% of the
plaintext throughput for the Customer policy and around 80%
for Strong/Weak. When all the columns are strongly encrypted
and every data operation needs to go through the TM, Ci-
pherbase achieves 40% of plaintext throughput. Given that we
are comparing with an industrial strength high-performance
transactional system, this performance is competitive and
should be sufficient for most applications. This experiment
illustrates that Cipherbase can provide robust performance
even for the strongest encryption policy. This points to the
utility of having in-server secure hardware.

Figure 12 also suggests that the optimizations in Section V
are important; they provide about 33% throughput improve-
ment for Customer, about 50% improvement for Strong/Weak,
and about a factor 2 improvement for Strong/Strong. Figure 13
shows the number of distinct roundtrips and the number
of bytes sent to the TM for each policy. We observe that
(1) as expected, the number of round trips and amount of
data sent increases with the strength of the encryption policy;
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Fig. 12. Normalized TPCC Throughput (W=10)

Round Trips Bytes Transferred
Per Xact Per Xact

Customer (No Opt) 13.96 898.54
Customer (Opt) 11.76 842.2
Strong/Weak (No Opt) 57.80 2248.12
Strong/Weak (Opt) 6.68 1066.95
Strong/Strong (No Opt) 522.69 19501.21
Strong/Strong (Opt) 89.05 122176.3

Fig. 13. Number of Round-Trips and Bytes To TM

(2) our optimizations considerably reduce the number of round
trips for Strong/Weak and Strong/Strong; and (3) while our
optimizations reduce the number of bytes sent for Customer
and Strong/Weak, they increase the data sent for Strong/Strong,
since we used vectorization to navigate B-Trees. However,
even though a larger number of bytes is sent, it still yields
significant benefits in terms of throughput since reducing the
number of round-trips is more important. We omit the detailed
analysis of the contribution of each optimization technique.
Briefly, the interaction of the techniques is nuanced, they are
all important and only the combination of optimizations results
in these improvements.

E. Experiment 2: Bottleneck Analysis

Cipherbase has three potential bottlenecks: (a) data con-
tention from concurrent accesses to shared data, (b) the
bandwidth of the PCIe bus, and (c) the computational power
of the trusted hardware. Figure 15(a) shows the utilization of
the PCIe bus. While the theoretical PCIe bandwidth of our
machine is 2GB per second, the maximum PCIe utilization
for any policy was less than 9%. Likewise, the utilization of
the FPGA stack machines was less than 10%.
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Bytes/sec

Customer 3.5 MB
Strong/Weak 3.2 MB
Strong/Strong 169.57 MB

Median 90th
Percentile

Plaintext 7 29
Customer 8 30
Strong/Weak 11 31
Strong/Strong 51 151

(a) PCIe Utilization (b) TPCC Latency (msec)

Fig. 15.

This leaves data contention to be the key bottleneck, which
was confirmed by an additional experiment shown in Figure
14. Scaling the benchmark from 10 to 100 warehouses has
the primary characteristic of reducing contention on the item
hotspot and we observe that the throughput of Cipherbase
increases across all policies. Thus, we intend to further explore
the interaction between the latency of accessing the TM and
data contention.

F. Experiment 3: TPC-C Latency

Figure 15(b) shows the latency of the TPC-C transactions,
measured over all transactions. It shows the median and 90th
percentile latency. While the latency of Cipherbase increases
with the strength of encryption, it becomes clear that even
with the Strong/Strong database, the end to end latency is
reasonable (less than 200 msecs). The end-to-end latency
requirement of the TPC-C benchmark is 5 seconds for the 90th
percentile [30], an SLA easily met by even the Strong/Strong
database.

G. Prior work on OLTP workloads

All three encryption policies we use involve operations over
strongly encrypted data. As such, they cannot be supported by
pure PHE-based systems such as CryptDB. Specifically, the
TPC-C benchmark involves operations such as both additions
and multiplications on the same column data5, string con-
catenations, and substring operations; current practical PHE
schemes do not support these operations. This implies that
CryptDB cannot support, without reducing data confidential-
ity, a stored-procedure based implementation of TPCC that
involves a single client-server roundtrip per transaction. These
limitations could be overcome by an implementation that

5Any encryption scheme that supports both additions and multiplications
is fully-homomorphic [10].

makes one client roundtrip for each SQL statement in a
transaction6. However, it is accepted wisdom that a stored-
procedure implementation is required for high-performance;
the TPC-C results of major vendors use stored procedures [30].
Even with this multi-roundtrip implementation, the perfor-
mance for Strong/Strong falls off the cliff, since this policy
precludes the use of indexes in the server. TrustedDB has no
PHE or trusted client-related limitations. However, TrustedDB
seems to be optimized for OLAP performance, not OLTP.
Achieving high transaction throughput in TrustedDB, where
two different database systems must be able to concurrently
update a database page, seems non-trivial and no relevant
details for this capability are provided in [5].

VII. DISCUSSION

A. Operational Data Confidentiality and Beyond

Cipherbase provides operational data confidentiality for a
strong adversary. We note that such a guarantee is usable and
practical for OLTP systems for a variety of reasons. First,
it is unrealistic to assume that an adversary can constantly
monitor/persist contents of the server’s disk/memory for highly
concurrent OLTP systems. Thus, in practice an adversary is
likely to lie in between the weak and strong adversaries as
discussed in Section II. Second, weaker encryption schemes
can in reality leak less information than assumed based on data
characteristics (e.g., using DET encryption for a ID column
with a UNIQUE constraint). Third, offering higher security
for OLTP systems (where support for indexing is required)
may incur significant overheads. For instance, ORAM [31]
and other proposals that do data shuffling [32] incur writes
even for a read only transaction which should seriously affect
concurrency and overall performance. Such data shuffling
also reduces spatial and temporal locality of reference which
further undermines performance. In fact, a state-of-the-art
system that uses ORAM reports a 32x slowdown [33] in
memory access performance. In contrast, Cipherbase can offer
a 2x slowdown for a policy in which all columns are strongly
encrypted for TPC-C. Thus, we believe that Cipherbase offers
a compelling design point for OLTP on encrypted data.

That said, security beyond operational guarantees may be
feasible for other workload patterns, notably OLAP queries.
There is prior work [8], [32] that explores security beyond
operational data confidentiality for OLAP queries while not
relying on building blocks such as ORAM. Interestingly,
such schemes also require secure hardware — understanding
and quantifying their security-performance tradeoffs is an
interesting avenue for future work.

B. Impact of Encryption on Space

Encryption is known to increase the space consumed by the
database considerably. For instance, using the classic AES-
CBC (Cipher-Block Chaining) mode of non-deterministic en-
cryption expands a 32-bit plaintext to 256 bits of ciphertext.

6A NewOrder transaction has 30+ such statement instances.



Encryption Policy Space Consumed
Plaintext 836 MB
Strong/Strong (CBC) 3634 MB
Strong/Strong (CTR) 1427 MB
Strong/Strong (CTR) Compressed 1082 MB

Fig. 16. Space Consumption

In Cipherbase, we use the AES-CTR (Counter) mode of non-
deterministic encryption (while also offering the CBC mode
to clients, should they so choose.) The CTR mode is also
a standard mode of AES and offers the IND-CPA guarantee
alluded to earlier. Further, it offers significant benefits in space
consumption. The intuition behind the space savings is as
follows. First, the CBC mode is a block cipher requiring
plaintext to be padded to multiples of a fixed block size
(128 bits). In contrast, the CTR mode is a stream cipher and
therefore does not pad the plaintext. Second, non-deterministic
encryption is realized by incorporating an Initialization Vector
(IV) that changes with every input into the encryption function.
The CBC mode requires the IV to be randomly generated.
In contrast, CTR mode only requires the IV to be unique
(nonce). In Cipherbase, we use a 64-bit counter maintained
by the TM as the IV. The counter is incremented with
every encryption. Since the IV is sequential, it lends itself
to effective compression even using SQL Server’s off-the-
shelf compression techniques. Note that this has no impact
on the confidentiality - the compression is independent of
the actual data values. Table 16 reports the space consumed
by the Plaintext and Strong/Strong databases with CBC and
CTR modes with and without compression for the TPC-C
database (with W=10). As we can see, the CTR mode with
compression consumes only 30% more space than plaintext.
In contrast, CBC consumes more than 4x the space consumed
by plaintext. We believe these savings are significant since:
(1) clients pay for space usage in a cloud setting, and (2) the
assumption that large databases fit in main memory may not
hold in a multi-tenant environment, hence space savings could
potentially translate to reduced IO and thereby performance
improvement.

VIII. RELATED WORK

A comprehensive overview of alternative ways to implement
confidentiality in a database system is provided in a recent
tutorial [9]. In general, the approaches differ depending on the
kind of attack they protect against, the encryption techniques
supported, and whether they rely on hardware.

Commercially the most established technique is to keep
all data encrypted on disk and to decrypt as soon as it
is loaded into main memory for processing. Both Oracle
[7] and Microsoft [6] have adopted this approach as part
of their database products. While this approach protects the
confidentiality of data in the event that disks are stolen, this
approach is not sufficient to protect the confidentiality of
the data against attacks from database administrators who
have root access to machines. One fundamental problem of

this approach is that the encryption key is stored as part of
the database and is, thus, easily accessible for a database
administrator. Amazon CloudHSM [34] addresses this problem
by leveraging trusted hardware (Hardware Security Modules)
to securely store keys. However, even if the key is not
accessible and the administrator has no permissions to execute
queries, the administrator can retrieve confidential data by
taking a memory dump of the machine. To protect data
from “honest and curious” database administrators, data must
be kept encrypted on disk and in main memory. The most
relevant related systems are CryptDB [3], Monomi [4] and
TrustedDB [5]. These systems were covered when we dicussed
prior work in Section I-A.

There has been prior work on leveraging FPGAs for query
processing [35]. The main focus has been on using FPGAs
as accelerators for specific database operators and certain
database operators (e.g., streaming aggregates) are run in the
FPGA. The key differences in our approach are: 1) encryption
as a novel use case for leveraging FPGAs for query processing
and 2) the use of the FPGA as a co-processor which runs
only expression evaluation (query operators still run in the
UM). Similar remarks apply to related work on using GPUs
to accelerate query processing [36], [37].

The Cipherbase architecture and the basic co-processor de-
sign (without optimizations) have been previously outlined in
our prior work [38], [28]. The main contribution of this paper
is novel optimization techniques for OLTP workloads and a
comprehensive experimental evaluation and analysis for the
TPC-C benchmark. The function result caching optimization
is related to caching techniques used for expensive predicates
[39]. In some sense, TM calls are like expensive predicates so
that all query processing techniques with expensive predicates
are potentially applicable and some of the query optimization
issues discussed in [39] are likely to be relevant for analytical
queries.

IX. CONCLUSIONS

In summary, we presented the design and evaluation of
Cipherbase for OLTP workloads. We believe Cipherbase offers
a unique architecture for building encrypted databases with:
1) a secure hardware based solution with a minimal TCB, 2)
industrial strength transactional functionality with competitive
performance, even when all data stays strongly encrypted
throughout the entire stack (disk, memory and network), and
3) an interesting design point in the performance-security con-
tinuum that provides operational guarantees with the flexibility
to choose an appropriate encryption policy. Understanding
the performance characteristics of Cipherbase on new secure
hardware platforms (such as SGX), examining the impact of
OLAP workloads and studying if we can provide practical
higher security beyond operational guarantees remain inter-
esting avenues of future work.
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APPENDIX

A. Range Indexes vs OPE

As we explained in Section II-B, range indexes provide the
same confidentiality guarantee as OPE for a weak adversary.
However, there is an important difference for non-clustered
indexes which the following example clarifies.

Example A.1: Consider a table T (A, B) and assume that
there is a clustered index on column A and a non-clustered
index on column B. In SQLServer, the non-clustered index
stores the corresponding key value of the clustered index as a
RID column. As previously mentioned, the clustered index on
A does leak the full ordering of the A column. However, the
A values stored in the non-clustered index can be re-encrypted
to avoid revealing the corresponding correlation with the
clustered index. This cannot be done in a system without
secure hardware and any software based OPE scheme will
in addition reveal the correlations between the non-clustered
and clustered indexes.

Of course, OPE based implementations offer the important
advantage that they can avoid roundtrips to hardware. As
the results in the experimental section show, using determin-
istic encryption for the ID columns can lead to improved
performance when compared to using equality indexes. A
more thorough evaluation of OPE as an optimization (range
predicates are more commonly used in OLAP workloads) is
deferred to future work.

B. FPGA utilization

LUTs FF BRAM DSP48
Full System 59788 (39.7%) 35909(11.9%) 314(75.5%) 40 (5.2%)
PCIe Infrast. 46388 (30.8%) 21068(7.0%) 230(55.3%) 0 (0.0%)
4x DB Proc 13400(8.9%) 14840(4.9%) 84(20.2%) 40 (5.2%)

Fig. 17. FPGA Resource Requirements

The FPGA resource requirements for the four-core TM used
in our experiments are shown in Figure 17. The number of
look-up tables, flip-flops, and multipliers (LUTs, FFs, and
DSP48s are fundamental logic elements) required for all four
cores is less than 8.9% of those available on the device.
The most heavily utilized element is block memory (BRAM),
with the four TMs requiring 20.2% of the available memory
resources. The PCIe controller represented approximately two-
thirds of the overall logic and memory requirements. The low
logic requirements of this system and the fact that the selected
FPGA is now several years old and has been superceeded by
more capable devices suggest that there is sufficient headroom
to expand the functionality of the system in the future.

The TMs relatively modest requirements indicate that al-
though our prototype does not currently support all SQL



operators and data types, that there is sufficient headroom
to expand the functionality of the system in the future. The
XC6VLX240T that was used is a low-to-mid tier device that
is now several years old. We expect that a more modern FPGA
that would nominally affect the initial price of the complete
platform (servers plus FPGAs, purchased in volume) would
contain more than double the logic and memory capabilities.

C. Function Result Caching

The following example illustrates how function caching can
help optimize loop counters.

Example A.2: Consider the following stored procedure
fragment. The code inserts a set of values into a table and
one of the columns in the table is updated to the value of the
loop variable (@li no).

DECLARE @li_no int = 0

WHILE(...)
{

SELECT @li_no = @li_no + 1
INSERT INTO OrderLines (..., @li_no, ...)

}

If the corresponding column is encrypted then the loop
variable also needs to be encrypted to ensure that the stored
procedure typechecks. The rewritten stored procedure is
shown below; the addition on the encrypted data is performed
by calling TMEval with the appropriate program (the
program handle is 5). For this version of the stored procedure,
each addition in the while loop requires a roundtrip to the TM.

DECLARE @li_no AESCBCInt = 0x22e3cf29

WHILE(...)
{

SELECT @li_no = TMEval(5, @li_no , 0x33cb7cc)
INSERT INTO OrderLines(..., @li_no, ...)

}

Note that the stored procedure logic is identical for every
invocation (including the initial constants). If we cache the
result of addition for each encrypted input for the first transac-
tion, then every subsequent invocation of the stored procedure
that runs through the same logic can first check the cache and
completely skip the rountrip to TM if there is a hit.

D. Query Plans vs Statements

While discussing query evaluation (e.g., in section III-C),
we have shown the corresponding rewritten query (augmented
with TMEval calls) that is sent to the server. This is mainly
for clarity of presentation - we note that the cipherbase client
actually sends a query plan to the server. The main advantages
in using a query plan based API are: 1) The security offered by
the system is operational and thus, a function of the query plan.
This API enables the user to pick a plan that is appropriate. 2)
This simplifies query optimization which occurs at the client

using statistics on plaintext. Query optimization was not a
focus in this paper since we were optimizing OLTP workloads
where index-based plans are usually the “optimal” choice.


