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Abstract
Program verification relies heavily on induction, which has re-
ceived decades of attention in mechanical verification tools. When
program correctness is best described by infinite structures, pro-
gram verification is usefully aided also by co-induction, which has
not benefited from the same degree of tool support. Co-induction
is complicated to work with in interactive proof assistants and has
had no previous support in dedicated program verifiers.

This paper shows that an SMT-based program verifier can sup-
port reasoning about co-induction—handling infinite data struc-
tures, lazy function calls, and user-defined properties defined as
greatest fix-points, as well as letting users write co-inductive
proofs. Moreover, the support can be packaged to provide a simple
user experience. The paper describes the features for co-induction
in the language and verifier Dafny, defines their translation into in-
put for a first-order SMT solver, and reports on some encouraging
initial experience.

Categories and Subject Descriptors D.2.4 [SOFTWARE ENGI-
NEERING]: Software/Program Verification

General Terms Verification, Co-induction.

Keywords verification, SMT, co-induction, lazy data structures

0. Introduction
Mathematical induction is a cornerstone of programming and pro-
gram verification. It arises in data definitions (e.g., some algebraic
data structures can be described using induction [4]), it underlies
program semantics (e.g., it explains how to reason about finite iter-
ation and recursion [1]), and it gets used in proofs (e.g., supporting
lemmas about data structures use inductive proofs [18]). Whereas
induction deals with finite things (data, behavior, etc.), its dual, co-
induction, deals with possibly infinite things. Co-induction, too, is
important in programming and program verification, where it arises
in data definitions (e.g., lazy data structures [32]), semantics (e.g.,
concurrency [30]), and proofs (e.g., showing refinement in a co-
inductive big-step semantics [23]). It is thus desirable to have good
support for both induction and co-induction in a system for con-
structing and reasoning about programs.

Dramatic improvements in satisfiability-modulo-theories (SMT)
solvers have brought about new levels of power in automated rea-
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soning. Some program verifiers and interactive proof assistants
have used this power to reduce the amount of human interaction
needed to achieve results (e.g., [5, 9, 14, 20]). In this paper, we
introduce the first SMT-based verifier to support co-induction.

The verifier is for programs written in the verification-aware
programming language Dafny [20],0 which we extend with co-
inductive features. Co-datatypes and co-recursive functions make it
possible to use lazily evaluated data structures (like in Haskell [32]
or Agda [28]). Co-predicates, defined by greatest fix-points, let pro-
grams state properties of such data structures (as can also be done
in, for example, Coq [3]). For the purpose of writing co-inductive
proofs in the language, we introduce co-methods. Ostensibly, a co-
method invokes the co-induction hypothesis much like an inductive
proof invokes the induction hypothesis. Underneath the hood, our
co-inductive proofs are actually approached via induction [25]: co-
methods provide a syntactic veneer around this approach.

These language features and the automation in our SMT-based
verifier combine to provide a simple view of co-induction. As
a sneak peek, consider the program in Fig. 0. It defines a type
IStream of infinite streams, with constructor ICons and destruc-
tors head and tail. Function Mult performs pointwise multipli-
cation on infinite streams of integers, defined using a co-recursive
call (which is evaluated lazily). Co-predicate Below is defined as
a greatest fix-point, which intuitively means that the co-predicate
will take on the value true if the recursion goes on forever without
determining a different value. The co-method states the theorem
Below(a, Mult(a, a)). Its body gives the proof, where the recur-
sive invocation of the co-method corresponds to an invocation of
the co-induction hypothesis.

We argue that these definitions in Dafny are simple enough
to level the playing field between induction (which is familiar)
and co-induction (which, despite being the dual of induction, is
often perceived as eerily mysterious). Moreover, the automation
provided by our SMT-based verifier reduces the tedium in writing
co-inductive proofs. For example, it verifies Theorem_BelowSquare
from the program text given in Fig. 0—no additional lemmas or
tactics are needed. In fact, as a consequence of the automatic-
induction heuristic in Dafny [21], the verifier will automatically
verify Theorem_BelowSquare even given an empty body.

Just like there are restrictions on when an inductive hypothesis
can be invoked, there are restriction on how a co-inductive hypoth-
esis can be used. These are, of course, taken into consideration by
our verifier. For example, as illustrated by the second co-method
in Fig. 0, invoking the co-inductive hypothesis in an attempt to ob-
tain the entire proof goal is futile. (We explain how this works in
Sect. 3.1.)

Until recently, Dafny has primarily been a verifier for imperative
programs. The introduction of inductive features, and now our co-

0 Dafny is an open-source project at http://dafny.codeplex.com.
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// infinite streams
codatatype IStream<T> = ICons(head : T, tail : IStream)
// pointwise product of streams
function Mult(a : IStream<int>, b : IStream<int>) : IStream<int>
{
ICons(a.head * b.head, Mult(a.tail, b.tail))

}
// lexicographic order on streams
copredicate Below(a : IStream<int>, b : IStream<int>)
{
a.head ≤ b.head ∧
(a.head = b.head =⇒ Below(a.tail, b.tail))

}
// a stream a Below its Square
comethod Theorem_BelowSquare(a : IStream<int>)

ensures Below(a, Mult(a, a));
{
assert a.head ≤ Mult(a, a).head;
if a.head = Mult(a, a).head {

Theorem_BelowSquare(a.tail);
}

}
// an incorrect property and a bogus proof attempt
comethod NotATheorem_SquareBelow(a : IStream<int>)

ensures Below(Mult(a, a), a); // ERROR
{
NotATheorem_SquareBelow(a);

}

Figure 0. A taste of how the co-inductive features in Dafny come
together to give straightforward definitions of infinite matters. The
proof of the theorem stated by the first co-method lends itself to the
following intuitive reading: To prove that a is below Mult(a, a),
check that their heads are ordered and, if the heads are equal, also
prove that the tails are ordered. The second co-method states a
property that does not always hold; the verifier is not fooled by the
bogus proof attempt and instead reports the property as unproved.
UkWw4 »

inductive extension, give a boost to the functional and theorem-
proving capabilities of the system. The imperative and functional
constructs work well together, especially when using functions in
the specifications of classes and methods.

Our initial experience with co-induction in Dafny shows it to
provide an intuitive, low-overhead user experience that compares
favorably to even the best of today’s interactive proof assistants
for co-induction. In addition, the co-inductive features and verifi-
cation support in Dafny have other potential benefits. The features
are a stepping stone for verifying functional lazy programs with
Dafny. Co-inductive features have also shown to be useful in defin-
ing language semantics, as needed to verify the correctness of a
compiler [23], so this opens the possibility that such verifications
can benefit from SMT automation.

0.0 Contributions
• First SMT-based verifier for reasoning about co-induction.
• Language design that blends inductive and co-inductive fea-

tures, allowing both recursive and co-recursive calls to the same
function (Sect. 2).

• User-callable prefix predicates—finite unfoldings of co-predicates
used to establish co-predicates via induction (Sects. 2.2 and 5).

• Extension of the technique of writing inductive proofs as pro-
grams (see background in Sect. 1) to co-inductive proofs us-

ing co-methods (Sect. 3). Unlike tactic-based systems, these
programs show the high-level structure of the (inductive and
co-inductive) proofs. Yet the automation provided by the SMT
solver makes it unnecessary to manually author the proof terms.

• Low-overhead tool-supported way to write and learn about co-
inductive proofs (see examples in Sect. 4).

1. Background: Proofs and Induction
In this section, we review the use of mathematical inductive proofs
in the program verifier Dafny. This will establish a foundation for
the discussion of co-induction in the subsequent sections.

1.0 Functions
Dafny programs are sets of declarations (see Fig. 1). The Dafny
programming language supports functions and methods. A func-
tion in Dafny is a mathematical function (i.e., it is well-defined,
deterministic, and pure), whereas a method is a body of statements
that can mutate the state of the program. A function is defined by
its given body, which is an expression. Figure 2 shows a function
computing element n of the Fibonacci sequence.1

To ensure that function definitions are mathematically consis-
tent, Dafny insists that recursive calls be well-founded, enforced as
follows: Dafny computes the call graph of functions. The strongly
connected components within it are clusters of mutually recursive
definitions arranged in a DAG. This stratifies the functions so that a
call from one cluster in the DAG to a lower cluster is allowed arbi-
trarily. For an intra-cluster call, Dafny prescribes a proof obligation
that gets taken through the program verifier’s reasoning engine. Se-
mantically, each function activation is labeled by a rank—a lexico-
graphic tuple determined by evaluating the function’s decreases
clause upon invocation of the function. The proof obligation for
an intra-cluster call is thus that the rank of the callee is strictly
less (in a language-defined well-founded relation) than the rank
of the caller [20]. For example, for the Fib function, if the rank
of the caller is the natural number n , then the callees have ranks
n − 2 and n − 1 , so Dafny’s well-founded checks pass. Because
these well-founded checks correspond to proving termination of ex-
ecutable code, we will often refer to them as “termination checks”.
The same process applies to methods.

Dafny uses a simple heuristic that, in most common cases,
avoids the need for explicit decreases declarations. However, in
this paper, we show all decreases clauses explicitly, which also
serves as a reminder about which termination checks apply.

1.1 Lemmas
When proving the full correctness of a program, verification often
requires certain properties of user-defined functions. These can
be stated and proved as lemmas. Being a programming language,
Dafny does not have any lemma or proof declaration. Instead, a
lemma is commonly introduced by declaring a method, stating the
property of the lemma in the postcondition (keyword ensures) of
the method, perhaps restricting the domain of the lemma by also
giving a precondition (keyword requires), and using the lemma
by invoking the method [16, 21]. For example, method FibLemma
in Fig. 2 states the property that Fib(n ) is even exactly when n is
a multiple of 3, and the two recursive calls are examples of uses of
the lemma.

When a lemma is given as a method postcondition, the proof
of the lemma consists in verifying that all execution paths of the
method body establish the postcondition—this is nothing but the

1 The examples in the figures can be tried and tweaked online at the
following address http://rise4fun.com/Dafny/id where id is provided
below every figure.
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program ::= decl*

decl ::=
function sig ’ :’ typ decr ’{’ expr ’}’

| function method sig ’ :’ typ decr ’{’ expr ’}’
| predicate sig decr ’{’ expr ’}’
| copredicate sig ’{’ expr ’}’
| method methdef
| ghost method methdef
| comethod methdef
| datatype id typargs ’=’ sig (’|’ sig)*
| codatatype id typargs ’=’ sig (’|’ sig)*

sig ::= id typargs ’(’ [ formal, ... ] ’)’
formal ::= id ’ :’ typ
typ ::= nat | int | bool | id [ ’<’ typ, ... ’>’ ]
typargs ::= [ ’<’ id, ... ’>’ ]
methdef ::= sig contract* [decr] block
contract ::= requires expr | ensures expr
decr ::= decreases expr

stmt ::=
id ’(’ [ expr, ... ] ’)’

| assert expr
| if expr block [ else block ]
| forall id, ... ’|’ expr block
| match expr ’{’ (case pat ⇒ stmt*)* ’}’

block ::= ’{’ stmt* ’}’

expr ::=
false | true | 0 | 1 | ...

| id
| id ’(’ [ expr, ... ] ’)’
| expr ’.’ id
| expr op expr | ¬ expr
| ∀ id, ... • expr
| ∃ id, ... • expr
| if expr then expr else expr
| match expr (case pat ⇒ expr)*

pat ::= id [ ’(’ id, ... ’)’ ]
op ::= ∧ | ∨ | =⇒ | ⇐⇒ | + | - | * | / | %

| = | 6= | ≤ | < | > | ≥

Figure 1. Syntax of the subset of Dafny used in this paper. t*
denotes t repeated 0 or more times, [t] denotes t repeated 0 or 1
times, t, ... denotes t (’,’ t)*, and () are used for grouping.
We ignore semicolons and operator precedence here. Dafny also
includes partial functions, a wide range of imperative constructs,
class declarations, and a module system supporting refinement, but
these are not used in this paper.

ordinary treatment of postconditions in the context of program
verification. One way of writing the FibLemma proof is shown in
Fig. 2, where the method body splits the execution paths based on
whether or not n < 2 holds. In mathematics, we say that the proof
does a case split. For the n < 2 case, the program verifier is able to
construct the proof automatically, simply by applying the definition
of Fib. In the other case, the body makes two recursive calls. The
program verifier then, in its usual manner, checks for each call that
the precondition holds (which, here, simply involves checking that
the integer passed as an argument is a natural number) and checks
that the recursive calls terminate (that is, comparing the ranks of

function Fib(n : nat) : nat
decreases n;

{ if n < 2 then n else Fib(n-2) + Fib(n-1) }

ghost method FibLemma(n : nat)
ensures Fib(n) % 2 = 0 ⇐⇒ n % 3 = 0;
decreases n;

{
if n < 2 {
} else {
FibLemma(n-2);
FibLemma(n-1);

}
}

Figure 2. The well-known Fibonacci function defined in Dafny.
The postcondition of method FibLemma states a property about Fib,
and the body of the method is code that convinces the program
verifier that the postcondition does indeed hold. Thus, effectively,
the method states a lemma and its body gives an inductive proof.
jHRq »

the caller and callee according to the decreases clause).2 Upon
return of each call, the program verifier gets to assume—again, as
a matter of course in program verification—that the postcondition,
instantiated with the actual parameters, holds. In mathematics, this
corresponds to invoking the induction hypothesis. The remaining
proof glue, to go from the two induction hypotheses to the proof
goal, is done automatically by the tool.

Note that there is no explicit proof object being created. Instead,
the underlying SMT solver is asked to prove the postcondition.
This allows user-supplied proof steps to be bigger, more akin to
using exploratory tactics than explicit proofs in an interactive proof
assistant.

It is important to note that the program text shown in Fig. 2
(and, indeed, all the examples in this paper) is all that is given to
the program verifier. That is, there is no further need to guide the
prover in how to carry out the proof.3

Lemmas are stated, used, and proved as methods, which is
useful when the program is verified, but there is no reason to
have such methods available at run time. Indeed, execution of
the method FibLemma would do nothing, except consume time
and stack space. For this reason, a lemma method is typically
declared as ghost, meaning that it is not compiled into code. The
concept of ghost versus non-ghost (that is, “to be compiled” or
“physical”) declarations is an integral part of the Dafny language:
each function, method, variable, and parameter can be declared as
either ghost or non-ghost. Functions are by default ghost, and to
make them executable one needs to say function method. Non-
ghost code is subject to certain restrictions, e.g., one can only use
quantifiers over finite ranges.

2 The verifier also needs to check that the state mutations performed by the
callee are ones the caller is allowed to perform. In this paper, we are not
concerned with mutations, so we will not dwell on this point.
3 If the verifier is unable to complete a proof, it will generate an error
message and it is then up to the user to figure out how to provide more hints.
This is analogous to what happens when a tactic in an interactive proof
assistant fails. How such debugging is done lies outside the scope of this
paper, but we invite interested readers to learn about the Boogie Verification
Debugger [19], which lets the programmer inspect the counterexample
(or failed proof state, if you will) using an interface similar to a regular
debugger.
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ghost method FibLemma(n : nat)
ensures Fib(n) % 2 = 0 ⇐⇒ n % 3 = 0;

{
forall k | 0 ≤ k < n {

FibLemma(k);
}

}

ghost method FibLemma_All()
ensures ∀ n • 0 ≤ n =⇒

(Fib(n) % 2 = 0 ⇐⇒ n % 3 = 0);
{
forall n | 0 ≤ n {

FibLemma(n);
}

}

Figure 3. The forall statement has the effect of applying its body
simultaneously to all values of the bound variables—in the first
example, to all k satisfying 0 6 k < n , and in the second
example, to all non-negative n . Function Fib is defined in Fig. 2,
which gave a different proof of FibLemma. gY1r »

1.2 Aggregate Operations
Dafny provides a program statement that can perform an aggregate
operation: the forall statement. It has uses both in ordinary pro-
gramming (like initializing all elements of an array) and for proofs.
We show two example uses of the forall statement in Fig. 3.

In the first example, the Fib property stated by FibLemma in
Fig. 2 is proved in an alternate way. Instead of invoking the in-
duction hypothesis zero times when n < 2 and two times other-
wise, this alternative FibLemma makes one recursive call for every
k less than n . If this code were executed, it would make an enor-
mous total number of recursive calls, but the method is declared
as ghost, so no worries. The use of the induction hypothesis for all
values smaller than in the proof goal is in mathematics referred to
as strong induction. (In this particular example, only two of those
induction hypotheses are actually useful.)

Dafny sets up some proofs by induction automatically, accord-
ing to a simple heuristic [21]. In the case of FibLemma, Dafny will
in fact insert the strong-induction forall statement automatically,
so the program verifier successfully carries out the proof even if the
user left the body of this ghost method empty.

The second example in Fig. 3 shows what in mathematics
is called universal introduction. Lemma FibLemma is parameter-
ized by any n and states a property of the form P(n) . Accord-
ing to the rule of universal introduction, what FibLemma states
for an arbitrary n , it actually states universally for all n . The
lemma FibLemma_All states the universal property, ∀n • P(n) .
The proof of FibLemma_All uses the forall statement to invoke
FibLemma for every value of n . Note, the fact that the range of n
is infinite is not a worry, since this is just ghost code anyway.

1.3 Inductive Datatypes
Some data structures are conveniently defined inductively, like the
common inductive datatype List in Fig. 4. The datatype List is
parameterized by a type T and has two constructors, Nil (for con-
structing an empty list) and Cons (for constructing a nonempty list
from an element and another list). In Dafny, each constructor C au-
tomatically gives rise to a discriminator C?, and each parameter of a
constructor can be named in order to introduce a corresponding de-
structor. For example, if xs is the list Cons(x , ys ), then xs .Cons?
and xs .head = x hold.

datatype List<T> = Nil | Cons(head : T, tail : List)

function Append(xs : List, ys : List) : List
decreases xs;

{
match xs
case Nil ⇒ ys
case Cons(x, rest) ⇒ Cons(x, Append(rest, ys))

}

ghost method AppendIsAssociative(xs : List, ys : List,
zs : List)

ensures Append(Append(xs, ys), zs) =
Append(xs, Append(ys, zs));

decreases xs;
{
match xs {
case Nil ⇒
case Cons(x, rest) ⇒

AppendIsAssociative(rest, ys, zs);
}

}

Figure 4. A standard inductive definition of a generic List type
and a function Append that concatenates two lists. The ghost
method states the lemma that Append is associative, and its body
gives the inductive proof. In several places, we omit the explicit
declarations and uses of List’s type parameter, since in common
cases, Dafny is able to fill these in automatically. ntQL »

Dafny insists that every type be inhabited, which is ensured by
a syntactic check of grounding in each cluster of mutually recur-
sive datatypes. For example, if the Nil constructor were omitted
from Fig. 4, then Dafny would complain that cyclic dependencies
prevent the construction of any List value.

A value of an inductive datatype is a finite tree, where each
internal node is a constructor of some inductive datatype and each
leaf is a nullary constructor of some inductive datatype, a pointer
into the heap, or a value of some co-inductive datatype. For this
purpose, booleans and integers are inductive datatypes (represented
during reasoning as SMT integers and at run time as big-nums).
Dafny predefines a partial well-founded order (“proper subtree
of”) on values of inductive datatypes. Pointers and values of co-
inductive datatypes are not included in that order.

For inductive datatypes, it is natural to give related functions
and proofs inductively as well. For example, Figure 4 defines a
function Append on lists and proves a lemma that Append is as-
sociative. The rank of the function (and method, respectively), as
given by the decreases clause, is the datatype value xs . The body
of the function uses a typical match expression, which gives a
convenient way to deconstruct values. The method uses an anal-
ogous match statement. As in the FibLemma example, the body
of AppendIsAssociative can be left empty—the implicit forall
statement inserted by Dafny’s induction tactic is enough to con-
vince the verifier that the postcondition holds.

2. Co-inductive Definitions
In this section and the next, we describe the design of our co-
inductive extension of Dafny. We start with the constructs for defin-
ing types, values, and properties of possibly infinite data structures.
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codatatype Stream<T> = SNil | SCons(head : T, tail : Stream)

function Up(n : int) : Stream<int>
{ SCons(n, Up(n+1)) }

function FivesUp(n : int) : Stream<int>
decreases 4 - (n - 1) % 5;

{ if n % 5 = 0 then
SCons(n, FivesUp(n+1)) else FivesUp(n+1) }

Figure 5. Stream is a co-inductive datatype, whose values are
possibly infinite lists. Function Up returns a stream consisting of
all integers upwards of n and FivesUp returns a stream consisting
of all multiples of 5 upwards of n . The self-call in Up and the first
self-call in FivesUp sit in productive positions and are therefore
classified as co-recursive calls, exempt from termination checks.
The second self-call in FivesUp is not in a productive position
and is therefore subject to termination checking; in particular, each
recursive call must decrease the rank defined by the decreases
clause. CplhV »

2.0 Defining Co-inductive Datatypes
Each value of an inductive datatype is finite, in the sense that it can
be constructed by a finite number of calls to datatype constructors.
In contrast, values of a co-inductive datatype, or co-datatype for
short, can be infinite. For example, a co-datatype can be used to
represent infinite trees.

Syntactically, the declaration of a co-datatype in Dafny looks
like that of a datatype, giving prominence to the constructors (fol-
lowing Coq [11]). Like for inductive datatypes, each constructor
automatically gives rise to a discriminator, each parameter of a con-
structor can be named to introduce a corresponding destructor, and
match expressions and statements can also be used to destruct val-
ues. For example, Fig. 5 defines a co-datatype Stream of possibly
infinite lists. Like the analogous finite list datatype, Stream declares
two constructors, SNil and SCons, and names the two destructors
of SCons streams. In contrast to datatype declarations, there is no
grounding check for co-datatypes—since a co-datatype admits in-
finite values, the type is nevertheless inhabited.

2.1 Creating Values of Co-datatypes
To define values of co-datatypes, one could imagine a “co-function”
language feature: the body of a “co-function” could include pos-
sibly never-ending self-calls that are interpreted by a greatest fix-
point semantics (like a CoFixpoint in Coq). Dafny uses a different
design: it offers only functions (not “co-functions”), but it classifies
each intra-cluster call as either recursive or co-recursive. Recursive
calls are subject to termination checks, as we described in the previ-
ous section. Co-recursive calls may be never-ending, which is what
is needed to define infinite values of a co-datatype. For example,
function Up(n ) in Fig. 5 is defined as the stream of numbers from
n upward: it returns a stream that starts with n and continues as
the co-recursive call Up(n + 1).

To ensure that co-recursive calls give rise to mathematically
consistent definitions, they must occur only in productive positions.
This says that it must be possible to determine each successive
piece of a co-datatype value after a finite amount of work. This con-
dition is satisfied if every co-recursive call is syntactically guarded
by a constructor of a co-datatype, which is the criterion Dafny uses
to classify intra-cluster calls as being either co-recursive or recur-
sive. Calls that are classified as co-recursive are exempt from ter-
mination checks.

Because co-recursive calls may be never-ending, it would be
no good to eagerly evaluate them at run time. Instead, the Dafny

copredicate Pos(s : Stream<int>)
{
match s
case SNil ⇒ true
case SCons(x, rest) ⇒ x > 0 ∧ Pos(rest)

}
// Automatically generated by the Dafny compiler :

predicate Pos#[_k : nat](s : Stream<int>)
decreases _k;

{
if _k = 0 then true else

match s
case SNil ⇒ true

case SCons(x, rest) ⇒ x > 0 ∧ Pos#[_k-1](rest)
}

Figure 6. A co-predicate Pos that holds for those integer streams
whose every integer is greater than 0. The co-predicate definition
implicitly also gives rise to a corresponding prefix predicate, Pos#.
The syntax for calling a prefix predicate sets apart the argument that
specifies the prefix length, as shown in the last line; for this figure,
we took the liberty of making up a coordinating syntax for the
signature of the automatically generated prefix predicate. eYml »

compiler turns co-recursive calls into parameter-less closures, eval-
uated at run time when the enclosing constructor is destructed (if
ever). For example, each co-recursive call to Up in Fig. 5 is evalu-
ated lazily.

A consequence of the productivity checks and termination
checks is that, even in the absence of talking about least or great-
est fix-points of self-calling functions, all functions in Dafny are
deterministic. Since there is no issue of several possible fix-points,
the language allows one function to be involved in both recursive
and co-recursive calls, as we illustrate by the function FivesUp in
Fig. 5.

2.2 Stating Properties of Co-datatypes
Determining properties of co-datatype values may require an in-
finite number of observations. To that avail, Dafny provides co-
predicates. Self-calls to a co-predicate need not terminate. Instead,
the value defined is the greatest fix-point of the given recurrence
equations. Figure 6 defines a co-predicate that holds for exactly
those streams whose payload consists solely of positive integers.

Some restrictions apply. To guarantee that the greatest fix-point
always exists, the (implicit functor defining the) co-predicate must
be monotonic. This is enforced by a syntactic restriction on the
form of the body of co-predicates: after conversion to negation nor-
mal form (i.e., pushing negations down to the atoms), intra-cluster
calls of co-predicates must appear only in positive positions—that
is, they must appear as atoms and must not be negated. Addition-
ally, to guarantee soundness later on, we require that they appear in
co-friendly positions—that is, in negation normal form, when they
appear under existential quantification, the quantification needs to
be limited to a finite range. This is formalized in Fig. 7; in Sect. 4,
we also give some examples in Fig. 14. Since the evaluation of a
co-predicate might not terminate, co-predicates are always ghost.
There is also a restriction on the call graph that a cluster containing
a co-predicate must contain only co-predicates, no other kinds of
functions.

A copredicate declaration P defines not just a co-predicate, but
also a corresponding prefix predicate P#. A prefix predicate is a fi-
nite unrolling of a co-predicate. The prefix predicate is constructed
from the co-predicate by
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[l ]p = 	p l l is bool or int literal
[x ]p = 	p x x is variable reference

[P(a, ..., z )]1 = P([a]0, ..., [z ]0)
[P(a, ..., z )]p = ⊥
[f (a, ..., z )]p = 	p f ([a]0, ..., [z ]0)

[a.d ]p = 	p [a]0.d
[¬a]0 = ¬[a]0
[¬a]p = [a]−p

[a ∧ b]−1 = [a]−1 ∨ [b]−1

[a ∨ b]−1 = [a]−1 ∧ [b]−1

[a ∧ b]p = [a]p ∧ [b]p
[a ∨ b]p = [a]p ∨ [b]p

[a =⇒ b]p = [¬a ∨ b]p
[a ⇐⇒ b]p = [(a =⇒ b) ∧ (b =⇒ a)]p

[a op b]p = 	p ([a]0 op [b]0)
[∃ x • a]−1 = [∀ x • ¬a]1
[∀ x • a]−1 = [∃ x • ¬a]1
[∀ x • a]p = ∀ x • [a]p

[∃ x • a ≤ x < b ∧ c]1 = ∃ x • [a ≤ x < b]0 ∧ [c]1
[∃ x • a]p = ∃ x • [a]0

[if a then b else c]p = if [a]0 then [b]p else [c]p
[match a (case p⇒ b)...]p = match [a]0 (case p⇒ [b]p)...

Figure 7. Rules for co-friendliness. The transformer [a]p con-
verts expression a into negation normal form, but changes intra-
cluster calls to co-predicates not in positive and co-friendly posi-
tions into ⊥ . p indicates the context: positive (1 ), negative (−1 ),
or neither (0 ). An expression a is allowed as the body of a co-
predicate iff [a]1 does not contain a subexpression ⊥ . a , b , c ,
and z are any expressions, 	−1 is ¬ , whereas 	0 and 	1 are
identity, P is an intra-cluster co-predicate invocation, f is an in-
vocation of any function or co-predicate in a lower cluster, d is
a destructor, and p is a pattern. Dafny employs a simple, conser-
vative heuristic for detecting finite ranges in existential quantifica-
tions. One such heuristic rule is shown above; others apply to the
built-in set membership predicate, etc.

• adding a parameter _k of type nat to denote the prefix length,
• adding the clause decreases _k; to the prefix predicate (the

co-predicate itself is not allowed to have a decreases clause),
• replacing in the body of the co-predicate every intra-cluster call
Q(args ) to a co-predicate by a call Q#[_k − 1](args ) to the
corresponding prefix predicate, and then

• prepending the body with if _k = 0 then true else.

For example, for co-predicate Pos, the definition of the prefix
predicate Pos# is as suggested in Fig. 6. Syntactically, the prefix-
length argument passed to a prefix predicate to indicate how many
times to unroll the definition is written in square brackets, as in
Pos#[k ](s ). The definition of Pos# is available only at clusters
strictly higher than that of Pos; that is, Pos and Pos# must not be
in the same cluster. In other words, the definition of Pos cannot
depend on Pos#.

Equality between two values of a co-datatype is a built-in ghost
co-predicate. It has the usual equality syntax s = t , and the corre-
sponding prefix equality is written s =#[k ] t .

3. Co-inductive Proofs
From what we have said so far, a program can make use of proper-
ties of co-datatypes. For example, a method that declares Pos(s )
as a precondition can rely on the stream s containing only posi-

ghost method UpPosLemmaK(k : nat, n : int)
requires n > 0;

ensures Pos#[k](Up(n));
{
if k 6= 0 {

// this establishes Pos#[k-1](Up(n).tail)
UpPosLemmaK(k-1, n+1);

}
}

ghost method UpPosLemma(n : int)
requires n > 0;
ensures Pos(Up(n));

{
forall k | 0 ≤ k { UpPosLemmaK(k, n); }

}

Figure 8. The method UpPosLemma proves Pos(Up(n )) for ev-
ery n > 0 . We first show Pos# [k ](Up(n )), for n > 0
and an arbitrary k , and then use the forall statement to show
∀ k • Pos# [k](Up(n )). Finally, the axiom D(Pos) is used
(automatically) to establish the co-predicate. kSAwb »

tive integers. In this section, we consider how such properties are
established in the first place.

3.0 Properties About Prefix Predicates
Among other possible strategies for establishing co-inductive prop-
erties (e.g., [7, 15]), we take the time-honored approach of reducing
co-induction to induction [25]. More precisely, Dafny passes to the
SMT solver an assumption D(P) for every co-predicate P , where:

D(P) ≡ ∀ x • P(x ) ⇐⇒ ∀ k • P#k (x )

In Sect. 5, we prove soundness of such assumptions, provided the
co-predicates meet the co-friendly restrictions from Sect. 2.2. An
example proof of Pos(Up(n )) for every n > 0 is shown in Fig. 8.

3.1 Co-methods
As we just showed, with help of the D axiom we can now prove
a co-predicate by inductively proving that the corresponding prefix
predicate holds for all prefix lengths k . In this section, we introduce
co-method declarations, which bring about two benefits. The first
benefit is that co-methods are syntactic sugar and reduce the tedium
of having to write explicit quantifications over k . The second
benefit is that, in simple cases, the bodies of co-methods can be
understood as co-inductive proofs directly.

We start by illustrating the second benefit. Figure 9 shows the
definition of an append function for streams and a proof, using a
co-method, that append is associative. Note that the co-predicate
we use in this example is the built-in equality on co-datatype
values. Intuitively, we can understand the proof as obtaining the
co-inductive hypothesis of the proof goal (that is, with rest instead
of xs ) and adding some (automatically constructed) proof glue
to reach the proof goal. Note the striking similarity between the
inductive situation in Fig. 4 and the co-inductive situation in Fig. 9.

3.2 Prefix Methods
To understand why the code in Fig. 9 is a sound proof, let us now
describe the details of the desugaring of co-methods. In analogy to
how a copredicate declaration defines both a co-predicate and a
prefix predicate, a comethod declaration defines both a co-method
and prefix method. In the call graph, the cluster containing a co-
method must contain only co-methods and prefix methods, no other
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function SAppend(xs : Stream, ys : Stream) : Stream
{
match xs
case SNil ⇒ ys
case SCons(x, rest) ⇒ SCons(x, SAppend(rest, ys))

}

comethod SAppendIsAssociative(xs : Stream, ys :Stream,
zs : Stream)

ensures SAppend(SAppend(xs, ys), zs) =
SAppend(xs, SAppend(ys, zs));

{
match xs {

case SNil ⇒
case SCons(x, rest) ⇒
SAppendIsAssociative(rest, ys, zs);

}
}

Figure 9. The definition of append on streams and the co-method
that states and proves the associativity of append are almost exactly
the same as the ones for finite lists, cf. Fig. 4. The only difference
is the lack of decreases clauses and the use of a comethod. Recall
that equality on co-datatypes, written =, is a built-in co-predicate.
8pll2 »

methods. By decree, a co-method and its corresponding prefix
method are always placed in the same cluster. Both co-methods
and prefix methods are always ghosts.

The prefix method is constructed from the co-method by

• adding a parameter _k of type nat to denote the prefix length,
• replacing in the co-method’s postcondition the positive co-

friendly occurrences of co-predicates by corresponding prefix
predicates, passing in _k as the prefix-length argument,

• prepending _k to the (typically implicit) decreases clause of
the co-method,

• replacing in the body of the co-method every intra-cluster call
M(args ) to a co-method by a call M#[_k − 1](args ) to the
corresponding prefix method, and then

• making the body’s execution conditional on _k 6= 0 .

Note that this rewriting removes all co-recursive calls of co-
methods, replacing them with recursive calls to prefix methods.
These recursive call are, as usual, checked to be terminating. We
allow the pre-declared identifier _k to appear in the original body
of the co-method.4

We can now think of the body of the co-method as being re-
placed by a forall call, for every k , to the prefix method. By
construction, this new body will establish the co-method’s declared
postcondition (on account of the D axiom, which we prove sound
in Sect. 5, and remembering that only the positive co-friendly oc-
currences of co-predicates in the co-method’s postcondition are
rewritten), so there is no reason for the program verifier to check it.

Figure 10 illustrates the result of desugaring the co-method
SAppendIsAssociative from Fig. 9. In the recursive call of the
prefix method, there is a proof obligation that the prefix-length ar-
gument _k−1 is a natural number. Conveniently, this follows from
the fact that the body has been wrapped in an if _k 6= 0 statement.
This also means that the postcondition must hold trivially when

4 Note, two places where co-predicates and co-methods are not analogous
are: co-predicates must not make recursive calls to their prefix predicates,
and co-predicates cannot mention _k.

// Desugaring automatically generated by Dafny

ghost method SAppendIsAssociative#[_k : nat]
(xs : Stream, ys :Stream, zs : Stream)

ensures SAppend(SAppend(xs, ys), zs) =#[_k]
SAppend(xs, SAppend(ys, zs));

decreases _k;
{
if _k 6= 0 {
match xs {

case SNil ⇒
case SCons(x, rest) ⇒
SAppendIsAssociative#[_k-1](rest, ys, zs);

}
}

}

ghost method SAppendIsAssociative(xs : Stream, ys :Stream,
zs : Stream)

ensures SAppend(SAppend(xs, ys), zs) =
SAppend(xs, SAppend(ys, zs));

{
forall k | 0 ≤ k {

SAppendIsAssociative#[k](xs, ys, zs);
}

}

Figure 10. Desugaring of the co-method SAppendIsAssociative
in Fig. 9, showing the generated prefix method as well as the
replacement of the body of the co-method. The first method uses
induction on _k to establish its postcondition. Recall that =#[ ·]
is the syntax for the prefix predicate of the built-in co-datatype
equality. The postcondition of the second method follows from the
forall statement and D axiom. The syntax for calling a prefix
method sets apart the argument that specifies the prefix length; for
this figure, we took the liberty of making up a coordinating syntax
for the signature of the automatically generated prefix method.
XxQK »

_k = 0 , or else a postcondition violation will be reported. This is
an appropriate design for our desugaring, because co-methods are
expected to be used to establish co-predicates, whose correspond-
ing prefix predicates hold trivially when _k = 0 . (To prove other
predicates, use an ordinary ghost method, not a co-method.)

It is interesting to compare the intuitive understanding of the
co-inductive proof in Fig. 9 with the inductive proof in Fig. 10.
Whereas the inductive proof is performing proofs for deeper and
deeper equalities, the co-method can be understood as producing
the infinite proof on demand.

3.3 Automation
Because co-methods are desugared into ghost methods whose post-
conditions benefit from induction, Dafny’s usual induction tactic
kicks in [21]. Effectively, it adds a forall statement at the be-
ginning of the prefix method’s body, invoking the prefix method
recursively on all smaller tuples of arguments. Typically, the use-
ful argument tuples are those with a smaller value of the implicit
parameter _k and any other values for the other parameters, but
the forall statement will also cover tuples with the same _k and
smaller values of the explicit parameters.

Thanks to the induction tactic, the inductive ghost methods
for proving associativity in Figs. 4 and 10 are verified auto-
matically even if they are given empty bodies. So, co-method
SAppendIsAssociative in Fig. 9 is also verified automatically
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comethod FivesUpPos(n : int)
requires n > 0;
ensures Pos(FivesUp(n));
decreases 4 - (n - 1) % 5;

{

if n % 5 = 0 { FivesUpPos#[_k-1](n + 1); }

else { FivesUpPos#[_k](n + 1); }
}

Figure 11. A proof that, for any positive n , all values in the
stream FivesUp(n ) are positive. The proof uses both induction
and co-induction. To illustrate what is possible, we show both
calls as explicitly targeting the prefix method. Alternatively, the
first call could have been written as a call FivesUpPos(n + 1) to
the co-method, which would desugar to the same thing and would
more strongly suggest the intuition of appealing to the co-inductive
hypothesis. plBHB »

even if given an empty body—it is as if Dafny had a tactic for
automatic co-induction as well.

4. More Examples
In this section, we give further illustrative examples.

FivesUp The function FivesUp defined in Fig. 5 calls itself both
recursively and co-recursively. To prove that FivesUp(n ) satis-
fies Pos for any positive n requires the use of induction and co-
induction together (which may seem mind boggling). We give a
simple proof in Fig. 11. Recall that the decreases clause of the
prefix method implicitly starts with _k, so the termination check
for each of the recursive calls passes: the first call decreases _k,
whereas the second call decreases the expression given explicitly.
We were delighted to see that the decreases clause (copied from
the definition of FivesUp) is enough of a hint to Dafny; it needs to
be supplied manually, but the body of the co-method can in fact be
left empty.

Filter The central issue in the FivesUp example is also found in
the more useful filter function. It has a straightforward definition in
Dafny:

function Filter(s : IStream) : IStream
requires AlwaysAnother(s);
decreases Next(s);

{ if P(s.head)
then ICons(s.head, Filter(s.tail))
else Filter(s.tail)

}

In the else branch, Filter calls itself recursively. The difficulty
is proving that this recursion terminates. In fact, the recursive call
would not terminate given an arbitrary stream; therefore, Filter
has a precondition that elements satisfying P occur infinitely often.
To show progress toward the subsequent element of output, func-
tion Next counts the number of steps in the input s until the next
element satisfying P.

The full example, which also proves some theorems about
Filter, is found at 2slrL ». The filter function has also been
formalized (with more effort) in other proof assistants, for example
by Bertot in Coq [2].

Zip In Fig. 12, we define streams that are always infinite, some
zip-related functions, and some properties of these (cf. [12]). The
proof of EvenZipLemma is fully automatic, whereas the others re-
quire a single recursive call to be made explicitly. The forall state-

codatatype IStream<T> = ICons(head : T, tail : IStream)

function zip(xs : IStream, ys : IStream) : IStream {
ICons(xs.head, ICons(ys.head, zip(xs.tail, ys.tail)))

}
function even(xs : IStream) : IStream {
ICons(xs.head, even(xs.tail.tail))

}
function odd(xs : IStream) : IStream { even(xs.tail) }
function bzip(xs : IStream, ys : IStream, f : bool)

: IStream
{ if f then ICons(xs.head, bzip(xs.tail, ys, ¬f))
else ICons(ys.head, bzip(xs, ys.tail, ¬f))

}

comethod EvenOddLemma(xs : IStream)
ensures zip(even(xs), odd(xs)) = xs;

{ EvenOddLemma(xs.tail.tail); }
comethod EvenZipLemma(xs : IStream, ys : IStream)
ensures even(zip(xs, ys)) = xs;

{ /* Automatic. */ }
comethod BzipZipLemma(xs : IStream, ys : IStream)

ensures zip(xs, ys) = bzip(xs, ys, true);
{ BzipZipLemma(xs.tail, ys.tail); }

Figure 12. Some standard examples of combining and dividing
infinite streams (cf. [12]). ZXDe »

copredicate True(s : IStream) { True(s.tail) }
comethod TrueLemma(s : IStream)
ensures True(s);

{ TrueLemma(s.tail); }
comethod FalseLemma(s : IStream)

ensures false;
// ERROR : postcondition violation
{ FalseLemma(s.tail); }
comethod BadProof(s : IStream)

ensures True(s);
// ERROR : recursive call does not terminate

{ BadProof#[_k](s.tail); }

Figure 13. Since co-predicates are defined as greatest fix-points,
True(s ) holds for any s , as is confirmed by the fact that co-
method TrueLemma verifies. A sanity check of soundness, trying
to verify co-method FalseLemma does indeed result in an error
message. Co-method BadProof fails to verify because the recursion
is not well-founded. KsZl »

ment inserted automatically by Dafny’s induction tactic is in prin-
ciple strong enough to prove each of the three lemmas, but the in-
completeness of reasoning with quantifiers in SMT solvers makes
the explicit calls necessary.

False Using the IStream type from the previous example, Fig. 13
shows basic sanity checks for co-inductive soundness. The part
of the verification that fails for FalseLemma is the case where
_k = 0 . The figure also shows a buggy attempt to prove True(s ),
incorrectly passing in _k as the prefix length. Since this leads to
infinite recursion, Dafny responds with an error message.

Co-predicate examples Figure 14 illustrates the co-friendly re-
striction.
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copredicate NotIn<T>(n : T, s : IStream)
{ s.head 6= n ∧ NotIn(n, s.tail) }

// There is an element not in the stream
predicate NotAll(s : IStream)
{ ∃ n • NotIn(n, s) }

// There is a non-zero number not in the stream; ERROR
copredicate NotAll’(n : int, s : IStream<int>)
{ if n = 0 then ∃ k • k 6= 0 ∧ NotAll’(k, s)
else n 6= s.head ∧ NotAll’(n, s.tail) }

function Skip(n : int, s : IStream) : IStream
{ if n ≤ 0 then s else Skip(n - 1, s.tail) }

// n occurs infinitely often in s
copredicate InfOften<T>(n : T, s : IStream)
{ (∃ k • Skip(k, s).head = n) ∧ InfOften(n, s.tail) }

// Alternative formulation - self-call under ∀ is OK
copredicate InfOften’<T>(n : T, s : IStream)
{ (∃ k • Skip(k, s).head = n) ∧
(∀ k • InfOften’(n, Skip(k, s))) }

// ERROR
copredicate InfOften’’<T>(n : T, s : IStream)
{ ∃ k • Skip(k, s).head = n ∧

InfOften’’(n, Skip(k, s)) }

// OK, quantification is bounded
copredicate QuiteOften(n : int, s : IStream<int>)
{ ∃ k • 0 ≤ k < n ∧ Skip(k, s).head = n ∧

QuiteOften(n, Skip(k, s).tail) }

Figure 14. Examples of co-predicates which pass and fail the
co-friendly restriction. NotAll’ and InfOften’’ fail because they
call themselves recursively under an unbounded existential quan-
tifier. Calls under no quantifier (NotIn, InfOften), under a uni-
versal quantifier (InfOften’), or under a bounded existential
(QuiteOften) are permitted. zZCW »

Least and Greatest Fix-points There is an asymmetry in the de-
sign of Dafny. The datatype and codatatype declarations de-
fine inductive and co-inductive datatypes, respectively. The lan-
guage provides both predicate and copredicate declarations,
which may suggest that a predicate states an inductive prop-
erty defined as a least fix-point, just like a copredicate states a
co-inductive property defined as a greatest fix-point. This is the
case with Fixpoint versus CoFixpoint in Coq, but in Dafny a
predicate a simply a function that returns a boolean value—
its recursive calls are checked to terminate and the predicate thus
yields a particular value without the need to say anything about fix-
points. Therefore, the first predicate in Fig. 15 yields a verification
error, complaining about termination.

Iterates In a paper that shows co-induction being encoded in
the proof assistant Isabelle/HOL, Paulson [31] defines a function
Iterates(f, M) that returns the stream

M , f (M ), f 2(M ), f 3(M ), . . .

In Dafny syntax, the function is defined as

function Iterates<A>(M : A) : Stream<A>
{ SCons(M, Iterates(f(M))) }

Paulson defines a function Lmap:

// ERROR : recursive call doesn’t terminate
predicate IsFinite_LeastFixpoint(s : Stream)
{ match s
case SNil ⇒ true
case SCons(x, tail) ⇒ IsFinite_LeastFixpoint(tail)

}

predicate IsFinite(s : Stream)
{ ¬IsInfinite(s) }
copredicate IsInfinite(s : Stream)
{ match s
case SNil ⇒ false
case SCons(x, tail) ⇒ IsInfinite(tail)

}

predicate IsFinite’(s : Stream)
{ ∃ n • 0 ≤ n ∧ Tail(s, n) = SNil }
function Tail(s : Stream, n : nat) : Stream
{ if s = SNil ∨ n = 0 then s else Tail(s.tail, n-1) }

Figure 15. Predicates in Dafny are always deterministic and well-
defined, and thus have only one fix-point. Therefore, the first pred-
icate above is not how to characterize finite streams; in fact, Dafny
does not accept this definition. Finite streams can be characterized,
however, either by negating a largest fix-point or by using an exis-
tential. H52v »

function Lmap(s : Stream) : Stream
{ match s
case SNil ⇒ SNil
case SCons(a, tail) ⇒ SCons(f(a), Lmap(tail))

}

and proves that any function h satisfying

h(M) = SCons(M, Lmap(h(M)))

is indeed the function Iterates. This proof and all other examples
from Paulson’s paper can be done in Dafny, see S7aB ».

Wide Trees Let us consider defining a type of trees that are
possibly infinite in width (that is, with a possibly infinite number
of children) but finite in height. We start with the declaration

datatype Tree = Node(children : Stream<Tree>)

By itself, this declaration will allow structures that are infinite in
height (the situation in Agda is similar [0]). The part of a Tree
that can be inducted over is finite, in fact of size just 1 (recall
from Sect. 1.3 that an inductive datatype value ends at its leaves,
which in this case is the co-datatype value accessed via the de-
structor children). To restrict the height, we declare a predicate
IsFiniteHeight:

predicate IsFiniteHeight(t : Tree)
{ ∃ n • 0 ≤ n ∧ LowerThan(t.children, n) }
copredicate LowerThan(s : Stream<Tree>, n : nat)
{ match s
case SNil ⇒ true
case SCons(t, tail) ⇒

1 ≤ n ∧
LowerThan(t.children, n-1) ∧ LowerThan(tail, n)

}

The use of a predicate to characterize an interesting subset of a type
is typical in Dafny (also in the imperative parts of the language; for
example, class invariants are just ordinary predicates [20]). QRqp »
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Infinite Paths A simple example from Hur et al. [13] defines a
predicate stating that a relation R extends infinitely from a given
element x. We define it in Dafny as follows:

predicate InfPath(x : T)
{ ∃ p • Follows(x, p) }
copredicate Follows(x : T, path : IStream<T>)
{ R(x, path.head) ∧ Follows(path.head, path.tail) }

Note how this definition satisfies the co-friendly restriction, whereas
the following one would not:

copredicate InfPath’(x : T)
{ ∃ y • R(x, y) ∧ InfPath’(y) }

The example also defines an extent of length n:

predicate Path(n : nat, x : T)
{ n = 0 ∨ ∃ y • R(x, y) ∧ Path(n-1, y) }

and proves that infinite extent implies any finite extent:

ghost method Theorem(n : nat, x : T)
requires InfPath(x);
ensures Path(n, x);

{ if n 6= 0 {
var p :| Follows(x, p);
Theorem(n-1, p.head);

}
}

Here, we have used Dafny’s assign-such-that statement var z :| Q(z),
which checks ∃ z • Q(z), introduces a variable z, and assigns to
it an arbitrary value satisfying Q(z). uPwg »

5. Soundness
In this section, we formalize and prove the connection between
co-predicates and prefix predicates. More precisely, we prove that
∀ k • P#k (x ) is the greatest fix-point solution of equation defin-
ing P(x ) .

Consider a given cluster of co-predicate definitions, that is, a
strongly connected component of co-predicates:

Pi(xi) = Ci for i = 0 . . .n (0)

The right-hand sides (Ci ) can reference functions, co-predicates,
and prefix predicates from lower clusters, as well as co-predicates
(Pj ) in the same cluster. According to our restrictions in Sect. 2.2,
the cluster contains only co-predicates, no prefix predicates or other
functions; so, any prefix predicate referenced in Ci is necessarily
from a lower cluster.

A cluster can be syntactically reduced to a single co-predicate,
e.g.:

P(i , x0, . . . , xn) = 0 ≤ i ≤ n ∧
((i = 0 ∧ C0σ) ∨ . . . ∨
(i = n ∧ Cnσ))

where σ = [Pi := (λ xi • P(i , x0, . . . , xn)) ]
n
i=0

(1)

In what follows, we assume P(x ) = Cx to be the definition of
P , where x stands for the tuple of arguments and Cx for the body
above. Let:

F+(A) = {x | Cx [P := A]}
F (A) = {x | ¬Cx [P := ¬A]} (2)

We liberally mix the notation of a set and its characteristic predicate
using ¬ to mean set complement. We defined the semantics of a co-
predicate to be the greatest fix-point of F+ . We are instead going
to work with F and later use the following trivial lemma:

LEMMA 0. gfp(F+) = ¬lfp(F )

DEFINITION 0. A function f is Scott-continuous iff it is monotonic
(i.e., A ⊆ B =⇒ f (A) ⊆ f (B) ), and for any V and v such
that v ∈ f (V ) there exists a finite V0 such that V0 ⊆ V and
v ∈ f (V0) .5

LEMMA 1 (Kleene fix-point theorem). If f is Scott-continuous,
then lfp(f ) =

⋃
i f

i(∅) .

LEMMA 2. If ψ = [ψ]1 , ⊥ doesn’t occur in ψ , and ψ[P := ¬V ]
evaluates to false, then there exists finite set K (ψ,V ) , such that
ψ[P := ¬K (ψ,V )] evaluates to false.

Proof: By induction on the structure of ψ .

0. if ψ is ψ0 ∨ ψ1 then both ψ0 and ψ1 have to be false so
we apply the lemma on both and let K (ψ,V ) = K (ψ0,V ) ∪
K (ψ1,V )

1. if ψ is ψ0 ∧ ψ1 then ψi evaluates to false for i = 0 or i = 1
and K (ψ,V ) = K (ψi ,V )

2. if ψ is ∃ x • e0 ≤ x ≤ e1 =⇒ ψ0 and e0 evaluates to v0
and e1 to v1 , then we take K (ψ,V ) =

⋃
v0≤v≤v1

K (ψ0[x :=
v ],V ) as all ψ0[x := v ] also evaluate to false

3. if ψ is ∀ x • ψ0 , then we find a witness v for which ψ0[x :=
v ] is false and let K (ψ,V ) = K (ψi [x := v ],V )

4. if ψ is P(t) and t evaluates to v then K (ψ,V ) = {v}
5. otherwise P does not occur in ψ and we take K (ψ,V ) = ∅

ut

LEMMA 3. F is Scott-continuous.

Proof: F is monotonic because A occurs only positively in
Cx [P := A] , and thus also in ¬Cx [P := ¬A] . Let us pick v and
V such that v ∈ F (V ) . By Lemma 2, we get v ∈ F (K ([Cx [x :=
v ]]1,V )) . ut

DEFINITION 1. Let P# be the prefix predicate corresponding to
P . We will write the prefix-length argument k as a superscript, as
in P#k . The prefix predicates are defined inductively as follows:

P#0(x ) ≡ > (3)

P#k+1(x ) ≡ C [P := P#k ] (4)

LEMMA 4. ¬(x ∈ F i(∅)) ⇐⇒ P#i(x )

Proof: By induction on i . ut

THEOREM 0.

x ∈ gfp(F+) ⇐⇒ ∀ i • P#i(x )

Proof:

x ∈ gfp(F+)
= { By Lemma 0. }
¬(x ∈ lfp(F ))

= { By Lemmas 1 and 3. }
¬(x ∈

⋃
i F

i(∅))
= { sets. }
∀ i • ¬(x ∈ F i(∅))

= { Lemma 4. }
∀ i • P#i(x ) ut

5 This definition captures computational essence of continuity—one only
needs to look at finite input to produce an element of output. An alternative
equivalent definition is often used where for any directed set D we have⋃

f (D) = f (
⋃

D) .
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6. Related Work
Most previous attempts at verifying properties of programs us-
ing co-induction have been limited to program verification envi-
ronments embedded in interactive proof assistants. Early work in-
cludes an Isabelle/HOL package for reasoning about fix-points and
applying them to inductive and co-inductive definitions [31]. The
package was building from first principles and apparently lacked
much automation. Later, a variant of the circular co-induction proof
rule [33] was used in the CoCasl object-oriented specification sys-
tem [12]. In CoCasl, as in the CIRC [24] prover embedded in the
Maude term rewriting system, the automation is quite good.

Co-induction has long history in the Coq interactive proof as-
sistant [7, 11]. A virtue of the standard co-induction tactic in Coq
is that the entire proof goal becomes available as the co-induction
hypothesis. One must then discipline oneself to avoid using it ex-
cept in productive instances, something that is not checked until the
final Qed command.

The language and proof assistant Agda [6, 28], which uses de-
pendent types based on intuitionistic type theory, has some support
for co-induction. Co-recursive datatypes and calls are indicated in
the program text using the operators ∞ and ] (see, e.g., [0]). In
Agda, proof terms are authored manually; there is no tactic lan-
guage and no SMT support to help with automation.

Another programming language with support for induction and
co-induction is Charity [8]. The language does not seem to have re-
ceived much use, however. And although its design goals included
assured termination of programs, the language did not use any pro-
gram verifier to assure properties beyond termination.

Moore has verified the correctness of the compiler for the small
language Piton [26]. The correctness theorem considers a run of
k steps of a Piton program and shows that m steps of the com-
piled version of the program behave like the original, where m is
computed as a function of k and k is an arbitrary natural number.
One might also be interested in proving the compiler correctness
for infinite runs of the Piton program, which could perhaps be fa-
cilitated by defining the Piton semantics co-inductively (cf. [22]).
If the semantics-defining co-predicates satisfied our co-friendly re-
striction, then our D axiom would reduce reasoning about infinite
runs to reasoning about all finite prefixes of those runs.

Our method of handling co-induction can be applied in any
prover that readily handles induction. This includes verifiers like
VCC [9] and VeriFast [14], but also interactive proof assistants. As
shown in Fig. 11, induction and co-induction can benefit from the
same automation techniques, so we consider this line of inquiry
promising.

7. Conclusions
We have presented a method for reasoning about co-inductive prop-
erties, which requires only minor extensions of a verifier that al-
ready supports induction. In Dafny, the induction itself is built
on top of off-the-shelf state-of-the-art first-order SMT technol-
ogy [10], which provides high automation. In our initial experi-
ence, the co-inductive definitions and proofs seem accessible to
users without a large degree of clutter. Even so, we suspect that
further automation is possible once techniques for mechanized co-
induction reach a maturity more akin to what is provided for induc-
tion by tools today (e.g., [3, 17, 18, 21, 27, 29, 34]). With possible
applications in both verifiers and other proof assistants, our work
of making co-induction available in an SMT-based verifier takes
a step in the direction of reducing the human effort in reasoning
about co-induction.
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