
A Practical Verification Methodology for
Concurrent Programs

February 12, 2009

Technical Report
MSR-TR-2009-15

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA 98052

This page intentionally left blank.

Preprint 0 2009/2/12

A Practical Verification Methodology for Concurrent Programs

Ernie Cohen
Microsoft Corp.

ernie.cohen@microsoft.com

Michał Moskal
European Microsoft Innovation Center

michal.moskal@microsoft.com

Wolfram Schulte
Microsoft Research, Redmond

wolfram.schulte@microsoft.com

Stephan Tobies
European Microsoft Innovation Center

stephan.tobies@microsoft.com

Abstract
We describe a methodology for reasoning about realistic concurrent
programs. Our methodology allows two-state invariants that span
multiple objects without sacrificing thread- or data-modularity, as
well as the derived construction of first-class objects that capture
knowledge about the system state. The methodology has been im-
plemented in an automatic sound verifier for concurrent C pro-
grams being used to verify the code of the Microsoft Hypervisor,
the virtualization kernel of Hyper-V.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

General Terms concurrency, verification

Keywords concurrency, verification

1. Introduction
Despite significant advances over the last 30 years, there is still no
generally applicable1 practical methodology for verifying concur-
rent software. One reason for this is the tension between the need
for low-level, fine-grained interaction between concurrent compo-
nents (typically addressed with temporal logic and rely-guarantee
(Jones 1983)) and the practical need to hide such interactions when
specifying higher-level procedures (typically addressed in sequen-
tial code with object-oriented methods such as object invariants and
ownership (Barnett et al. 2004)).

Attempts to extend sequential verification with object invariants
to allow concurrency have generally followed the monitor approach
(Hoare 1974). Here, the state is partitioned into a number of objects
(or resources), each guarded by a lock. A thread can operate only on
those objects that it owns. Acquiring a lock on an object transfers

1 By generally applicable, we mean a methodology that can be applied with-
out rewriting the code. For example, it shouldn’t depend on a particular pro-
gramming discipline regarding how programs are synchronized. There are,
of course, many useful classes of programs for which concurrent verifica-
tion is easily reduced to sequential verification.

[Copyright notice will appear here once ’preprint’ option is removed.]

ownership of the object to the thread, bringing in the object invari-
ant as an assumption; releasing the lock asserts the object invariant
and removes the object from the threads ownership domain. Some
examples of this tradition are concurrent extensions to ownership
methodologies (Jacobs et al. 2007) and concurrent separation logic
(CSL) (OHearn 2007a)2. In the monitor tradition, an atomic ac-
tion is just sugar for code that acquires all needed locks, makes the
updates, and releases the locks, where this code just happens to be
compressed into a single atomic action (Parkinson et al. 2007). (For
objects that are used only in this way, the locks are guaranteed to
always be unlocked, and so can be removed from the implementa-
tion.)

The main challenge of the monitor approach is the design of
the object invariants. Because an object invariant is checked only
when the object is unlocked, an object invariant cannot mention the
state of other objects without some restrictions (since a change to
the state of the other object might break the invariant). For exam-
ple, in CSL, object invariants cannot mention the states of other
objects; in systems based on hierarchical ownership, the invariant
of an object can typically depend only on the state of objects in the
object’s ownership domain (the objects transitively owned by the
object). These limitations can make it difficult to prove functional
correctness of interesting programs without growing the objects in
ways that violate the natural encapsulation boundaries, making the
method less practical as programs grow. (Some additional flexibil-
ity can be obtained through the use of read permissions (Bornat
et al. 2005); see section 11).

As an example of this problem, consider a compiler running
as a service inside of a development environment. The syntax tree
nodes all share a symbol table to resolve symbolic identifiers to
names. The nodes need the guarantee that this resolution will never
fail. At the same time, the symbol table has to be able to change
as additional identifiers are added to the program text (potentially
concurrently, when different compiler threads provide services for
multiple editing windows)3.

Our methodology allows the specification of a two-state invari-
ant that states that the symbol table can only grow. Two-state in-
variants restrict possible transitions of an object by specifying the
relationship between the state before and after updating the object.
In concrete syntax the pre- and post-state are referred to using the
old(...) qualifier and unqualified expressions respectively. An

2 For the current purpose, we can think of the objects of a CSL program
as its resources; the memory associated with each can change, but they are
always pairwise disjoint.
3 This is just an easy to explain instance of a problem of the kind where
multiple objects depend on a single context object.

Preprint 1 2009/2/12

invariant that does not use old(...) is effectively a single-state
invariant that is supposed to hold after any update to the object.

For example, we might define symbol tables and expressions as
follows 4:

typedef struct {
char *names[MAX_SYM];
invariant(

forall(uint i; old(names[i]) != NULL ==>
old(names[i]) == names[i]))

} SYMBOL_TABLE;

typedef struct {
int id;
SYMBOL_TABLE *s;
invariant(s->names[id] != NULL)

} EXPR;

Every transition of the entire system should fulfill the two-state
invariants of all objects. Yet we want to reason about the code in
a modular way and check the invariant of an object only when
updating that very object. Additional restrictions on invariants are
required to guarantee soundness of this approach. Particularly, the
invariant of any object has to be preserved when other objects
change (provided these changes observe the respective object’s
invariants). This condition, which we require on all invariants, is
called admissibility of invariants.

Going back to our example, the invariant of SYMBOL_TABLE
depends only on its own fields and thus is obviously preserved
under changes to other objects. However the invariant of EXPR does
rely on a field of the SYMBOL_TABLE. Yet if the SYMBOL_TABLE
changes, it needs to preserve its invariant (only add elements),
therefore it cannot invalidate the invariant of EXPR. Without the
invariant on the symbol table, the invariant of EXPR would clearly
be inadmissible.

Typically, object invariants cannot hold at all times; particularly
during initialization, finalization and during non-atomic updates.
To capture this common pattern we use the notion of closed objects,
which is akin to the inv field in the Boogie methodology (Barnett
et al. 2004). Two-state invariants need to hold only if the object is
closed in either of the two states, so that an invariant can be disabled
as required by opening the objects (assuming that the invariant
allows the object to be opened up).

While an object invariant might not hold at all times, there has
to be a way to enforce that an object stays closed. Otherwise, no
object could rely on other objects’ invariants to hold. The usual
way to keep objects closed is via ownership: objects are owned by
other objects and the (unique) owner controls opening and closing
of the owned object. While often useful for sequential code, this is
not appropriate for our example — for the invariant of EXPR to be
admissible we need the symbol table to be closed, however at most
one EXPR node can own the symbol table.

To solve this problem we introduce the notion of claims. A
claim is a reified guarantee that its claimed object will stay closed
as long as the claim is closed. By owning a claim, the owner of
that claim has the guarantee that the claimed object will not open,
regardless of the actual owner of the claimed object. Interestingly,

4 The utility of two-state invariants goes far beyond examples like this.
In particular, a ghost object with a two-state invariant can be viewed as a
temporal specification. We can prove that a concrete object simulates this
specification by coupling the two with an ordinary invariant (in the concrete
object); the ghost updates to the specification then serve to witness the
simulation. Thus, instead of having to conduct simulation proofs externally,
the combination of two-state invariants and ghost data lets us carry out
such proofs using ordinary assertional verification techniques. The utility
of simulation techniques in proving system properties is well-established
(Lamport 2002).

claims do not need to be added as a language primitive; they can
be implemented as ordinary objects and a two-state invariant on the
claimed object restricting when the claimed object can be opened.
To make the invariant of EXPR admissible we make it own a claim
on the symbol table.

Summing up, the main contributions of this paper are as follows:

• We propose the use of two-state object invariants, which
allow for the natural specification of atomic updates and lock-
free data structures (like spinlocks, see Section 2, or lock-free
stacks) and additional specification-related concepts like the
aforementioned claims.

• We define invariant admissibility, which allows data-modular
reasoning in the presence of cross-object invariants, thus en-
abling the specification and verification of a larger class of pro-
grams without breaking their natural encapsulation boundaries.

• We introduce claims as a way to reify interlinked knowledge
about system state. Claims allow the construction of admissi-
ble invariants for many scenarios, where ordinary, tree-shaped
ownership hierarchies are inadequate. Claims provide a flexible
generalization of the concept of read permissions.

• Our methodology has been implemented in an automated
sound verifier for concurrent C programs. It reads annotated
C code, and uses Boogie (Barnett et al. 2006) to generate ver-
ification conditions that are subsequently discharged by the
automated theorem prover Z3 (de Moura and Bjrner 2008). Us-
ing this implementation, we are applying our methodology to
verification of Microsoft Hypervisor, the virtualization kernel
of Microsoft’s Hyper-V product.

2. An Overview of the Program Methodology
In the following, we present our methodology in more detail.

2.1 Objects and Invariants
As is usual in modular reasoning methods, we imagine a global
state composed of a number of disjoint objects, the state of each
given by a collection of fields. Objects may be created and de-
stroyed. Some of the objects may be ghost (a.k.a. specification)
objects that do not exist in the implementation but are included
to facilitate program reasoning, and objects may also have ghost
fields. (The means by which we overlay an object model on top of
C goes beyond the scope of this paper, but is described in a com-
panion paper.)

The verification condition we are generating states that a pro-
gram with additional ghost state, executing under a restricted
scheduler never “goes wrong”, that is makes a transition that vi-
olates two-state invariant of any closed object. However we prove
that those restricted executions reach the same set of states as the
executions without ghost state under an unrestricted scheduler.
Thus we can prove arbitrary properties of the real program by
just making it “go wrong” when an undesirable state is detected.
We return to this issue in Section 2.6.

Call a transition safe if it preserves all object invariants, and call
a state safe if the stuttering transition (i.e., a transition from σ to σ)
from that state satisfies all object invariants. We assume the initial
state to be safe, by stating that all objects are initially open.

To keep reasoning modular, we would like to check (for each
program transition) only the invariants of those objects whose state
changes in the transition; as mentioned above, this is potentially
unsound if object invariants can mention the states of other objects.
Given a collection of invariants for each object, an object invariant
is admissible iff it is preserved by every transition that preserves
invariants of all modified objects. Note that admissibility does not
depend on the program code.

Preprint 2 2009/2/12

As in other object invariant methodologies, we assume that
each object has a Boolean ghost field closed that indicates when
its invariant is expected to hold. Because we are using two-state
invariants, the object invariant is required to hold between two
successive states only if the object is closed in at least one of them.
Closing/opening an object is akin to initializing/finalizing a state
machine.

Fields of an object come in two flavors, volatile and sequential
(the default). The value of a sequential field can change only when
the object is open, while volatile fields can change at any time
(subject to the object invariants when the object is closed)5. Thus,
for any sequential field, we can think of the object as having an
additional invariant to this effect.

2.2 Ownership
As in most approaches to thread-local verification, we start from
disjoint concurrency, i.e. threads operating on disjoint portions of
the state; this allows ordinary, sequential reasoning within a thread.
Thus, in any state, each thread “owns” some portion of the state
which it is allowed to read and write; inter-thread communication
thus requires some transfer of owned state between threads. In most
concurrent methodologies, this happens by transferring ownership
via some built-in type of shared object, such as a resource or a lock;
we use ordinary objects for this purpose. Indeed, we will show
below an example how locks can be implemented and verified in
our system.

Each object has a ghost field owns that maintains the set of
objects that it owns, in the form of a map from objects to Boolean,
so o->owns[x] is true iff o owns x. It is a system invariant that
these sets form a partitioning of the set of objects that are not owned
by any thread, and that open objects are owned only by threads. We
call a thread-local object mutable (in the context of the thread) if
it is open; we call a thread local object wrapped (in the context of
the thread) if it is closed; a thread can only modify the non-volatile
(aka sequential) fields of an object when it is mutable.

As an example, consider the following definition of a spinlock
in annotated C code:

typedef struct _LOCK {
volatile int locked;
spec(obj_t prot_obj;)
invariant(0 == locked ==> owns[prot_obj])

} LOCK;

The type obj_t is a built-in type of typed pointers; a value of
this type is a tuple consisting of an address and a type for which
the address is suitably aligned. The macro spec indicates that its
argument is ghost code included for purpose of proof but not part of
the implementation. Thus, prot_obj is a ghost field of the lock.
The lock uses a volatile integer field locked to keep track of its
locked status (to be modified via atomic test-and-set operations).
Finally, it has a (one-state) invariant that says that whenever the
lock is available, the object protected by the lock is owned by the
lock itself. Thus, the invariant above holds in the post-state of any
transition for which the lock is closed in either the pre-state or
the post-state. Note that because prot_obj is nonvolatile, the
protected object cannot be changed as long as the lock remains
closed (which, in case of a lock, is its normal state until it is
eventually destroyed or used to protect a different object.)

Note that by having a generic object protected by the lock,
we can have a single lock implementation that works with any
protected object (which can itself own any collection of protected
data, governed by any invariant).

5 Note that in most cases this matches the meaning of a volatile field in C,
i.e., a field that can be modified without the compiler noticing.

2.3 Wrapping and Unwrapping
Unwrapping an object is the process of opening a wrapped object
and transferring ownership of its owned objects to the thread. Con-
versely, wrapping an object requires that the object is mutable, and
has the effect of transferring ownership of some specified wrapped
objects to the object and closing the object. Thus, a thread typi-
cally modifies a shared object by taking ownership of the object
(from another object), unwrapping it, modifying it, wrapping it, and
putting it back somewhere (usually in its original place).

As an example, the following implementation of the lock ini-
tialization function shows the form of our function specifications
and the use of wrap:

void InitializeLock(LOCK *l spec(obj_t obj))
requires(mutable(l))
requires(wrapped(obj))
ensures(wrapped(l))
ensures(l->locked == 0 && l->prot_obj == obj)
writes(l, obj)

{
l->locked = 0;
spec(l->prot_obj = obj;)
spec(wrap(l, { obj });)
return l;

}

In addition to the LOCK being initialized, the function takes a
ghost parameter giving the protected object. This object must be
wrapped, which means that it is owned by the current thread and
is closed (hence the invariant on the protected data holds). As a
postcondition, the function guarantees that the lock is wrapped,
available, and bound to the protected object which (by the LOCK’s
invariant and the aforementioned invariants) guarantees that the
protected object stays closed until the LOCK is acquired.

2.4 Claims
Threads can only meaningfully interact with shared state if they
know something about that state. Since object invariants hold only
when an object is closed, useful shared state information can be
obtained only from objects that are known to be closed. A thread
can attempt to acquire a LOCK only if it knows that the LOCK
is closed. A thread can keep objects that it owns closed, so the
issue arises only for objects that are not wrapped. Of course, this
is the typical case when dealing with synchronization objects like
locks whose whole purpose is to control the mutually exclusive
ownership of other data.

One solution would be to use the object invariant to prevent the
object from ever being opened, but such an object could never be
destroyed, which makes this approach unsuitable in the usual case
where such objects are dynamically allocated and deallocated.

Our solution is the introduction of claims to objects. Such a
claim is a ghost object that stores a reference to its claimed object
and has the invariant that the claimed object is closed. To ensure
this, any object has an implicit ghost field that keeps track of the
currently outstanding claims on that object; it also has a 2-state
invariant that prevents it from going from the closed to the open
state when this claims set in non-empty. As the final ingredient, the
claim’s invariant asserts membership in its claimed object’s claims
set.

In its simplest form, a claim can be thought of as handle to an
object that guarantees the claimed object stays closed as long as
the handle stays closed. (More elaborate claims can be constructed
by referencing more than one object at once or putting additional
invariants on the claim.) By creating multiple handles on a LOCK,
multiple threads can now share the LOCK to gain exclusive access
to its protected object:

Preprint 3 2009/2/12

void Acquire(LOCK *l spec(claim_t c))
requires(wrapped(c) && c->claimed_obj == l)
ensures(wrapped(l->prot_obj))
ensures(! old(owns(me)[l->prot_obj]))

void Release(LOCK *l spec(claim_t c))
requires(wrapped(c) && c->claimed_obj == l)
requires(wrapped(l->prot_obj))
writes(l->prot_obj)

Note how Acquire requires, as a ghost parameter, a claim that
guarantees that the lock is closed. It ensures that the protected ob-
ject is wrapped, which implies that it is owned by the current thread
(that has just completed the call to Acquire) and closed, thus
its invariant holds. Also, by guaranteeing that the protected object
has not been in the owns set of the current thread (represented by
owns(me)), the current thread is free to change the object without
interference with the rest of its ownership domain.

Dually, Release requires a claim on the lock and the protected
object to be wrapped and ensures that the protected object is no
longer a member of the ownership domain of the current thread.
Note that Release does not ensure that the lock is unlocked. In-
deed, depending on the scheduling, another thread could have ac-
quired the lock after the current thread’s release but before return-
ing from the call to Release.

This example uses claims only in their simplest form. In ad-
dition to guaranteeing that its claimed objects are closed, a claim
can state properties of the system state. The admissibility check
for such properties amounts to checking that it is true at the time
the claim is closed, and is preserved by changes to other objects
(typically making use of the fact that the referenced objects remain
closed).

For example, when a thread reads (or writes and retains in-
formation about) a shared variable, it normally constructs a claim
that captures whatever information it needs to retain from this ac-
cess. Thereafter, it doesn’t have to recheck this information (even
if it writes to shared state) until it choses to destroy the claim. By
making claims explicit objects, they can be put inside of other ob-
jects, allowing arbitrary interlinking of knowledge about the system
state6.

The implementation of claims inside the system is described in
Section 6.

2.5 Volatile Fields and Atomic Updates
A thread can use a claim to guarantee that an object is closed. But
so far, we have only allowed objects to be modified when they are
open, and a shared object cannot be opened (because there may be
outstanding claims on it), so a claim would allow us only to read
the object, not to modify it. To overcome this, we introduce atomic
updates, which allow a thread to modify volatile fields of objects.
The update requires that the modified objects are closed (e.g., by
owning the objects or having claims on them), and also requires that
the update preserves the 2-state invariants of the modified objects.

This is illustrated by the following implementation of Acquire.
It spins, attempting in each operation to change the locked field
of the lock from 0 to 1 in an atomic test-and-set operation7. When
it finds that the bit has been successfully changed (i.e., if the bit
was 0 before the operation, as indicated by the return value of the

6 A more interesting use of claims in locks is assuring that when a lock is
destroyed, it actually owns the protected object (i.e., the lock is free). One
way to achieve this guarantee is to strengthen the lock invariant so that the
lock always owns either the protected object (when free) or a claim that the
lock is closed (when locked).
7 Normally the compiler would not allow function calls (like the one to
InterlockedBitTestAndSet) in an atomic block, but the CPU prim-
itives are treated specially, essentially by inlining them.

fields f ∈ F ::= field | f ′
variables x ∈ V ::= var | x′
expressions e ::= x | e0 ∪ e1 | e0 \ e1 | {e0, . . . , en}
reads r ::= x:= e | x:= e→f
updates u ::= e0→f := e1

actions a ::= r | alter e with u
steps s ::= a | atomic a

u ::= u ; u | ε
a ::= a ; a | ε
s ::= s ; s | ε

Figure 1. The language

test-and-set operation), ownership of the protected object is moved
from the lock to the current thread (by the remove_from opera-
tion) and the loop is terminated.

int acquired = 0;
do {

atomic (l) {
if (!InterlockedBitTestAndSet(&l->locked, 0)) {

acquired = 1;
spec(remove_from(l->prot_obj, l);)

}
}

} while (!acquired);

The argument to the atomic block (l in the example) gives the set
of objects whose volatile fields can be modified in the block. These
objects are required to be closed, and their invariants are checked
across the atomic transition.

2.6 Reduction
Within each thread, execution is broken down into a sequence of
actions, each of which preserves all object invariants. However,
since reasoning in the context of a thread may involve formulas that
mention the states of objects not owned by the thread, reasoning is
made easier by minimizing the number of places at which we have
to consider the possibility of another thread changing the state.
When reasoning within a thread, we consider the possibility of
interruption only when the thread is about to communicate with
other threads by reading or writing data outside its ownership
domain. We show this reasoning is sound, even if the program is
run under a scheduler that can interrupt the thread at any time.

3. Language
To describe more precisely the proof obligations generated in veri-
fication, we describe our method for a simplified language, abstract
syntax of which is given in Figure 1. The language is stripped of
control flow structures; these can easily be added. We have also
omitted function calls: handling of function calls in the implemen-
tation is described in Section 7.

A program in the language is defined by specifying the sequence
of steps (s) for each thread. Each step is either an action or a
sequence of actions grouped in an atomic block. Each action is
either a read or a sequence of updates8 grouped using an alter
block (which additionally specifies the set of updated objects); each
action is supposed to preserve all object invariants when executed
atomically.

Expressions (e) include variable references and set operations.
For brevity we skip base types and arithmetic.

8 There would be no harm to allowing alter blocks to contain reads also, but
in the absence of function calls these can be easily moved outside the scope
of the alter block.

Preprint 4 2009/2/12

[x]E = E(x)
[e0 ∪ e1]E = S−1(S([e0]E) ∪ S([e1]E))
[e0 \ e1]E = S−1(S([e0]E) \ S([e1]E))
[{e0, . . . , en}]E = S−1({[e0]E , . . . , [en]E})

E , W ` 〈σ[[e0]E , f := [e1]E], u〉↪→∗
t σ′ [e0]E ∈ W

E , W ` 〈σ, e0→f := e1 ; u〉↪→∗
t σ′ E , W ` 〈σ, ε〉↪→∗

t σ

alter1(t, A, [e]E , σ) E , [e]E ` 〈σ, u〉↪→∗
t σ′ alter2(t, A, [e]E , σ, σ′) good(σ, σ′)

〈〈σ, E〉, alter e with u〉 Bt,A 〈σ′, E〉

〈〈σ, E〉, x:= e〉 Bt,A 〈σ, E [x := [e]E]〉
readable(t, A, σ, 〈[e]E , f〉)

〈〈σ, E〉, x:= e→f〉 Bt,A 〈σ, E [x := σ([e]E , f)]〉

〈〈σ, E〉, a〉 Bt,A 〈σ′, E ′〉 〈〈σ′, E ′〉, a〉 B∗
t,A 〈σ′′, E ′′〉

〈〈σ, E〉, a ; a〉 B∗
t,A 〈σ′′, E ′′〉 〈〈σ, E〉, ε〉 B∗

t,A 〈σ, E〉

T (t) = 〈E , atomic a ; s〉 〈〈σ, E〉, a〉 B∗
t,1 〈σ′, E ′〉

〈σ, T 〉 It 〈σ′, T [t := 〈E ′, s〉]〉
T (t) = 〈E , a ; s〉 〈〈σ, E〉, a〉 Bt,0 〈σ′, E ′〉

〈σ, T 〉 It 〈σ′, T [t := 〈E ′, s〉]〉

Figure 2. The semantics

3.1 The semantics
For simplicity of exposition, we use a single data type P, an infinite
enumerable set of pointers. Since for some purposes we need to
interpret pointers as sets, assume a bijection S from pointers to
finite sets of pointers.

The semantics of the language is defined in terms of transitions
between configurations 〈σ, T 〉, where each configuration consists
of a a heap σ : P× F → P and a function T that maps each thread
to a local environment and a continuation, i.e. T (t) = 〈E , s〉 where
E : V → P is thread t’s local environment and s are the remaining
steps of thread t.

The thread-specific transition relation 〈σ, T 〉 It 〈σ′, T ′〉 de-
fined in Figure 2 describes the effect of running a single step of
thread t on state 〈σ, T 〉. It selects the environment and the next ac-
tion of the thread t from T and executes is according to either Bt,0

or Bt,1 depending on whether execution is inside or outside of an
atomic block. The 0/1 flag is used in side conditions checked when
reading or writing the state.

The conditions alter1(...), alter2(...), good(...) and readable(...)
are used to enforce our methodology. If an execution fails to satisfy
either of those conditions, it is said to go wrong, that is reach a spe-
cial configuration ⊥. We generate verification conditions stating
that the program never goes wrong, but we do not expect the real
machine to check them at runtime (see Section 5 for details).

Definitions of those side conditions require introduction of a
few functions constituting our system invariants.

Predicate thread(p) is true iff given pointer represents a thread.
Predicate volatile(p, f) is true iff field f of p is to be consid-
ered volatile, i.e. is allowed to change without the object p being
opened (see definition of non vol(...) for details). Both are state-
independent and in the implementation are derived from type def-
initions. Whenever we use a variable t (possibly with indices) we
implicitly assume thread(t).

The predicate closed(σ, o), stating that o is closed in state σ, is
defined as σ(o, closed) = 1, where 1 is treated as a distinguished
element of P. Similarly we define the owns set function owns(σ, o)
as S(σ(o, owns)).

The ownership domain of p in state σ, domain(σ, p), is the
minimal solution to
domain(σ, p) = {p} ∪

(∪q : ¬volatile(p, owns) ∧ q ∈ owns(σ, p) : domain(σ, q))

The partition of thread t in σ (written partition(σ, t)) is de-
fined as the set of those 〈p, f〉 such that

p ∈ domain(σ, t) ∧ (¬volatile(p, f) ∨ ¬closed(σ, p))

The shared portion of state σ is everything outside any partition:

shared(σ) = {〈p, f〉 | ¬∃t. 〈p, f〉 ∈ partition(σ, t)}
The condition readable(t, A, σ, l) under which a thread is al-

lowed to read data is

l ∈ partition(σ, t) ∨ (A ∧ l ∈ shared(σ))

In other words, a thread is allowed to read its partition, and can also
read shared data when inside an atomic block.

The conditions for writing are three-fold. First we need to make
sure the current thread either owns the data it is going to write
or it is running atomically and the object written is closed, i.e.
alter1(t, A, W, σ) is:

∀p ∈ W. (A ∧ closed(σ, p)) ∨ p ∈ owns(σ, t)

Second, the thread is not allowed to open or close objects outside
of its owns set nor to change its partition (by opening or closing
an object with volatile fields) while outside of an atomic block, i.e.
alter2(t, A, W, σ, σ′) is:

∀p ∈ W. closed(σ, p) 6= closed(σ′, p) ⇒
p ∈ owns(σ, t) ∧ (A ∨ ∀f. ¬volatile(p, f))

Finally we want to ensure that the update preserves higher-level
system invariants as well as object invariants, that is good(σ, σ′) is
defined as:

closed∗(σ′) ∧ non vol(σ, σ′, S) ∧ inv 6=(σ, σ′)

The predicate closed∗(σ), stating the interactions between the
closed and owns fields is defined as conjunction of:

1. ∀p, q. closed(σ, p) ∧ q ∈ owns(σ, p) ⇒ closed(σ, q)
(if you are closed then everything you own is closed)

Preprint 5 2009/2/12

2. ∀p. ¬thread(p) ∧ ¬closed(σ, p) ⇒ owns(σ, p) = ∅
(ordinary open objects cannot own anything)

3. ∀p. thread(p) ⇒ ¬closed(σ, p) ∧ p ∈ owns(σ, p)
(threads cannot be closed and own themselves)

4. ∀p, q. owns(σ, p) ∩ owns(σ, q) 6= ∅ ⇒ p = q
(owns sets are disjoint)

5. ∀p. ∃q. p ∈ owns(σ, q)
(everyone is owned)

The last two condition amount to saying that there exists an
owner(σ, o) function giving the only object in owns set of which
o is contained.

The predicate non vol(σ, σ′) says that the non-volatile fields
of closed objects did not change:

∀p, f. closed(σ, p) ∧ closed(σ′, p) ∧ ¬volatile(p, f) ⇒
σ(p, f) = σ′(p, f)

Finally the predicate inv 6=(σ, σ′) says that the two-state invari-
ants of objects changed by the alter block has been preserved:

∀p. closed(σ, p) ∨ closed(σ′, p) ⇒ σ =p σ′ ∨ inv(σ, σ′, p)

where σ =p σ′ is defined as (∀f. σ(p, f) = σ′(p, f)).
The predicate inv(σ, σ′, p) is the two-state invariant for pointer

p. In our implementation, this is calculated from the type declara-
tion of p.

3.2 Admissibility
DEFINITION 1. We say the invariant of object p is admissible iff
for any σ and σ′ if:

1. σ =p σ′;
2. non vol(σ, σ′);
3. closed(σ′, p);
4. ∀o. closed(σ, o) ⇒ inv(σ, σ, o);
5. inv 6=(σ, σ′); and
6. closed∗(σ) ∧ closed∗(σ′),

then:

1. closed(σ, p) ⇒ inv(σ, σ′, p) (stability); and
2. inv(σ, σ′, p) ⇒ inv(σ′, σ′, p) (stuttering).

Our system requires the user to prove (from type and invariant
declarations alone) that all invariants declared on types are admis-
sible. Henceforth we assume that all invariants are admissible.

Let sinv2(σ, σ′) = ∀p. closed(σ, p) ∨ closed(σ′, p) ⇒
inv(σ, σ′, p), i.e., the invariants of all closed objects hold between
σ and σ′. Let sinv1(σ) = closed∗(σ) ∧ inv(σ, σ) be the invariant
that every state of execution will fulfill.

If all invariants are admissible, we only need to check invariants
of object that were updated:

LEMMA 1. If sinv1(σ) and good(σ, σ′) then sinv2(σ, σ′) and
sinv1(σ

′).

Proof. Trivial ut

4. Wrap and unwrap
Because checking of closed∗(...) can be difficult in general, we
introduce the wrap and unwrap operations that, under certain con-
ditions, are guaranteed to maintain closed∗ and present them to
the user as the only way of opening and closing objects. They are

defined as:

wrap e0, e1 =
tmp:= me→owns
alter {e0, me} with

e0→owns:= e1

me→owns:= tmp \ e1

e0→closed:= 1

unwrap e0 =
tmp0 := e0→owns
tmp1 := me→owns
alter {e0, me} with

e0→owns:={}
me→owns:= tmp0 ∪ tmp1
e0→closed:= 0

where the variable me refers to the current thread.
The wrap operation requires e0 to be an open object, owned by

me and all objects in e1 to be closed and owned by me. Additionally,
if there are any volatile fields in e0, it can only be performed inside
of an atomic block. Under these conditions, wrapping satisfies the
alter1(...) and alter2(...) conditions. Additionally, it satisfies the
closed∗(...) ∧ non vol(...) part of good(...). Checking of the
invariant of the object being wrapped remains as a proof obligation.

The unwrap operation requires e0 to be closed and owned by me.
As in the case of wrap, having volatile fields in e0 adds the require-
ment that the unwrap needs to be performed inside of an atomic
block. Again, if the invariant of e0 allows opening it, unwrapping
satisfies the side conditions on alter.

Additionally we introduce two operations to move an object e0

in and out of a volatile owns set of another object e1. The object e0

is moved to/from the owns set of the current thread:
put e0 in e1 =
tmp0 := me→owns
tmp1 := e1→owns
alter {e1, me} with
me→owns:= tmp0 \ {e0}
e1→owns:= tmp1 ∪ {e0}

remove e0 from e1 =
tmp0 := me→owns
tmp1 := e1→owns
alter {e1, me} with
me→owns:= tmp0 ∪ {e0}
e1→owns:= tmp1 \ {e0}

Both need to be executed inside of an atomic block and require e0

and e1 to be closed. Additionally e1 is required to have a volatile
owns field. The put operation additionally requires the object e1 to
be in the owns set of the current thread, while the remove requires
it to be in the owns set of e0. Again, checking that the invariant of
e0 allows adding/removing a child is a proof obligation.

5. Reduction
On a real machine, a program executes under a fine-grained sched-
uler that allows thread switching at any time. However, in reason-
ing about a program, we assume a coarse-grained scheduler that
switches back to a previously scheduled thread only when it is
about to execute an atomic block. The reduction theorem below
justifies this pretense (but see Section 9 for further discussion on
this point).

Let the relation Ĩt be defined as It in Figure 2, but with
conditions readable(...), alter1(...), alter2(...) and good(...) all
replaced by true. In other words it refers to the real machine, not
executing any runtime checks.

We say that a configuration c′ = 〈σ′, T ′〉 is reachable from
c = 〈σ, T 〉, written c I∗ c′ iff there exists a sequence:

c = c0 It0 c1 It1 . . . Itn−1 cn = c′

DEFINITION 2. A sequence of transitions:

〈σ0, T0〉 It0 〈σ1, T1〉 It1 . . . Itn−1 〈σn, Tn〉
is a coarse schedule if, for all i where 0 ≤ i < n, either ti = ti+1,
Ti+1(ti+1) is of the form 〈atomic . . . ; . . . , . . .〉, or tj 6= ti+1 for
all 0 ≤ j < i.

The following theorem is proved in the appendix. It says that
if a program can go wrong under an arbitrary schedule, it can go
wrong under a coarse schedule. Thus, in proving that a program
doesn’t go wrong, we can assume coarse scheduling.

Preprint 6 2009/2/12

THEOREM 1. (soundness of coarse scheduling)
For any sequence of transitions:

〈σ0, T0〉 = c0 Ĩt0 c1 Ĩt1 . . . Ĩtn−1 cn

if sinv1(σ0) and ¬(c0 I∗ ⊥) then there exists a coarse schedule

c′0 It′0
c′1 It′1

. . . It′n−1
c′n

such that c0 = c′0 and cn = c′n.

6. Claims
A type definition has the form type t = {F} where:

F ::= volatile f ; F | f ; F | ε
It is syntactic sugar for introducing a predicate t defined on point-
ers and constraining the volatile(...) function so for type t =
{. . . ; volatile f ; . . . } we have t(p) ⇒ volatile(p, f) and for
type t = {. . . ; f ; . . . } we have t(p) ⇒ ¬volatile(p, f).

Consider the following type definitions:

type Data = {volatile H} type Handle = {P}
The idea is that if you own a h such that Handle(h) you can
rest assured that the σ(h, P) will stay closed (where presumably
Data(σ(h, P))). To make sure Data knows about it we include a
set of active handles in it. The inv(σ0, σ, h) will imply:

Handle(h) ⇒ h ∈ σ(σ(h, P), H) ∧ closed(σ, σ(h, P))

To make this invariant admissible we need to also restrict changes
to the date, i.e. the inv(σ0, σ, d) should imply:

Data(d) ⇒
(∀h. closed(σ, h) ⇒ (h ∈ σ(d, H) ⇔ σ(h, P) = d))

∧ (closed(σ0, d) ∧ ¬closed(σ, d) ⇒ σ(d, H) = ∅)
∧ (∀o. ¬thread(o) ∧ p ∈ owns(σ, o) ⇒

σ0(d, H) = σ(d, H) ∨ inv(σ0, σ, o))

Note that there is a possible circularity problem with a dependency
of inv(σ0, σ, d) on inv(σ0, σ, o). To guarantee consistency, such
terms can occur only with positive polarity in object invariants.

The owner of the data can control the handle set, for example
given: type Ctrl = {D; H} where inv(σ0, σ, c) implies:

Ctrl(c) ⇒ σ(c, D) ∈ owns(σ, c) ∧ σ(σ(c, D), H) = σ(c, H)

That is the controller includes a non-volatile copy of the handle set.
Because the invariant of the Data says that whenever changing its
handle set it will check with the invariant of the owner, the invariant
of Ctrl is admissible.

For example to create a handle h, given a wrapped controller c
we would do:

atomic
d := c→D
h→P := d
unwrap c
alter {d} with
tmp := d→H
d→H := tmp ∪ {h}
c→H := tmp ∪ {h}

wrap h, {}
wrap c, {d}

The inclusion of the handle set in the Ctrl allows for restriction
on creation of new handles. This is used to implement concurrency
primitives like reader-writer locks. Whenever a new reader lock is
acquired, a new handle is created and given out to the caller. When
the reader lock is released, the caller needs to give back the handle,
which we open up and remove from the handle set. This way the
volatile integer counting the number of reader locks is tied to the

cardinality of the handle set, and thus if its zero the Data can be
open (and for example given out to a caller acquiring a writer lock).

A claim builds on top of a handle. It is an object owning one
or more handles. When checking admissibility of invariant of the
claim we can rely on the fact that the objects to which we hold
handles are closed, and thus respect their invariants. Because the
claim is first closed in a particular state, the invariant of the claim
can depend on some properties of that state. One example would be
that a claim on an object with a field that can never decrease could
have an invariant guaranteeing the value to be at least the value at
the time when the claim was taken.

Our implementation includes claims as built-ins to allow for cre-
ation of claims in the running code of a function. This overcomes
some practical problems, where parts of the local state would need
to be copied to fields of claim, so they can be mentioned in the in-
variants. There is however no theoretical reason to do that — the
methodology primitives are strong enough to implement claims.

7. Framing
Our implementation allows functions with pre-, post-conditions
and writes clauses. The interpretation of the pre- and post-conditions
is standard. The function is allowed to write to the sequential own-
ership domain of objects listed in its writes clause, as defined before
the call. This is enforced by maintaining a ghost variable with the
set of currently writable objects. The set is initialized to the writes
clause, and when unwrapping o, the owns set of o is added to the
writes clause. Upon writing to p the function is required to check
that p is in the writes set and is owned by the current thread. This
way the wrap operation does not need to shrink the writes set.

The writes set is however not consulted when performing writes
to the shared state in the atomic block – these are always allowed
(as permitted by invariants). On the other hand, if an atomic opera-
tion causes objects to be moved into owns set of the current thread,
such objects are also added to the writes set. This is a generalization
of object allocation (moving it from the ownership domain of the
memory allocator to the ownership domain of the current thread).

8. Verification Conditions
We generate verification conditions (VCs) for each method. They
state that if we consider the configuration 〈σ, T 〉 where T (t) =
〈E , s〉 where s is the body of the function and σ and E satisfy the
preconditions of the function, then the state ⊥ will not be reached
by the transition of thread t, executed under a coarse scheduler.
The VCs explicitly check invariants of changed objects, as well
as readable(...) and alter1(...) but the closed∗(...) predicate is
enforced by the wrap/unwrap protocol. The VCs assume sinv1(...)
to hold before every transition.

The encoding of framing is based on (Barnett et al. 2004): be-
cause the definition of the ownership domain uses the reachability
relation, which is expressible in first order logic, we over approxi-
mate the set of possibly written objects by saying that, in addition
to objects listed in the writes clause, every object not owned by the
current thread could have changed. Additionally any volatile field
of any object could have changed. Such a weakening is also used
to simulate actions of other threads at the entry of the atomic block
(with an empty writes clause).

However, as an extension, we allow user to manually annotate
code to tell the prover that before this particular call the object o
was in the ownership domain of object o′. Such an assertion is
checked, but if the check succeeds we assume that the object o
cannot change if the object o′ does not change. Thus, if the object
o′ is owned by the thread, and not listed in the writes clause, we
will also know that o did not change.

Preprint 7 2009/2/12

Such an assumption is sound, because we know the real seman-
tics of the writes clause, namely writing only the ownership domain
of the objects listed.

9. Other Issues
Here we make mention of some methodological issues that go
beyond the scope of the paper, but are important for soundness or
methodological reasons.

9.1 Ghost Data versus Real Data
In the presentation, we have treated real data/code and ghost data/-
code uniformly. There are several important differences between
them.

In C, pointers can be injectively cast to sufficiently long un-
signed integer types. This puts concrete limits on the physical ad-
dress space, so ghost data has to be located at “large” addresses
outside of this range. Similarly, ghost fields of objects cannot be
located within the object like real fields within C, so ghost fields
have to be formalized as maps from pointers of appropriate type to
addresses of the corresponding ghost fields.

In order to guarantee that the real code (where all ghost data
is erased) simulates the verified code, all ghost code has to be to-
tal and terminating9. Historically, methodologies achieve this by
not allowing ghost code to effect control flow. However, for prag-
matic reasons, we want to manipulate ghost state with functions.
Therefore, we don’t allow recursion in ghost functions, or itera-
tions within ghost code, even though less draconian approaches are
possible. This would be more problematic were it not for the fact
that we can do large (first-order) updates to ghost state in a single
step10.

9.2 Compiler and Scheduler Issues
We have assumed in the operational model that programs are ex-
ecuted according to the program text, with thread switching only
at action boundaries. In a realsic implementation, thread switch-
ing can occur anywhere outside of an atomic block. Moreover, C
compilers are allowed to move around (or even modify) accesses
to nonvolatile data in between volatile accesses. While the details
of the allowed optimizations go beyond the scope of this paper, we
have proved that the reasoning described here remains sound even
under these more realistic schedulers and compilers.

10. Evaluation
The proposed verification methodology has been implemented in
an automated, sound C verifier being used to verify the func-
tional correctness of the Hypervisor (the virtualization kernel of
Microsoft’s Hyper-V product(Microsoft 2008)). This verifier trans-
lates annotated C code into BoogiePL (DeLine and Leino 2005), an
intermediate language for verification. The verification condition
generator Boogie (Barnett et al. 2006) takes BoogiePL as input, and
feeds the generated verification conditions into the Z3 (de Moura
and Bjrner 2008) SMT solver.

9 The positive side of this is that nondeterminism within ghost code is
angelic rather than demonic. Our verifier does no take advantage of this
fact, however.
10 For example, to handle recursive data structures with first-order methods,
we maintain the relevant reachability relations for the structure in ghost
state. An update to a structure (e.g., adding a new node to the front of
a linked list) requires updating the reachability relation for an unbounded
number of elements in a single ghost step. Fortunately, the pairs added to
the reachability relation can be given by a first-order relation (the new node
reaches the first node and all nodes previously reached by the first node), so
the whole reachability relation can be updated by a single first-order update.

The methodology as described in this paper has been developed
and deployed over the last year. So far we have verified the func-
tional correctness of Hyper-V’s sequential circular lists, spin locks,
rundowns, lockfree lists, reader-writers, and some algorithms us-
ing locks like Hyper-V’s internal malloc. In addition we are in the
process of finalizing the definition of all externally visible module
invariants and we have checked their admissibility. We have also
formalized the complex ownership and claim structure that exists
between threads and processes and verify process creation and the
adding and removing threads from processes. Verification has typ-
ically been in the range to up to 10 seconds per method.

The methodology has been developed as a consequence of an
earlier unsuccessful attempt to use dynamic frames (Kassios 2006).
Using this approach, we verified the C simulation of Windows
based Smart Card a partial functional correctness of a “baby” hy-
pervisor, several sequential parts of the Microsoft Hypervisor, in-
cluding the memory safety of approx 4500 lines of the x86 assem-
bly code by translating it into C and making the machine state ex-
plicit. However when we started to verify higher abstraction layers,
where invariants were depending on object footprints, defined by
invariants themselves, we quickly run into limitations of that ap-
proach. Furthermore, we could not find an elegant and effective
way to extend the method for multi-threaded reasoning.

11. Related Work
Research on modular verification of concurrent programs has cen-
tered on one problem: reasoning about the interference between
threads.

Owicki and Gries (Owicki and Gries 1976) introduced the con-
cept of non-interference between the proofs of concurrent threads.

Jones (Jones 1981) introduced rely/guarantee pairs to reason
compositionally about concurrent programs. Rely/guarantee pairs
describe the state changes performed by the environment or by the
program respectively. Unfortunately the specification of interfer-
ence is global: it must be checked against every state update.

Several static checkers have been built to support Owicki/-
Gries and Jones style reasoning. The Extended Static Checkers for
Modula-3 and for Java (Detlefs et al. 1998) include support for the
prevention of data races and deadlocks. For each field a program-
mer designate a lock, which protects it. But these two tools trade
soundness for ease of use; for example, they do not take into con-
sideration the effects of other threads between regions of exclusion.

Concurrent Spec# (Jacobs et al. 2007) is a sound verifier for
concurrent, object-oriented C#. It imposes a hierarchical ownership
discipline on object-oriented program. The ownership discipline
guarantees the partition of the state into distinct object ownership
domains and thread local data. This allows us to ignore concurrency
largely. Locking and unlocking is modelled by ownership trans-
fer operations between threads11. Interleaving of other threads is
modelled by weakening what is known about the shared state. Un-
fortunately the expressive power of concurrent Spec# is restricted:
Spec# supports only 1-state invariants, no volatiles and no abstrac-
tions via claims. Inspired by rely/guarantee reasoning, Spec# later
introduced 2-state invariants, but only to verify the interaction be-
tween several sequential objects (Leino and Schulte 2007).

Concurrent Separation Logic (CSL) forbids interference except
in critical regions (OHearn 2007b). CSL uses the footprint of an ob-
ject’s invariant as a foundation for partitioning the state 12. However
in CSL, object invariants cannot mention other objects. Some ad-
ditional flexibility can be obtained using read permissions (Bornat
et al. 2005), which allow objects to refer to shared read-only por-

11 We model locks very similarly, with the advantage of not considering
them as primitives, which allows for verifying their implementation.
12 In the context of CSL, the objects are resources.

Preprint 8 2009/2/12

tions of the state; this allows invariants to cross object boundaries,
but updating an object might require locking more objects than
could be achieved using claims. Later CSL was improved upon by
marrying it with rely/guarantee reasoning (Vafeiadis and Parkinson
2007). Rely/guarantee pairs, which are normally binary relations,
are here expressed as set of of actions. Our admissibility check is
similar to CSL obligations that invariants are stable under the re-
ly/guarantee actions.

Recently shape analysis has also been used to verify concur-
rent data structures (Berdine et al. 2008). But unlike the earlier
mentioned approaches concurrent shape analysis tries to find ab-
stractions of the program state from the perspective of a particu-
lar thread. Also, shape analysis works on elements of abstract do-
mains, and thus might loose precision.

Reduction theorems of the sort described in Section 5 are well-
known from both concurrent programmiing (Cohen and Lamport
1998) and database concurrency control (Eswaran et al. 1976).

12. Conclusion
We have demonstrated that our approach is effective for proving
concurrent programs on different abstraction levels. We have ver-
ified concurrent algorithms as diverse as spinlocks, lockfree lists,
several algorithms that use lock-protected data, and we have started
to verify Hyper-V’s thread scheduler, which uses a highly concur-
rent queue. The postulated verification methodology is thread mod-
ular: ownership partitions the state space; sequential reasoning can
be used for proving properties about thread local state; object in-
variants and claims controls the effect of interleavings on shared
state. But while we can now verify those algorithms, the annota-
tion overhead is high. In the future we will investigate how those
annotations can be inferred automatically.

Acknowledgments
We should like to thank Andrey Shadrin, Dirk Leinenbach, Elena
Petrova, Holger Blasum, Lieven Desmet, Mark A. Hillebrand,
Sergey Tverdyshev, and Thomas Santen for discussions, adoption
and feedback on this work. We would also like to thank Herman
Venter for his help with the compiler framework.

References
Mike Barnett, Robert DeLine, Manuel Fähndrich, K. Rustan M. Leino,

and Wolfram Schulte. Verification of object-oriented programs with
invariants. Journal of Object Technology, 3(6):27–56, 2004.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and
K. Rustan M. Leino. Boogie: A modular reusable verifier for object-
oriented programs. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for
Components and Objects: 4th International Symposium, FMCO 2005,
volume 4111 of Lecture Notes in Computer Science, pages 364–387.
Springer, September 2006.

Josh Berdine, Tal Lev-Ami, Roman Manevich, G. Ramalingam, and Shmuel
Sagiv. Thread quantification for concurrent shape analysis. In Aarti
Gupta and Sharad Malik, editors, CAV, volume 5123 of Lecture Notes
in Computer Science, pages 399–413. Springer, 2008. ISBN 978-3-540-
70543-7.

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkin-
son. Permission accounting in separation logic. SIGPLAN Not., 40
(1):259–270, 2005. ISSN 0362-1340. doi: http://doi.acm.org/10.1145/
1047659.1040327.

Ernie Cohen and Leslie Lamport. Reduction in tla. In In International
Conference on Concurrency Theory, pages 317–331. Springer-Verlag,
1998.

Leonardo de Moura and Nikolaj Bjrner. Z3: An Efficient SMT Solver,
volume 4963/2008 of Lecture Notes in Computer Science, pages 337–
340. Springer Berlin, April 2008. doi: http://dx.doi.org/10.1007/

978-3-540-78800-3\ 24. URL http://dx.doi.org/10.1007/
978-3-540-78800-3\ 24.

Robert DeLine and K. Rustan M. Leino. BoogiePL: A typed procedural lan-
guage for checking object-oriented programs. Technical Report MSR-
TR-2005-70, Microsoft Research, March 2005.

David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe.
Extended static checking. SRC Research Report 159, Compaq Systems
Research Center, 130 Lytton Ave., Palo Alto, December 1998.

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of
consistency and predicate locks in a database system. Commun. ACM,
19(11):624–633, 1976. ISSN 0001-0782. doi: http://doi.acm.org/10.
1145/360363.360369.

C. A. R. Hoare. Monitors: an operating system structuring concept. Com-
mun. ACM, 17(10):549–557, 1974. ISSN 0001-0782. doi: http://doi.
acm.org/10.1145/355620.361161.

Bart Jacobs, Jan Smans, Frank Piessens, and Wolfram Schulte. A simple
sequential reasoning approach for sound modular verification of main-
stream multithreaded programs. Electr. Notes Theor. Comput. Sci., 174
(9):23–47, 2007.

C. B. Jones. Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983. ISSN
0164-0925. doi: http://doi.acm.org/10.1145/69575.69577.

Cliff B. Jones. Development methods for computer programs including a
notion of interference. Technical report, Oxford UNiversity, PhD thesis,
1981.

Ioannis T. Kassios. Dynamic frames: Support for framing, dependencies
and sharing without restrictions. In Jayadev Misra, Tobias Nipkow, and
Emil Sekerinski, editors, FM 2006: Formal Methods, 14th International
Symposium on Formal Methods, volume 4085 of Lecture Notes in Com-
puter Science, pages 268–283. Springer, August 2006.

Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for
Hardware and Software Engineers. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2002. ISBN 032114306X.

K. Rustan M. Leino and Wolfram Schulte. Using history invariants to verify
observers. In Rocco De Nicola, editor, ESOP, volume 4421 of Lecture
Notes in Computer Science, pages 80–94. Springer, 2007. ISBN 978-3-
540-71314-2.

Microsoft. Virtualization with hyper-v, 2008.
http://www.microsoft.com/windowsserver2008/en/us/hyperv.aspx.

Peter W. OHearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007a. ISSN 0304-3975. doi: http:
//dx.doi.org/10.1016/j.tcs.2006.12.035.

Peter W. OHearn. Resources, concurrency, and local reasoning. Theor.
Comput. Sci., 375(1-3):271–307, 2007b. ISSN 0304-3975. doi: http:
//dx.doi.org/10.1016/j.tcs.2006.12.035.

Susan Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. Communications of the ACM, 19(5):279–285,
May 1976.

Matthew Parkinson, Richard Bornat, and Peter O’Hearn. Modular verifi-
cation of a non-blocking stack. SIGPLAN Not., 42(1):297–302, 2007.
ISSN 0362-1340. doi: http://doi.acm.org/10.1145/1190215.1190261.

Viktor Vafeiadis and Matthew J. Parkinson. A marriage of rely/guarantee
and separation logic. In Luı́s Caires and Vasco Thudichum Vasconcelos,
editors, CONCUR, volume 4703 of Lecture Notes in Computer Science,
pages 256–271. Springer, 2007. ISBN 978-3-540-74406-1.

A. Proof of the Reduction Theorem
In this section, we prove that it is safe to assume coarse scheduling
when reasoning about programs (Theorem 1).

We will use the letter c to refer to configurations, that is pairs
〈σ, T 〉.

FACT 1. Given a pre-state and a thread to run the post-state is
deterministic: If c Ĩt c′ and c Ĩt c′′ then c′ = c′′ (and similarly
for It).

Preprint 9 2009/2/12

DEFINITION 3. The configurations c = 〈σ, T 〉 and c′ = 〈σ′, T ′〉
agree on partition of t, written c ≈t c′ iff ∀〈p, f〉 ∈ partition(σ, t). σ(p, f) =
σ′(p, f) and T (t) = T ′(t).

LEMMA 2. Partition function is self-preserving: If 〈σ, T 〉 ≈t

〈σ′, T ′〉 and sinv1(σ) then partition(σ, t) = partition(σ′, t).

DEFINITION 4. The configurations c = 〈σ, T 〉 and c′ = 〈σ′, T ′〉
agree outside of partition of t, written σ ≈t σ′ iff ∀〈p, f〉 /∈
partition(σ, t). σ(p, f) = σ′(p, f), partition(σ, t) = partition(σ′, t)
and ∀t′ 6= t. T (t′) = T ′(t′).

LEMMA 3. If closed∗(σ) and t0 6= t1 then domain(σ, t0) ∩
domain(σ, t1) = ∅ (and thus also partition(σ, t0)∩partition(σ, t1) =
∅).

LEMMA 4. A non-atomic transition of thread t depends only on its
partition: If c0 It c1, c′0 Ĩt c′1, c0 ≈t c′0 and T (t) does not start
with atomic, then c1 ≈t c′1, c0 ≈t c1 and c′0 ≈t c′1.

The following theorem states that for any sequence of transi-
tions that does not involve running thread t, the sequence does not
touch the partition of t (first two conditions) and moreover the se-
quence does not depend on changes of state within the partition of
t (the last condition).

THEOREM 2. For every t and every sequence of transitions:

〈σ0, T0〉 = c0 It0 c1 It1 . . . Itn−1 cn

if sinv1(σ0) and ti 6= t for i = 0 . . . n− 1 then:

1. c0 ≈t cn

2. for any c′0 if c0 ≈t c′0 then

c′0 It0 c′1 It1 . . . Itn−1 c′n

and cn ≈t c′n.

Proof. By induction on the length of the sequence.

1. The only instruction that performs state modifications is alter e
with u. The updates u can only modify fields of objects listed
in e. The alter1(...) conditions ensures these objects in the
domain of the thread ti, where ti 6= t and thus by Lemma 3
not in domain of t or are initially closed. Therefore the only
interaction with the partition of t could be non-volatile fields of
initially closed objects. However object outside the domain of
ti cannot be open (alter2(...)), thus objects in domain of t will
stay closed. Finally non vol(...) ensures that all closed objects
have their non-volatile fields unchanged.

2. The only operation that depends on σ is x:= e→f . It is how-
ever restricted to reading from outside of partition of t (from
partitions of ti and the shared part, which is not covered by any
partition (including t’s)).

ut
We are now ready to prove the soundness of the assumption of

coarse scheduling.

THEOREM 3. (soundness of coarse scheduling)
For any sequence of transitions:

〈σ0, T0〉 = c0 Ĩt0 c1 Ĩt1 . . . Ĩtn−1 cn

if sinv1(σ0) and ¬(c0 I∗ ⊥) then there exists a coarse schedule

c′0 It′0
c′1 It′1

. . . It′n−1
c′n

such that c0 = c′0, and cn = c′n.

Proof. By induction on n. It trivially holds for n ≤ 3. Now we want
to prove it for a particular n assuming it holds for smaller ones. We

use the induction hypothesis on

c0 Ĩt0 . . . Ĩtn−2 cn−1

getting a coarse schedule:

c′0 It′0
. . . It′n−2

c′n−1

where c′n−1 = cn−1.
Let t = tn−1. We find the last operation of thread t in our coarse

schedule, i.e. the biggest k < n such that t′k = t. If such k does
not exists or Tn−1(t) starts with atomic then the sequence:

c′0 It′0
. . . It′n−2

c′n−1 It cn

is a coarse schedule and we are done.
Otherwise we move the last operation of thread tn directly after

the t′k, i.e. consider the sequences:

c′0 It′0
. . . It′

k
c′k+1 It c′′k+1 It′

k+1
. . . It′n−1

c′′n−1

c′0 It′0
. . . It′

k
c′k+1 = c′k+1 It′

k+1
. . . It′n−1

c′n−1 Ĩt c

It is enough to show c = c′′n−1, which follows from (1) c ≈t c′′n−1

and (2) c ≈t c′′n−1.
The sequence c′k+1 . . . c′n−1 preserves partition of t (Theo-

rem 2, point 1) and thus c′k+1 ≈t c′n−1. We can therefore use
Lemma 4 on c′k+1 It c′′k+1 and c′n−1 Ĩt c obtaining: (3)
c′′k+1 ≈t c, (4) c′k+1 ≈t c′′k+1, and (5) c′n−1 ≈t c.

Then again by Theorem 2, point 1, the sequence c′′k+1 . . . c′′n−1

preserves partition of t and thus c′′k+1 ≈t c′′n−1. From that and (3)
we have (1) c ≈t c′′n−1.

From (4) and Theorem 2, point 2 we get (6) c′n−1 ≈t c′′n−1.
From (5) and (6) we get (2) c ≈t c′′n−1. ut

Preprint 10 2009/2/12

