
Appeared in Communications of the ACM 30, 7 (July 1987), 594-599.

Printing Common Words

1. Introduction. In describing Don Knuth’s WEB sys-
tem in one of his “Programming Pearls” [Communi-
cations of the ACM 29, 5 (May 1986), 364–369], Jon
Bentley “assigned” the following programming problem:
“Given a text file and an integer k, you are to print the
k most common words in the file (and the number of
their occurrences) in decreasing frequency.”

It is unclear from this problem statement what to do
with “ties”, that is, does k refer to words or word fre-
quencies? For example, in the problem statement, “the”
occurs three times, “k”, “in”, “and”, and “file” each oc-
cur twice, and the rest of the words each occur once. If
the program is invoked with the statement as input and
k = 2, which word should be output as the second most
common word? A rephrasing of the problem removes the
ambiguity: “Given a text file and an integer k, you are
to print the words (and their frequencies of occurrence)
whose frequencies of occurrence are among the k largest
in order of decreasing frequency.”

Using this problem statement, the output of the pro-
gram with the original problem statement as input and
with k = 2 is

3 the

2 file

2 and

2 in

2 k

Bentley posed this problem to present a “real” exam-
ple of WEB usage. For more information about WEB, see
D. E. Knuth, ‘Literate Programming’, The Computer
Journal 27, 2 (May 1985), 97–111. Knuth’s solution ap-
pears in Communications of the ACM 29, 6 (June 1986),
471–483, along with a review by Doug McIlroy.

The solution given here is written in the C program-
ming language and presented using the loom system to
generate the printed program and its explanation. loom

is a preprocessor whose input is a text file with embed-
ded references to fragments of the program. loom re-
trieves these fragments, optionally pushes them through
arbitrary filters, and integrates the result into the out-
put.

loom’s output is usually input to a document format-
ter, such as troff or TEX. loom was originally written by
Janet Incerpi and Robert Sedgewick and used in prepa-
ration of Sedgewick’s book Algorithms (Addison-Wesley,
Reading, Mass., 1983). Starting from their program, I
rewrote loom for use in writing a book and papers.

loom is not as ambitious or as comprehensive as WEB.
It does, however, have the virtue of independence from

This work was supported in part by the National Science Foundation

under Grant MCS–8302398.

both formatting and programming languages. It does
not, for example, provide the comprehensive indexing,
cross referencing, or pretty printing facilities of WEB. With
help from its associated filters, loom does provide index-
ing of the identifiers used in the program fragments, al-
though the index is omitted here for brevity. And since
it is not necessary to present the whole program, irrel-
evant details can be omitted permitting the documen-
tation to concentrate on the important aspects of the
programs. I have formatted this program description in
a style similar to WEB for comparison purposes, but the
formatting of loom’s output is not constrained to any one
style. Using loom also has an effect similar to WEB: devel-
oping and writing about programs concurrently affects
both activities dramatically.

2. Definitions. The problem statement does not give
a precise definition of a “word” nor of the details of pro-
gram invocation. Words are given by the set {w | w =
aa∗ and |w| ≤ 100} where a ∈ {a · · · z, A · · · Z}; i.e., a
word is a sequence of one or more upper- or lower-case
letters, up to a maximum of 100 letters. Only the first
100 characters are considered for words longer than 100
characters.

The program, called common, is invoked with a single
optional argument that gives the value of k and reads
its input from the standard input file. If the argument is
omitted, the value of the environment variable PAGESIZE

is used; the default is 22.

3. The Main Program. As suggested in Software
Tools by Kernighan and Plauger (Addison-Wesley, Read-
ing, Mass., 1976), the structure of the program can often
be derived from the structure of the input data. The in-
put to common is a sequence of zero or more words, which
suggests the following structure for the main program:

/* initialize k */
/* initialize word table */
while (getword(buf, MAXWORD) != EOF)

addword(buf);
printwords(k);

where buf is a character array of MAXWORD characters, and
getword places the next word in the input in buf and
returns its length, or EOF at the end of file. MAXWORD is
defined to be 101 to allow room for a terminating null
character. addword adds the word in buf to the table of
words, and printwords(k) prints the words with the k
largest frequencies.

Getting program arguments and environment vari-
ables, such as k and PAGESIZE, are common features of
many UNIX programs and the code is idiomatic. Exam-
ples can be found in The UNIX Programming Environ-
ment by B. W. Kernighan and R. Pike (Prentice-Hall,
1984).

4. Reading Words. getword reads the next word from

the input. This is accomplished by discarding characters
up to the next occurrence of a letter, then gathering up
the letters into the argument buffer:

int getword(buf, size)
char *buf;
int size;
{

char *p;
int c;

p = buf;
while ((c = getchar()) != EOF)

if (isletter(c)) {
do {

if (size > 1) {
*p++ = c;
size--;
}

c = getchar();
} while (isletter(c));

*p = ’\0’;
return p - buf;
}

return EOF;
}

size is compared with 1 to ensure that there is room for
the terminating null character. isletter is a macro that
tests for upper- or lowercase letters:

#define isletter(c) (c >= ’a’ && c <= ’z’ || \
c >= ’A’ && c <= ’Z’)

5. Storing the Words. The words must be stored in
a table along with the number of times they occur in
the input. This table must handle two kinds of access:
while the input is being read, the table is “indexed” with
a word in order to increment its frequency count. After
the input has been read, the entries with the k largest
frequency counts must be located and printed in decreas-
ing order of those counts.

These two kinds of access are disjoint; that is, initially,
all accesses to the table are of the first kind, followed by
only accesses of the second kind. Consequently, the table
representation can be designed to facilitate the first kind
of access, then changed to facilitate the second.

A hash table is appropriate for indexing the table with
words. Since the size of the input is unknown, a hash ta-
ble in which collisions are resolved by chaining is used.
Space for both the word and the table entry can be allo-
cated dynamically. The hash table itself, hashtable, is an
array of pointers to word structures:

#define HASHSIZE 07777 /* hash table size */
struct word {

char *word; /* the word */
int count; /* frequency count */
struct word *next; /* link to next entry */

} *hashtable[HASHSIZE+1];

The bounds of hashtable are 0 to 2n − 1, where n is 12
here. Using a power of 2 facilitates rapid computation
of the index into hashtable given a hash number: If h
is a hash number, the index is h&HASHSIZE. hashtable is
initialized in main to NULL pointers.

6. addword(buf) adds the null-terminated string in buf

to hashtable, if necessary, and increments its count field.
To compute the index into hashtable, the contents of buf
must be “hashed” to yield a hash number h, from which
the index is computed as described above. A simple yet
effective hash function is to sum the codes of the char-
acters in buf. This function also yields the length of the
word, which is needed to add new words to the table.
Putting this all together produces addword:

addword(buf)
char *buf;
{

unsigned int h;
int len;
char *s, *alloc();
struct word *wp;

h = 0; /* compute hash number of buf[1..] */
s = buf;
for (len = 0; *s; len++)

h += *s++;
wp = hashtable[h&HASHSIZE];
for (; wp; wp = wp->next)

if (strcmp(wp->word, buf) == 0)
break;

if (wp == NULL) { /* a new word */
wp = (struct word *) alloc(1, sizeof *wp);
wp->word = alloc(len + 1, sizeof(char));
strcpy(wp->word, buf);
wp->count = 0;
wp->next = hashtable[h&HASHSIZE];
hashtable[h&HASHSIZE] = wp;
total++;
}

wp->count++;
}

addword also increments a global integer, total, which
counts of the number of distinct words in the table. This
number is required in the second phase of the program.
strcmp is a C library function that returns 0 if its two
arguments point to identical strings, and strcpy is a C
library function that copies the characters in its second
argument into its first.

alloc(n, size) allocates space for n contiguous objects
of size bytes each by calling calloc, a C library function
that does the actual allocation and clears the allocated
space. alloc’s primary purpose is to catch allocation
failures. Many C programmers erroneously assume that
calloc cannot fail. On machines like the VAX, allocation
rarely fails, but on smaller machines, failure is common.

7. Printing the Words. As suggested in the outline

for main, given above, printwords(k) prints the desired
output. To print the k most common words as specified,
printwords must sort the contents of table in decreasing
order of the count values, and print the first k entries.
Since the frequencies range between 1 and N , where N is
the number of words, sorting them can be accomplished
in time proportional to N (assuming everything fits into
memory) by allocating an array of pointers to words that
is indexed by the frequency of occurrence. Each element
in the array points to the list of words with the same
count values, that is, list[i] points to the list of words
with count fields equal to i.

printwords(k)
int k;
{

int i, max;
struct word *wp, **list, *q;

list = (struct word **) alloc(total, sizeof wp);
max = 0;
for (i = 0; i <= HASHSIZE; i++)

for (wp = hashtable[i]; wp; wp = q) {
q = wp->next;
wp->next = list[wp->count];
list[wp->count] = wp;
if (wp->count > max)

max = wp->count;
}

for (i = max; i >= 0 && k > 0; i--)
if ((wp = list[i]) && k-- > 0)

for (; wp; wp = wp->next)
printf("%d %s\n", wp->count, wp->word);

}

max keeps track of the largest frequency count, which is
usually much less than N , and provides a starting point
for the reverse scan of list.

8. Performance. Bentley did not give specific perfor-
mance criteria for common, but he did say that “a user
should be able to find the 100 most frequent words in a
twenty-page technical paper without undue emotional
trauma”. To test common, I concatenated seven of the
documents from volume 2 of the UNIX Programmer’s
Manual from the Berkeley 4.2 UNIX system to form a
test file with 11,786 lines, 47,878 words (by common’s defi-
nition of “word”), 4,149 of which are unique, and 275,516
characters. (The documents were the descriptions of awk,
efl, the UNIX implementation, the UNIX i/o system, lex,
sccs, and sed.)

common with k = 0 and this test file as input took
4.6 seconds on a VAX 8600 running Berkeley 4.3 UNIX.
By way of comparison, consider the following program,
called charcount:

main()
{

int c, n = 0;

while ((c = getchar()) != EOF)
n++;

printf("%d\n", n);
}

charcount is about the minimum “interesting” program
in this class of programs, and its execution time gives a
measure of the cost of simply reading the input. With
the test file as input, charcount ran in 0.9 seconds. The
ratio of the speed of common to charcount, which is in-
dependent of machine dependencies such as CPU speed
and i/o costs, is 5.11. Thus, using the implementation
of common described above, finding the k most common
words costs approximately five times as much as just
counting the characters.

9. Improvements. To investigate the propects for im-
proving the execution speed of common, I profiled its ex-
ecution with gprof [S. L. Graham, P. B. Kessler, and
M. K. McKusick, ‘An Execution Profiler for Modular
Programs’, Software—Practice & Experience 13, 8 (Aug.
1983), 671–685]. gprof takes profiling data produced by
executing the program and generates a report detailing
the cost of each function and its dynamic descendents.

These measurements revealed that addword and its
descendents accounted for 62 percent of the execution
time. For example, strcmp was called 144,219 times and
accounted for 21 percent of the total execution time.
strcmp was the most frequently called function. getword

accounted for 32 percent of the execution time, and the
other functions accounted for the remaining 6 percent.

10. The cost of strcmp can be reduced two ways: do-
ing fewer comparisons and putting the code in-line. To
do the string comparison in-line, the if statement in
addword in which strcmp is called is replaced by

for (s1 = buf, s2 = wp->word; *s1 == *s2; s2++)
if (*s1++ == ’\0’) {

wp->count++;
return;
}

and the remainder of addword is revised accordingly. This
changed reduced the running time by 10.8 percent to
4.56 charcounts (4.1 secs.).

The number of string comparisons can be reducing
by storing additional information with each word that
is checked before the string comparison is undertaken.
For example, the hash number for each word can be
stored in a hash field and only those words for which
wp->hash is equal to h are actually compared to buf. I
tried this improvement and it increased the running time
to 5 charcounts. I also tried storing and comparing the
lengths instead of the hash numbers and the result was
the same.

11. The test input has 4,149 different words, which is

slightly larger than the size of hashtable (4096). With a
hash table size of 512, and the improvements described
above, the running time increased to 5.56 charcounts (5
secs.). gprof showed that 66 percent of time was spent in
addword, 29 percent in getword, and 5 percent elsewhere.

The time spent searching the hash chains would be
reduced if the most common words were near the front
of the chains. This effect can be accomplished by using
the “move-to-front” heuristic: each time a word is found,
it is moved to the front of its hash chain. This heuristic
can be incorporated into addword by adding a pointer
that “follows” wp down the chain:

addword(buf)
char *buf;
{

unsigned int h;
int len;
char *s, *s1, *s2, *alloc();
struct word *wp, **q, **t;

h = 0; /* compute hash number of buf[1..] */
s = buf;
for (len = 0; *s; len++)

h += *s++;
t = q = &hashtable[h&HASHSIZE];
for (wp = *q; wp; q = &wp->next, wp = wp->next)

for (s1 = buf, s2 = wp->word; *s1 == *s2; s2++)
if (*s1++ == ’\0’) {

wp->count++;
if (wp != *t) {

*q = wp->next;
wp->next = *t;
*t = wp;
}

return;
}

wp = (struct word *) alloc(1, sizeof *wp);
wp->word = alloc(len + 1, sizeof(char));
strcpy(wp->word, buf);
wp->count = 1;
*q = wp;
total++;

}

This change reduced the running time with a hash ta-
ble size of 512 to 4.56 charcounts (4.1 secs.)—equal to
that of the time for a hash table size of 4096 without the
heuristic. Using a hash table size of 4096 and the move-
to-front heuristic, the running time was 4.5 charcounts (4
secs.). This last measurement verifies that the heuristic
doesn’t impair performance when the size of the input
is less than the hash table size, which isn’t obvious from
the code. For other applications of the move-to-front
heuristic, see J. L. Bentley, D. D. Sleator, R. E. Tarjan,
and V. K. Wei, ‘A Locally Adaptive Data Compression
Scheme’, Communications of the ACM 29(4), 320–330,
Apr. 1986, and the references therein.

12. Identifying the common words in a 47,878-word file
in 4.5 charcounts seemed fast enough to avoid “undue
trauma”. Nevertheless, I wondered if the standard UNIX
macros for testing character classes were significantly
faster than the isletter macro above. The standard
macros use table lookup and bit testing, which could be
faster than the explicit comparisons used in isletter.

This change reduced the running time by 8 percent to
4.1 charcounts (3.7 secs.). I made the change by includ-
ing the standard header file and by defining isletter to
be isalpha. On UNIX systems where EOF is not a valid
argument to the isalpha, isletter should be defined
as (c != EOF && isalpha(c)). Both definitions gave the
same timings.

gprof indicated that in this final version of common,
addword and its descendents took 54 percent of the time,
getword took 39 pecent, and everything else took the
remaining 7 percent. On behalf of addword, alloc and
its descendents accounted for 11 percent of the time,
so allocation accounts for about 20 percent of the cost
of addword. By pre-allocating some space at compile-
time, this cost might be reduced by half, but this change
would yield only a 5 percent speed up, so it wasn’t at-
tempted.

The changes made to improve common’s performance
were made as additions to the program and conditional
compilation is used to select the “fast” version. Thus,
both the program and this document describe not only
the initial program but also trace its evolution.

13. Development Notes. Writing common and this
documentation, which was done concurrently, took about
9.5 hours. The initial 5 hours included a false start:
the first version sorted the words by making list (in
printwords) an array of pointers to words and calling the
C library function qsort to sort them. This version ran
in 11.22 charcounts (10.1 secs.) and I spent another 2.5
hours making measurements and improvements. Ulti-
mately, I reduced the running time to 4.5 charcounts
by replacing the general qsort (which calls a function
for every comparison and took over 50 percent of the
time) with one written specifically for sorting an array
of pointers to words, and by applying the improvements
described above.

Chris Fraser and I observed that the frequency counts
were in the range 1 to N , and he suggested the rather
obvious linear-time radix sort (with a radix of N + 1)
described above. Indeed, final measurements show that
printwords takes only 1 percent of the time. I spent the
other 4.5 hours revising the program and this explana-
tion and rerunning the performance measurements.

14. Typical loom usage involves the document file and
the program files (e.g., common.lo and common.c). The
document file contains references to fragments in the
program files. loom combines these into a TEX input file

(e.g., common.tex), which is typeset by TEX.
For small programs, such as common, the document and

program files can be combined into single file; for common,
both are combined into common.c. C conditional compi-
lation facilities are used to remove the document part
when common.c is compiled, and loom processes common.c

to form common.tex, obtaining the code fragments from
common.c. Thus, a single file contains both the program
and its explanation, making loom’s usage similar to WEB’s.

David R. Hanson
Department of Computer Science
Princeton University
Princeton, NJ 08544

ERRATA: “Printing Common Words”, Communications
of the ACM 30, 7 (July 1987), 594–599. (Also appears as
Printing Common Words, Tech. Report 86-18, Dept. of
Computer Science, The Univ. of Arizona, Tucson, May
1986.)

Several readers found an error in the common words pro-
gram presented in the “Literate Programming” column
and others have suggested improvements.

The error, pointed out by Michael Shook and others,
is in allocating list in printwords: it’s potentially too
small. The original intention was to allocate N entries
in list, where N is the number of words in the input.
However, only total entries are allocated, and total is
the number of unique words in the input. If total is less
than the maximum word frequency, list is indexed er-
roneously. This situation probably occurs infrequently
since total is usually much larger than the maximum
frequency for most “normal” inputs. The input hello

hello demonstrates the problem and causes common to
fail.

The error can be fixed by making total count the
number of words in the input, which can be done by
moving the statement total++ from addword into the loop
that calls addword in main. A better solution, however, is
to eliminate total and make list just large enough to
accommodate the largest frequency of occurrence, which
can be done in printwords by making a pass over the
hash table to compute the largest frequency. This ver-
sion of printwords is

printwords(k)
int k;
{

int i, max;
struct word *wp, **list, *q;

max = 0;
for (i = 0; i <= HASHSIZE; i++)

for (wp = hashtable[i]; wp; wp = wp->next)
if (wp->count > max)

max = wp->count;
list = (struct word **) alloc(max + 1, sizeof wp);
for (i = 0; i <= HASHSIZE; i++)

for (wp = hashtable[i]; wp; wp = q) {
q = wp->next;
wp->next = list[wp->count];
list[wp->count] = wp;
}

for (i = max; i >= 0 && k > 0; i--)
if ((wp = list[i]) && k-- > 0)

for (; wp; wp = wp->next)
printf("%d %s\n", wp->count, wp->word);

}

Hans Boehm of Rice University noted that using
the sum of the character codes as a hash function is a
poor choice. By the definition of “word” given in the

program, there are only 52 distinct character codes. So,
for example, all words of length five get hashed into a
range of only 5 ∗ 52 = 260 hash codes and words of
length ten get hashed into a range of 10 ∗ 52 = 520.
Thus, most of the hash table is empty and collisions are
likely, which explains in part the large number of calls to
strcmp. While I knew about the potentially poor perfor-
mance of the hash function, I didn’t change it because
common seemed to perform adequately.

I measured the lengths of the hash chains using the
test file described in the paper as input. In the following
table, the right-hand column is the chain length and the
left column is the number of chains of that length.

1 16
3 15
5 14

12 13
13 12
21 11
22 10
37 9
33 8
58 7
55 6
83 5
94 4

148 3
176 2
335 1

3000 0

The 3000 empty slots and long chains confirm Boehm’s
predictions.

Boehm suggested shifting the sum left one bit after
each addition, e.g.,

h = 0;
s = buf;
for (len = 0; *s; len++)

h = (h<<1) + *s++;

Using this hash function gives a better distribution for
the test input, but there are still many empty slots:

2 10
5 9
8 8

18 7
45 6
98 5

189 4
213 3
455 2
535 1

2432 0

Finally, Joe Warren of Rice suggested mapping the char-
acter codes into random numbers and summing the ran-
dom numbers. The hash function is

h = 0;
s = buf;
for (len = 0; *s; len++)

h += scatter[*s++];

where scatter is initialized with the first 128 values re-
turned by the C library function random. Boehm tested
this function with a 4K table on a dictionary and found
only 13 empty slots. This is very close to the expected
value, which Boehm computed as 10.4 for the given dic-
tionary, a 4K hash table, and assuming a uniform dis-
tribution of hash values. Using this function on the test
input for common gave the following distribution.

1 7
3 6

18 5
62 4

242 3
769 2

1522 1
1479 0

This version of common (including printwords above)
runs 8 to 9 percent faster than the published version.

