
Dynamic Channel, Rate Selection and Scheduling
for White Spaces

Bozidar Radunovic∗, Alexandre Proutiere†, Dinan Gunawardena∗, Peter Key∗
∗Microsoft Research, Cambridge, UK; †KTH, Sweden

{∗bozidar,dinang,peterkey}@microsoft.com, †alepro@kth.se

ABSTRACT
We investigate dynamic channel, rate selection and schedul-
ing for wireless systems which exploit the large number of
channels available in the White-space spectrum. We first
present measurements of radio channel characteristics from
an indoor testbed operating in the 500 to 600MHz band and
comprising 11 channels. We observe significant and unpre-
dictable (non-stationary) variations in the quality of these
channels, and demonstrate the potential benefit in through-
put from tracking the best channel and also from optimally
adapting the transmission rate. We propose adaptive learn-
ing schemes able to efficiently track the best channel and rate
for transmission, even in scenarios with non-stationary chan-
nel condition variations. We also describe a joint scheduling
scheme for providing fairness in an Access Point scenario.
Finally, we implement the proposed adaptive scheme in our
testbed, and demonstrate that it achieves significant through-
put improvement (typically from 40% to 100%) compared to
traditional fixed channel selection schemes.

1. INTRODUCTION
“White Space” spectrum refers to unused parts of the TV/

UHF spectrum (unallocated or not used locally). The FCC
2008 ruling to allow unlicensed devices to use parts of this
spectrum has catalyzed research and development in this area.
As a part of the 2010 ruling [1], FCC mandates the use of a
geo-location database to identify which frequencies are free
from primary users. By querying the geo-location database,
we are guaranteed to obtain a set of channels free from pri-
mary transmitters (e.g. TVs and wireless mics) and we avoid
the difficult problem of sensing primary users.

The number of channels available for unlicensed use may
be large. In [2] the authors analyze the number of TV chan-
nels available across US. The actual number of channels
available varies from 5 to 10 on the coasts, up to 40 in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM CoNEXT 2011, December 6–9 2011, Tokyo, Japan.
Copyright 2011 ACM 978-1-4503-1041-3/11/0012 ...$10.00.

Mid-West, with half of the US population having more than
20 TV channels available for white-space communication.
Due to variability of the environment, the quality of available
channels (in terms of the achievable data rates) can vary sig-
nificantly and randomly over time and across channels and
different links. Hence tracking and transmitting on the best
channel can greatly improve the system performance. The
main challenge that we address in this paper is to dynam-
ically select the best channel and coding rate for transmis-
sion.

As previous works demonstrate [3] and our measurements
confirm for TV bands, RSSI (Receive Signal Strength Indi-
cator) is a poor predictor of channel quality. In order to ac-
curately estimate a wide-band channel, more sophisticated
techniques with specific hardware support are needed, such
as those used in [4,5]. These techniques are not supported in
the current commercial white-space radios (e.g. [6, 7]). In-
stead, we need to infer the quality of each channel at each
transmission rate through probing. Single packet probing is
not enough, and we need to send several packets on each
channel and at each rate to enable us to construct a reliable
estimate of the channel quality. In the design of channel and
rate selection schemes, we face a classical exploration vs.
exploitation trade-off problem. We need to exploit the best
(channel, rate) pair, whilst constantly exploring whether this
best pair changes over time. Exploration induces a cost since
it involves exploring bad (suboptimal) channels and rates.
Note that the joint channel and rate selection problem we
address is considerably more difficult than merely detecting
a channel with no primary user (as in [8]). In contrast to
the latter, where it is sufficient to find any free channel, we
search for the best channel.

Our problem is similar to that of rate adaptation in WLANs
(c.f. [9–11]), but with key differences. The first difference
is that the design space has two dimensions, the channel
and the transmission rate. For each packet, we have to se-
lect the transmission rate and also the channel on which
the transmission should take place. As a consequence, the
decision space (channels×rates) is much larger than with
WLAN, and the designed channel and rate selection algo-
rithm should learn channel conditions quickly. Note that the
number of available channels in white spaces may be much

larger than in WiFi (WiFi has 3 orthogonal channels in the
2.4GHz band). We have 11 channels and 3 rates in our test-
bed and the exploration of all (channel, rate) pairs constitutes
a substantial challenge. Fortunately, the goodputs obtained
by transmitting on the same channel but at different rates are
inherently correlated, which can be used to speed up the ex-
ploration phase.

The second key difference is that in WLANs, the rate
adaptation algorithms [9–11] operate on a single channel.
They probe the channel in each transmission, and hence are
able to continuously monitor the channel quality. When mul-
tiple channels are available, one can only acquire informa-
tion about the quality of the currently used channel, and only
get sporadic information about the other channels when they
are probed. An important component of our problem is to
decide when and how often to explore the other channels.

An additional difficulty stems from the unpredictable evo-
lution of channel conditions. Our measurements reveal non-
stationary channel conditions (also observed in [12]), i.e.,
the success probability of a transmission using a given (chan-
nel, rate) pair varies over time in an unpredictable manner,
whereas most of the related work in this area [13–19] as-
sumes that the stochastic processes capturing the evolutions
of channel conditions are stationary (the most common as-
sumption is that the channel can be modeled as a Markov
chain).

A naive way of designing channel and rate selection schemes
is to use the (channel, rate) pair that is believed to yield the
greatest goodput, and periodically probe all other pairs to
detect significant channel condition changes. However, as
our measurements show, channels change continuously and
often independently from each other. Deciding when and
how often to stop exploiting the best (channel, rate) pair to
probe other alternatives is one of the main difficulties of the
problem.

In this paper, we consider a down-link scenario, where
an access point sends data to clients. We design and imple-
ment a novel channel and rate selection and scheduling algo-
rithm for this scenario. The access point uses information on
the outcome of previous transmissions to continuously learn
channel qualities, and proactively adapts channel and rate.
The proposed algorithm is based on a Multi-Armed Bandit
(MAB) learning approach and builds on the existing MAB
algorithms [20, 21]. We show that it performs well in the
realistic, non-stationary channel conditions, and that it pro-
vides significant gains over channel-agnostic approaches.

The main contributions of the paper are as follows:
• A measurement study in an office White-Space testbed op-
erating in the 500MHz to 600MHz band. From these mea-
surements we quantify the possible goodput gains achieved
by always tracking and using the best (channel, rate) pair,
compared to simple fixed channel strategies. We observe
substantial possible gains (up to 100%).
• A novel, joint scheduling and learning algorithm to dy-
namically select users, channels and rates for transmission,

called FSS-UCB1 (Section 5). Our algorithm extends the
classical UCB algorithm [20, 21]: (i) it is adapted to non-
stationary environments; (ii) it uses the notion of Soft Sam-
pling introduced to leverage correlations between goodputs
obtained on the same channel at different rates, and to alle-
viate the problem of having many (channel, rate) pairs to ex-
plore; (iii) it incorporates opportunistic sampling to further
speed up the learning across the links and (iv) it provides
fairness among the users.
• A demonstration of performance gains. We implement our
algorithms in the test-bed, and explain how to solve synchro-
nization problems when switching channels (Section 7). We
quantify the performance of the algorithms in both single
link and Access-Point scenarios (Section 8). They achieve a
goodput improvement ranging from 40% to 90% over fixed
channel schemes and also improve fairness in the AP sce-
nario.

2. RELATED WORK
There is a lot of recent research on the design of oppor-

tunistic channel selection algorithms for cognitive radio sys-
tems, exploiting, for example, White Space spectrum, see
e.g. [15–17, 22, 23]. Similarly, rate adaptation has triggered
considerable research effort, see e.g. [5,9,10]. To our knowl-
edge, the present paper is the first attempt to design and im-
plement dynamic joint channel and rate selection algorithms.
Detecting primary users: Most of studies on channel se-
lection in cognitive radio networks deal with learning algo-
rithms able to find and exploit channels free from primary
users, as in [8, 13–16, 24, 25]. This means that each chan-
nel is assumed to be either in a “bad” or “good” state. This
model does not apply to our scenario because it suffices to
find any “good” channel, whereas in our case we need to find
the best channel and rate pair among all pairs.

We do not consider the problem of detecting primary users.
Recent FCC proposal [1] mandates the use of geo-location
databases to help cognitive users avoid TV signals. Some
countries use the database approach to protect wireless mics
(e.g. [26] in UK).
Opportunistic scheduling in cellular networks: Oppor-
tunistic scheduling has been initially proposed for cellular
networks [27], and has been implemented in recent cellular
standards (e.g. HDR and HSDPA). Before transmitting, a
base station assesses the channel quality of the channels to
all registered users and selects the one based on the channel
state (for efficiency) and previously offered service (for fair-
ness). However, existing opportunistic schedulers in cellular
do not allow for learning about multiple channels.
Probing before transmission: Several papers propose ex-
tensions of opportunistic scheduling to multi-channel sys-
tems [22,28,29]. The common ground for all these works is
that channels are probed with small packets before transmis-
sion. The issue is how to find the right trade-off between the
1FSS stands for Fair, Soft-Sampling, and UCB for Upper Confidence
Bound

overhead of probing and finding the channel with the high-
est quality. Probing is not applicable in our design. Channel
switching time is too long and the overhead of probing chan-
nels (11 in our case) will be an order of magnitude larger
than the packet transmission time.
Learning stationary channels: Work such as [13–19] con-
siders the channel learning problem using classical stochas-
tic control techniques, such as Markov Decision Processes
(MDP). They assume that the underlying stochastic processes
capturing the evolutions of channel conditions are station-
ary with either unknown distributions, or known distribu-
tions but unknown realizations. In other words, they as-
sume that the packet transmission success probabilities do
not vary over time, and that they can be even known in ad-
vance. In practice this assumption does not hold, as we
demonstrate in Section 3. Due to mobility in the environ-
ment, wireless transmitters face non-stationary, arbitrarily
changing, and unknown channel conditions.
Learning non-stationary channels: Learning in a non-
stationary environment has been formulated in the learning
theory community as a non-stationary Multi-Armed Bandit
problem (MAB) [20, 21, 30]. We are not aware of any work
applying non-stationary channel models to our context of
channel and rate learning. Our work is most similar to [21],
with three main distinctions. We introduce soft-sampling as
a mean to speed up the learning process, which otherwise
would not be applicable to our problem. We also propose a
joint utility scheduling and learning algorithm that exploits
broadcast nature of wireless to speed up the learning, and we
enforce fairness.
Rate adaptation: Several authors (e.g. [9–11]) consider
rate adaptation as a function of previously observed trans-
mission successes and losses. These approaches do not ap-
ply to our problem for two reasons. Firstly, in [9–11] if one
rate is repeatedly successful, we can move to the next higher
rate. This does not hold for different channels, since they are
uncorrelated (as we demonstrate in Section 3).

Recently, several papers have proposed the use of advanced
PHY support for channel estimation and rate adaptation [4,
5]. We are interested in channel and rate selection algo-
rithm that will work with future white space hardware that
will possibly use off-the-shelf WiFi hardware and frequency
transposers (such as [6, 7]). The techniques from [4, 5] that
require PHY modifications thus do not apply to our scenario.
Channel assignment in WiFi: The channel assignment
problem in WiFi networks has been well studied (see e.g.
[31] and the references therein). Most of these focus on
power control and/or orthogonal channel assignment between
interfering clients to minimize channel contention. Due to
their underlying complex optimization component, these al-
gorithms take a long time to converge. For example, util-
ity assessment intervals in [31] last about 300s. In contrast,
our algorithm can estimate a single channel in less than 10s
(see the discussion in Section 7.1), and the mean channel
coherence time observed in our measurements is about 95s

Figure 2: Our testbed. Node A is an access point and nodes B, C, D
and E are clients.

(Observation 6).
Decentralized opportunistic channel selection: A more
general problem that could be investigated is how to select
the best channel and rate pair while taking into account the
number of users also using that channel. Intuitively, one may
prefer a lightly loaded channel over a highly loaded channel
even if the quality of the highly loaded channel is better. This
is a difficult and open problem. It has been recently studied
in [32–34], in a very theoretical context.

3. TESTBED AND MEASUREMENTS
We used an SDR platform in an indoor office testbed to

take initial measurements to guide the design of our channel
and rate selection algorithms. The testbed is also used to im-
plement and test our algorithms. In this section we describe
the platform, the measurements and the potential gains that
can be achieved in practice by tracking the best (channel,
rate) pair for transmission. As in the rest of this paper, we
focus on a single-AP, down-link scenario with a centralized
MAC.

3.1 Testbed and Measurements Setup
Our indoor testbed uses nodes located on the same floor

of an office building, shown in Figure 2, comprising a mix
of open-plan space and offices. Most of the fixed barri-
ers are glass, wood, or concrete, which reflect and attenu-
ate radio signals, while human mobility patterns added sig-
nificant temporal variability. The nodes are based on the
Lyrtech SFF-SDR platform that has a single radio with sepa-
rate transmit and receive circuits, each with its own antenna.

We operate the board in the UHF band, between 500MHz
and 610Mhz (for which we received an experimental indoor
license). Throughout our experiments we did not observe
any noticeable interference from other transmissions (such
as TVs).

We use OFDM as the physical (PHY) layer. The PHY is
very similar to 802.11a/g, except that it has 10 MHz band-
width instead of 20MHz. The 10MHz bandwidth approxi-
mately corresponds to the bandwidth of TV channels, which
in most countries is 6-8 MHz. We use QPSK modulation,
and codes of respective rates 1/2, 2/3 and 3/4. This allows us
to transmit packets at 3 different rates: 4.5Mbps, 6Mbps and
6.75Mbps2. Channel switching time takes the equivalent of
1 or 2 packet transmission times.
2We have also experimented BPSK modulation but in all cases it proved to
yield lower goodput, so we do not report these results here.

(a)

0

2

4

6

8

G
oo

dp
ut

 [M
bp

s]

510 MHz

0 200 400 600 800 1000
0

2

4

6

8

Time [s]

560 MHz

4.50 Mbps
5.99 Mbps
6.75 Mbps

(b)

0 100 200 300 400 500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time lag [s]

A
ut

o
co

rr
el

at
io

n

500 MHz
520 MHz
540 MHz
560 MHz
580 MHz
600 MHz

(c)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RSSI [dB]

P
ac

ke
t s

uc
ce

ss
 r

at
e

4.50 Mbps
5.99 Mbps
6.75 Mbps

Figure 1: (a) The goodput (transmission rate × average success rate) of each batch of 10 consecutive packets for two selected channels and
transmission rates for link A-C; (b) The auto-correlation of the average rate as a function of a time lag for different rates and channels for link A-C;
(c) Packet success rate at different transmission rates as a function of RSSI (normalized over the initially observed noise).

In our experiments, one board is the access point (AP)
used to broadcast packets. It is placed in the open plan area
(Figure 2 label A). Four other boards, located in four dif-
ferent offices (B,C, D and E), act as clients and receive and
log all packets received from the AP. The measurements are
taken during the daytime with plenty of people in the open
plan area in front of transmitter A.

In each experiment, unless otherwise specified, the AP
transmits 10 packets at each rate on a given channel before
moving to the next channel. 11 channels of width 10Mhz
(between 500-610MHz) are probed, and hence each mea-
surement round consists of 10 × 11 × 3 = 330 packets.
Packet transmissions are made periodically every 5ms so
that a “round” duration is less than 2s. This means we sam-
ple a given channel at a given rate once every 2s. In each
round and for each channel, we calculate, by averaging over
10 packets, the RSSI, the successful packet transmission prob-
abilities and the goodputs3 at the 3 different rates.

The AP dictates the channel the other nodes need to listen
to. To maintain synchronization, we encode in each trans-
mitted packet header the channel the AP will use next. With
high probability all four nodes receive at least one of the 30
transmitted packets on each channel and stay in sync. When
a node fails to receive all such packets, it simply waits until
the AP loops back to the channel it was listening to.

3.2 Channel Measurements
We now report on our measurements. It turns out that the

average channel conditions vary slowly over time, and are
hardly correlated across channels. We also observe that the
transmission-success probabilities at different rates cannot
be well predicted by just measuring the RSSI. Finally, the
measurements suggest that tracking the best (channel, rate)
pair for transmission may yield significant performance im-
provements. All these observations are in accordance with
previous measurement studies (e.g. [35]). We now describe
them in detail.

3The goodput is defined as the product of the success transmission proba-
bility and of the transmission rate.

Fast and slow fading
We first look at the effect of fast and slow fading. In Fig-
ure 1 (a), we present a snippet of the evolution of the good-
puts over time obtained on two channels when transmitting
at different rates. We observe some variability in the good-
put from one batch to the other. This is the result of fast
fading whose time-scale (coherence time) is smaller than a
few seconds, which is our measurement interval. However,
by averaging over a few consecutive batches, the goodput
obtained with a given (channel, rate) pair is stable.
Observation 1: Our hardware is too slow to learn and adapt
to fast fading. Instead, we should treat fast fading as a ran-
dom process and try to learn and track its average.

We also observe slow channel variations. Such variations
are referred to as slow fading, and typically caused by hu-
man mobility and related changes in the environment. Vi-
sually, from Figure 1 (a), it seems that significant changes
can be observed at a time-scale of the order of several tens
of seconds. We quantified this claim by evaluating the auto-
correlation4 function of the goodputs of each (channel, rate)
pair. We plot the auto-correlation in Figure 1 (b). We ob-
serve that the auto-correlation at lags smaller than 30s was
always greater than 80%, hence a typical duration of a slow
fade is of order of tens of seconds or more. In our experi-
ments, it seemed that slow fading exhibits much larger vari-
ations than fast fading (see e.g. Figure 1 (a) – channel at
560MHz).
Observation 2: The slow fading time-scale is of the or-
der of tens of seconds or more. During slow fades, channel
changes are larger than during fast fades, thus it is more im-
portant to track slow fading than fast fading.

Correlations across channels
Our measurements showed a low correlation between quali-
ties of various channels for a given link at a given rate. We

4The auto-correlation at lag τ of a sample time series x1, . . . , xN is de-
fined by :

∑T
t=1(xt − x̄)(xt+τ − x̄)/

∑T
t=1(xt − x̄)2 where x̄ =∑N

t=1 xt/N and T < N is a large number (we take T = N/2).

found that cross-correlation5 of goodputs on any two chan-
nels at a given rate was always smaller than 30%. This ob-
servation is in accordance with theory [27, eq.(2.47)]: Given
the size of our test-bed, the expected delay spread is of order
of tens of nano-seconds, and the coherence frequency is of
order of a few MHz. Hence we expect that each 10MHz-
wide channel will not be correlated with the adjacent ones.
Observation 3: Slow fades do not occur at the same time on
all channels. This lack of correlation highlights the impor-
tance of tracking the quality of all channels so as to enable
us to always select the best for transmission.

Rate as a function of RSSI
We next evaluate whether RSSI can be used as an indica-
tion of channel quality. We divide the RSSI scale into 500
equally sized bins and classify all packets recorded during
our measurement according to the observed RSSI into one
of the bins. We calculate the aggregate packet transmission
success rate for each of the bins and report the results in Fig-
ure 1 (c). We have the following observation.
Observation 4: Although there is a general correlation be-
tween the RSSI and packet transmission success rate, RSSI
does not give us accurate information on the channel qual-
ity.

We note that this observation is consistent with previously
reported measurements in 2.5 GHz band [3, 4].

Success transmission probabilities at different rates
In Figure 3, we graph the conditional success transmission
probabilities at two different rates given the success proba-
bility of transmissions at the third rate. To obtain these re-
sults, the AP sent 3 consecutive packets using the 3 different
rates and did this 1000 times, which defines a round. Each
point in Figure 3 corresponds to the transmission-success
probabilities averaged over a round. We plot points for all
11 channels and all 4 destinations.

From Figure 3 we can conclude that there is indeed a clear
ordering between rates, as we would expect, in that lower
rates have higher success probability. However, it also shows
that it is difficult to infer the packet success rate at one rate
when probing on a different rate.

From the above two remarks, we deduce that to track the
best (channel, rate) pair we actually need to explore all the
possible rates. Nevertheless, to speed up the exploration, we
may leverage the fact that higher rates exhibit higher packet
loss probabilities. In the design of channel and rate selection
algorithms, we actually exploit the following observation.
Observation 5: It is difficult to infer the packet transmis-
sion success rate at one rate when probing at a different rate.
However, (a) if a packet transmission is successful at a given
rate on a given channel, then it would have been successful

5The cross-correlation of two time series x1, . . . , xN and y1, . . . , yn is
defined by :

∑N−τ
t=1 (xt − x̄)(yt − ȳ)/(

∑N
t=1(xt − x̄)

∑N
t=1(yt − ȳ)

where x̄ =
∑N
t=1 xt/N and ȳ =

∑N
t=1 yt/N .

0 0.5 1
0

0.5

1

p
succ

(R)

p su
cc

(r
)

/ p
su

cc
(R

)

R=4.50

r=6.00 Mbps
r=6.75 Mbps

0 0.5 1
p

succ
(R)

R=6.00

r=4.50 Mbps
r=6.75 Mbps

Figure 3: Conditional probability of successful transmission at dif-
ferent rates, given the success probability at rateR, averaged over 1000
consecutive packets.

0 100 200 300 400 500 600 700 800 900
2

3

4

5

6

7

Time [s]

G
oo

dp
ut

 [M
bp

s]

Max
510 MHz
530 MHz
550 MHz
570 MHz

510
530
550
570

Best Channel

0 100 200 300 400 500 600 700 800 900

4.5

6
6.75

Time [s]

Best Rate

Figure 4: (Top) Goodput achieved by selecting the best rate on vari-
ous channel for link A-C. (Bottom) Evolution in time of the best (chan-
nel, rate) pair.

at a lower rate on the same channel. (b) Similarly, if a packet
transmission fails at a given rate, then it would have failed at
a higher rate6.

Gains from selecting the best (channel, rate) pair
We conclude this section by quantifying the gain in terms of
goodputs that can be achieved by tracking the best (channel,
rate) pair. Figure 4 illustrates the performance of the best
channel and rate, where only 5 channels are shown for clar-
ity. Observe that the goodput differs widely from one chan-
nel to another. In Figure 4 (top), we compared the goodput
achieved by always using the same channel at the best rate
with that of an Oracle algorithm dynamically selecting the
best (channel, rate) pair. The average gains over the algo-
rithm operating on the worst channel is about 80-90% and
the gains over an algorithm operating on a randomly se-
lected channel is about 40-50%. This suggests that tracking
the best channel and rate can bring substantial performance
benefits.

Figure 4 (bottom) illustrates how the best (channel, rate)
pair varies over time. It further shows that when transmitting
on a given channel, tracking the best rate is important (this
is also confirmed in Figure 1 (a)). Finally, we found that
6In some cases, such as 6 Mbps and 11 Mbps rates in 802.11g [12] this
ordering does not hold and we can simply remove the 6Mbps rate from the
considered rate set.

the time interval during which a channel remains the best,
over the entire measurement campaign, has mean duration
94.6s and standard deviation 104.3s. As we shall demon-
strate, these relatively long periods during which the best
channel remains the same facilitates the design of learning
algorithms able to really track the best channel, even when
a large number of channels have to be explored (11 in our
case).
Observation 6: Significant performance gains may be achi-
eved by selecting the best channel and rate for transmission.
Typically the periods of time where a given channel is op-
timal have quite large durations (tens of seconds), which
simplifies the design of learning algorithms tracking the best
channel for transmission.

4. PROBLEM DEFINITION
We want to design dynamic channel and rate selection

schemes that efficiently track the best (channel, rate) pair
for transmission. We consider two network scenarios: (i) A
single link. For this scenario, the objective is to maximize
the long-term goodput of the link. (ii) A downlink scenario
where an AP serves multiple fully backlogged clients, which
is a generalization of the single link scenario. Here, fairness
among the various clients has to be considered. To do so,
we use the classical notion of utility. More precisely, let
U denote an increasing and concave utility function. The
objective is now to maximize the social welfare defined by∑
u U(φu) where φu represents the long-term goodput achieved

by client u. If U = log, we target Proportional Fairness (as
in Qualcomm’s HDR system). With multiple clients, our
algorithms have to dynamically select not only a (channel,
rate) pair but also a client for transmission.

We assume that the set of available channels (i.e., free
from primaries) is known and does not change over time.
As mentioned earlier, RSSI is not a sufficiently accurate pre-
dictor of the channel quality (Observation 4). We also as-
sume that our radio devices do not support advanced PHY
techniques for channel estimation, such as those described
in [4, 5]. Furthermore, probing before each transmission is
too costly. Instead, we focus on algorithms that learn about
channel quality from past observations of transmission suc-
cesses.

Given the number of channels and rate, our system can-
not track fast fading (Observation 1). However, we can track
slow fading (Observation 2). Note that the performance ben-
efits from opportunistically exploiting slow fading are sub-
stantial (Observation 6), and higher than those we would ob-
tain by exploiting fast fading (Observation 2).

As explained earlier, the main challenge in the design of
channel and rate selection schemes stems from the fact that
we cannot continuously monitor the evolution of the quality
of all channels, since the AP uses a single channel for trans-
mission at a given time. Channel conditions change in an
uncorrelated manner (Observation 3), and hence we need to
explore other (channel, rate) pairs often to detect opportuni-

ties to improve the system performance. The exploration is
complicated by the large number of possible (channel, rate)
pairs. In our case we have 11 channels × 3 rates = 33 pairs,
and exploring all possible (channel, rate) pair could well be
too costly. Fortunately, we may exploit the inherent corre-
lations between the transmission success probabilities when
using different rates but the same channel.

5. JOINT CHANNEL, RATE SELECTION
AND SCHEDULING ALGORITHM

In this section, we propose FSS-UCB, a learning algo-
rithm to jointly and dynamically select channels, rates and
clients for transmission. We first describe the different com-
ponents of the algorithms, and then provide their pseudo-
codes, given in Table 1.

5.1 Notation
Consider an access point (AP) servingN fully backlogged

clients indexed by u = 1, . . . , N . Transmissions may be
carried on C different channels at L different rates r1 <
. . . < rL depending on the chosen modulation and coding
scheme. In our test-bed C = 11 and L = 3.

Time is divided into short frames of constant duration dur-
ing which the AP transmits a few packets to the same client
using the same (channel, rate) pair. Let ml denote the num-
ber of packets that can be sent at rate rl during a frame. It
represents the rate normalized by the frame duration (note
that ml

mk
= rl

rk
for all k, l). Without loss of generality, we

assume that frames have unit duration. At the beginning of
each frame, the AP selects a (channel, rate) pair and a client
for all the transmissions in this frame. This decision is based
on the past observations only. The use of fixed duration
frames allows periodic updates which keeps the algorithm
simple (decision updates taken after every packet transmis-
sion would require to take into account packet transmission
durations and would make the algorithms more complex).
We index frames with index t, and packets within each frame
with index p = 1, 2, · · · .

During frame t, if user u is served on channel i and rate
rl, the packet transmissions are successful with probability
µu,i,l(t). This probability is unknown and has to be learned.
It is non-stationary, and changes over time.

Our algorithms keep track of two variables that store in-
formation about past transmissions. The first one is the em-
pirical discounted number of frames n̂u,i,l(t) we have used
to transmit to user u on channel i and at rate rl up to frame t.
The second one is the empirical discounted number of suc-
cessfully transmitted packets x̂u,i,l(t) for each tuple (u, i, l)
up to frame t. We will formally define them later. The vari-
ables are updated at the end of each frame. From the two
sets of variables, we deduce the estimated average success
probability µ̂u,i,l(t) up to frame t of transmissions to client
u on channel i and at rate l as

µ̂u,i,l(t) =
x̂u,i,l(t)

mln̂u,i,l(t)
.

5.2 Exploration vs. Exploitation
Most of the time we want to use the best channel and rate

for transmission. However, we also need to occasionally ex-
plore the other channels and rates, to detect better transmis-
sion opportunities.

We build on the approach from [20,21] in order to achieve
a provably optimal balance between exploitation and explo-
ration (for detailed analysis, see Section 6). For each frame t,
each link u and each (channel, rate) pair (j, k) are assigned
a weight wu,j,k(t). In case link u is selected for transmis-
sion at time t, we then select the pair (j, k) with the highest
weight. The weight

wu,j,k(t) = max

(
mk,

[
x̂u,j,k(t)

n̂u,j,k(t)

+ ξ mL

√
log(

∑
i,lmln̂u,i,l(t)

mkn̂u,j,k(t)

])
(1)

is composed of two terms defining the exploration vs. ex-
ploitation trade-off. The first term is the observed average
goodput x̂u,j,k(t)

n̂u,j,k(t)
up to frame t. The second term is the ex-

ploration factor. As the different (channel, rate) pairs are ex-
plored, the enumerator log(

∑
i,lmln̂u,i,l(t + 1)) increases.

However, if we do not explore a particular (channel, rate)
pair (j, k), the corresponding denominator will remain small.
Thus the exploration factors will gradually increase for all
(channel, rate) pairs we do not explore and will decrease for
those that we explore.

The specific definition of the weights is taken from [20,
21] and it is very important for the performance guaran-
tees of the algorithm. We discuss it in detail in Section 6.
However, we introduce here an important modification to the
weight calculation as compared to [20,21]. We initialize the
weight for (j, k) at a value mk, which represents the max-
imum number of successful transmissions per frame at rate
rk. Furthermore the weight is bounded by mk. We do this
to exploit the fact that if selecting channel i and rate rl has
proven to lead to an average goodput greater than mk pack-
ets per frame for k < l, then it is useless to explore rate
rk even if the latter has not been selected at all. So with
this choice, we explore first higher rates, and do not explore
smaller rates unless this becomes really necessary.

Parameter ξ tunes the balance between the exploitation
and the exploration. The higher ξ is, the more aggressively
we learn other channels and rates, but the higher the over-
head we incur as we use the best currently known channel
less often. We discuss the impact of ξ on the performance in
Section 7.1.

5.3 Soft-Sampling to exploit side information
The main problem with the exploration from (1) is the

large number of (channel, rate) pairs (j, k) we need to ex-
plore. To speed up the exploration, we can exploit useful
side information. We know from Observation 5 that if a
transmission at rate rl > rk is successful, transmitting at

rate rk would also be successful. Similarly, if a transmission
at rate rl < rk fails, then it would also fail at rate rk. In
particular when rl < rk, µi,l(t) > µi,k(t).

Assume that during frame t, a packet p is transmitted to
user u on channel i at rate rl. Let yu,i,l(t, p) be a binary
variable indicating whether the transmission is successful
(yu,i,l(t, p) = 1 in case of success). When sampling (or se-
lecting) channel i and rate l for user u, and observing the out-
come yu,i,l(t, p), we will randomly generate corresponding
soft-samples7 y′u,i,k(t, p), k 6= l, of fictitious transmissions
at all other rates, for the same channel i, with the following
probability distributions:
Successful transmission: If yu,i,l(t, p) = 1 , then we gen-
erate a soft-sample outcome y′u,i,k(t, p) for all k 6= l as:

y′u,i,k(t, p) =

 1, with prob. min
(
1,

µ̂u,i,k(t)
µ̂u,i,l(t)

)
,

0, with prob. 1−min
(
1,

µ̂u,i,k(t)
µ̂u,i,l(t)

)
,

(2)
Failure: If yu,i,l(t, p) = 0, then we generate a soft-sample
outcome y′u,i,k(t, p) for all k 6= l as:

y′u,i,k(t, p) =

 0, with prob. min
(
1,

(1−µ̂u,i,k(t))
(1−µ̂u,i,l(t))

)
,

1, with prob. 1−min
(
1,

(1−µ̂u,i,k(t))
(1−µ̂u,i,l(t))

)
.

(3)
The intuition behind the above updates can be explained

using a very simple model where a hidden random variable
Uu,i(t), uniformly distributed on [0,1], represents an instan-
taneous quality of channel i to user u at time t. If Uu,i(t) ≤
µu,i,l(t), then the transmission on channel i to user u at rate
l is successful. Suppose we observe a successful transmis-
sion at rate l and we want to generate a soft-sample for rate
k > l. We then know that Uu,i(t) ≤ µu,i,l(t) but we don’t
know whether Uu,i(t) ≤ µu,i,k(t). The probability that
Uu,i(t) ≤ µu,i,k(t) under condition that Uu,i(t) ≤ µu,i,l(t)

is indeed µu,i,k(t)
µu,i,l(t)

. Similarly, we derive the probability for
the other soft-sample updates. In addition, in the actual up-
dates we replace the (unknown) success rates µu,i,k(t) with
their estimates µ̂u,i,k(t).

We next provide the way the variables stored by the al-
gorithms are updated. To cope with non-stationary chan-
nel conditions, we use a discount factor γ < 1 in each
round to progressively decrease the impact of previous es-
timates (as done in D-UCB algorithm [21]). Suppose that
tuple (u∗, i∗, l∗) was selected by the algorithm for frame t.
We then have

n̂u,i,l(t+1) =

 γn̂u,i,l(t) + 1, if (u, i, l) = (u∗, i∗, l∗),
γn̂u,i,l(t) + q, if (u, i) = (u∗, i∗), l 6= l∗

γn̂u,i,l(t), otherwise.
(4)

7For the probed rate, the soft sample is by definition equal to the observed
sample y′u,i,l(t, p) = yu,i,l(t, p)

x̂u,i,l(t+1) =

γx̂u,i,l(t)+
∑
p y
′
u,i,l(t, p),

if (u, i, l) = (u∗, i∗, l∗),

γx̂u,i,l(t)+ q
∑
p y
′
u,i,l(t, p),

if (u, i) = (u∗, i∗), l 6= l∗

γx̂u,i,l(t), otherwise.
(5)

We take by definition n̂u,i,l(0) = 0 and x̂u,i,l(0) = 0. Also
notice that soft-samples cannot be treated as real samples,
as we do not actually observe the corresponding goodputs.
Soft-samples are of lower quality than real samples. To ac-
count for this difference, we attach to soft-samples a quality
parameter q < 1 and we choose it empirically optimizing
over our measured data sets.

The main benefit of soft-sampling is that it allows us to
design a learning algorithm as if all rates for one channel
were sampled at each frame. Thus with soft-sampling, we
artificially reduce the number of possible decisions at each
frame from U × C × L to U × C, which greatly improves
the performance.

5.4 Opportunistic Channel Sampling
In the AP scenario, the AP has to serve a (potentially)

large number of users. The channel towards each user is
different and has to be explored separately, which increases
the overhead and may cause the learned channel information
to be outdated by the time they get to be exploited.

To circumvent this difficulty, we exploit the broadcast na-
ture of the wireless medium: each transmitted packet can be
heard by all users, so a packet sent during frame t to user u
on channel i at rate rl can be used to learn the success rates
µ̂u′,i,l(t) for all users u′. More precisely, when transmitting
to user u at channel i and rate l during frame t, we record
soft samples y′u′,i,l(t, p) for each packet p and each user u′,
and we use all these values to execute the updates (4) and
(5).

We note that the observations y′u′,i,l(t, p) are recorded at
clients, which in turn need to feed that information back to
the AP to update the learning algorithm. We discuss the im-
plementation of the feedback procedure in Section 7.

5.5 Efficiency vs. Fairness
If success rates µu,i,l(t) were known at the AP, one way

of maximizing social welfare in the long run would be to use
a simple gradient algorithm (as in Qualcomm PF scheduler).
We define the discounted throughput for user u at time t as:

φu(t) =
1− γ′

1− γ′t+1

t∑
s=0

γ′t−s
∑
i,l,p

yu,i,l(t, p), (6)

for some discount factor γ′ ∈ (0, 1).
We then propose the following scheduling algorithm, sim-

ilar to [36], which consists in selecting for frame t, user u,
channel i and rate rl such that the product of the achieved
instantaneous rate and of U ′(φu(t)) is maximized, i.e.,

(u, i, l) = arg max
(u,i,l)

wu,i,l(t)× U ′(φu(t)). (7)

where wu,i,l(t) is the estimated rate of the link to user u
(augmented with the exploration factor). We discuss the
properties of this scheduling algorithm (7) in Section 6.

5.6 Pseudo-code
Finally, we give the pseudo-code of our algorithms in Ta-

ble 1.

Algorithm FSS-UCB

Initialization: wu,i,l(0) = ml, φu(0) = 0, for all i, l, u.
At each time frame t = 0, 1, 2, . . .

1. Select user ut, channel it, and rate rlt (breaking ties
arbitrarily) such that:

(ut, it, lt) = arg max
(u,j,k)

wu,j,k(t)U
′(φu(t)).

For the entire frame, send packets to user ut on channel
it and at rate rlt .

2. For packets sent during the frame, observe the out-
comes yu,it,lt(t, 1), . . . , yu,it,lt(t, p), for all u.

3. For each k 6= lt and u, generate mk soft-samples
y′u,it,k(t, s), s = 1, . . . , p according to the distribu-
tions defined in (2)-(3).

4. Update n̂u,it,k(t + 1) and x̂u,it,k(t + 1) for all k, u,
using (4) and (5), respectively.

5. Update the discounted throughputs φu(t+1) using (6)
for all users u.

6. Update the weights using (1)

Table 1: Pseudo-code of the FSS (Fair, Soft-Sample) UCB algorithm

6. ANALYSIS
In this section we briefly discuss the performance guar-

antees achieved by our algorithm, FSS-UCB. We first ana-
lyze the performance of the learning components of the al-
gorithm, i.e., we consider the single link scenario. Let u be
this link. To assess the performance of FSS-UCB, we use
the notion of regret. The latter is the difference between
the goodput achieved by an ideal algorithm always tracking
the best (channel, rate) pair with that obtained by FSS-UCB.
More precisely, an ideal algorithm would select in frame
t the (channel, rate) pair (i?t , l

?
t) maximizing the expected

number of packets successfully sent during this frame:

(i?t , l
?
t) = argmax

(j,k)
mkµu,j,k(t).

Now denote by (it, lt) the (channel, rate) pair selected by
FSS-UCB. The regret of FSS-UCB up to time T is then:

regretu(T) =
1

T

T−1∑
t=0

(ml?t
µu,i?t ,l?t (t)−mltµu,it,lt(t)). (8)

As shown in the following result, the regret of FSS-UCB is
controlled by the rate α at which the best (channel, rate) pair
(i?t , l

?
t) changes over time.

PROPOSITION 1. Assume that the rate at which the best
(channel, rate) pair (i?t , l

?
t) changes over time is bounded by

α > 0, i.e.,

lim sup
T

1

T

T∑
t=1

1(i?t ,l?t)6=(i?t−1,l
?
t−1)
≤ α.

Then we have:

lim sup
T→∞

regret(T) ≤ O(K
√
α log(1/α)). (9)

PROOF. It is easy to verify that soft-sampling and op-
portunistic sampling introduced in FSS-UCB still maintain
the asymptotic performance properties of the D-UCB algo-
rithm [21] (without soft-sampling and opportunistic sam-
pling). Hence, the proof follows directly from [21, Remark
4].

A direct consequence of the above proposition is that when
the rate α at which the best (channel, rate) pair changes tends
to zero, then the regret of FSS-UCB also converges to zero.
In particular, when the best pair does not change, FSS-UCB
is a zero regret algorithm as stated in the following corollary.

COROLLARY 1. If the channel conditions are i.i.d. over
time (i.e., the average success rates µu,i,l(t) are constant),
then:

lim sup
T→∞

regret(T) = 0. (10)

This contrasts with a naive strategy that would periodi-
cally explore channels and rates, which would incur a con-
stant strictly positive regret even when the channels are sta-
tionary. Note also that the performance bound derived in
Proposition 1 basically states that FSS-UCB is well suited
for tracking the best channel and rate when they change in-
frequently, as observed in Section 3. Finally observe that,
although FSS-UCB has the same asymptotic performance
guarantees as those of D-UCB from [21], it generally per-
forms much better thanks to the introduction of soft-sampling
and opportunistic sampling. Indeed the performance of D-
UCB would be quite low in our setting where the number of
(channel, rate) pairs is large.

We conclude this section by arguing that for an AP sce-
nario, FSS-UCB will maximize the long-term social welfare
of the system. Specifically, when γ′ becomes close to 1, and
when the frequency of channel changes α becomes close to
zero, the gradient algorithm (6)-(7) tends to maximize util-
ity. This statement can be proved using classical stochastic
approximation techniques, see e.g. [37]. We omit the proof
due to lack of space.

7. IMPLEMENTATION
We implemented our algorithm in the MAC layer of the

Lyrtech SFF SDR boards using Colombo SDK [38]. We use
an unmodified OFDM PHY. The algorithm is prototyped on
a TI SDP DM-6446 DMP in C. Our current implementa-
tion, with no optimization, executes a scheduling procedure
in less than 100 µs. The total MAC header overhead is 6B.

In what follows we discuss some of the important practi-
cal aspects of the channel and rate selection problem that we
have encountered during the implementation. We first dis-
cuss the optimal parameter setting for FSS-UCB, and then
address the synchronization issues and the signaling for op-
portunistic channel sampling.

7.1 Parametrizing FSS-UCB algorithm
We start by discussing the frame size. In our current test-

bed, the channel switching cost is 2-3ms, which is of or-
der of a packet transmission time. In order to compensate
for the switching cost, the AP mandates a frame size of 40
ms: approximately 10 packets of 1000B can be sent dur-
ing one frame at the lowest transmission rate of 4.5 Mbps.
Such a long frame size may cause short-term fairness issues.
However, several papers, such as [39], report much shorter
switching times, so we expect that 5-10 times shorter frame
sizes will be enough to compensate the switching cost in
more efficient radio designs.

To choose the rest of the parameters of the FSS-UCB al-
gorithm, we use the tuned values derived from simulation
experiments on measured channels: the optimal parameters
are ξ = 0.3 and γ = 1− 5 · 10−3. This implies γ270 = 0.25
and samples that are more than 10s away will contribute less
than 0.25 to the quality estimates (because in our test-bed
270 frames last about 10s). This intuitively means that we
provision for channel coherence times of a few tens of sec-
onds8. We also use γ′ = γ (to have the same time-scales for
the probing and the fairness algorithm) and q = 1/2 (empir-
ically optimizing over our measurement dataset).

7.2 Synchronization issues
One of the main problems in any wireless system with

channel hopping is how to maintain synchronization: the re-
ceiver has to track the channel used by the transmitter to send
packets. Any loss of synchronization will trigger a poten-
tially costly re-discovery procedure. In the scenario where
an AP implements the FSS-UCB algorithm to transmit pack-
ets to several clients, it is important that all clients always
remain synchronized with the AP. Indeed, clients need to
overhear all packets sent by the AP to speed up the learning
process (opportunistic channel sampling). We describe next
a synchronization procedure in the AP scenario. The case
of a single transmitter-receiver pair can be seen as a special
case of this scenario.

Let it be the channel used by the AP to send packets in
8For faster implementations, with higher data rates and smaller overheads
than ours, the required coherence time can be significantly reduced.

frame t. To inform all users of the channel that the AP will
use in the next frame, it+1 is encoded in the header of each
packet sent during frame t. To remain synchronized, a client
u just needs to successfully decode the header of one of the
packets sent per frame. This happens with high probability.
If the header of each packet of frame t cannot be decoded by
client u, the latter will go to the back-up channel iut+1 such
that (iut+1, l) = argmax(j,k) wu,j,k(t+1) and wait there. In
other words, if client u looses synchronization, it will wait
for the AP to transmit a packet on the channel that would be
chosen for the next transmission destined to u. If synchro-
nization cannot be recovered within a predefined time-out,
client u starts a channel scanning procedure to track the AP.

Note that iut can be locally computed by client u. But
due to possible previous synchronization problems, client-
u’s estimate of iut may be erroneous. In order for client u
and the AP to have the same view of back-up channel, the
AP includes the value of iut+1 in the header of packets sent
to client u during frame t.

The above synchronization procedure requires the AP to
announce what channel will be used in the next frame, and
hence the execution of the FSS-UCB is delayed by one frame.
Our experiments showed that this delay does not impact the
performance of the algorithm.

7.3 Signaling for opportunistic sampling
Finally, we describe a low-overhead signaling procedure

which allows clients to feed back the overheard channel es-
timates (Section 5.4) to the AP.

All clients are in sync with the AP, listen promiscuously
and learn channel information from overheard packets. Each
client u keeps a record (oRu,i,l, x̂

R
u,i,l, n̂

R
u,i,l) for each channel

i and rate rl, where oRu,i,l is the number of overheard packets
and x̂Ru,i,l and n̂Ru,i,l are the discounted weights and number
of samples, respectively. For each overheard packet on chan-
nel i, rate rl, the client u increases oRu,i,l and updates x̂Ru,i,l
and n̂Ru,i,l using soft-samples and the updates (5) and (4).

How will the client classify an erroneous packet, given
that its content is not reliable? As we observe in the mea-
surements, it is much more likely that the packet payload
will get corrupted, than the packet header. Hence, for most
of the packets, successful or not, the client can extract the
header information correctly and update the corresponding
record. If this is not possible, the packet is simply ignored.

Whenever the client u sends an acknowledgment for a cor-
rectly received packet, it appends one of the records (oRu,i,l,
x̂Ru,i,l, n̂

R
u,i,l) using the LRU policy, and erases the record by

setting all variables to zeros. When the AP receives this up-
date, it updates its own records using a cumulative discount

n̂u,i,l(t+ 1) = γo
R
u,i,l n̂u,i,l(t) + n̂Ru,i,l,

x̂u,i,l(t+ 1) = γo
R
u,i,l x̂u,i,l(t) + x̂Ru,i,l.

Note that this is as if the AP had received all the packet
information itself, and performed the updates (5) and (4) ac-

0 1 2 3 4 5 6 7
0

0.5

1

1.5

Time [min]

G
oo

dp
ut

 [M
bp

s]

Oracle
FSS−UCB

Figure 5: Goodputs achieved under FSS-UCB algorithm (solid black
line) and the optimal Oracle algorithm which always selects the best
(channel, rate) pair (thick yellow line) on link A-C.

cordingly.

8. PERFORMANCE EVALUATION
We evaluate FSS-UCB algorithm using both simulations

and our SDR testbed.

8.1 Simulation Results
We first evaluate FSS-UCB using simulations for two rea-

sons. First, we wish to compare FSS-UCB with an ideal or
Oracle algorithm that always selects the best (channel, rate)
pair, which is impossible to implement in a test-bed. Sec-
ond, we wish to evaluate how the performance of FSS-UCB
depends on the speed of channel changes (channel coherent
time), which we can control in simulations but not in our
testbed.

We use the channel traces from Section 3 to get realis-
tic channel conditions. The transmission success of each
packet is simulated as a Bernoulli random variable with the
success probability corresponding to the success probability
observed in the real traces, at that particular time instant, for
the selected channel, rate and client. We compare FSS-UCB
against two algorithms. The first one is an Oracle algorithm
that knows the future success rates, and at every time instant
selects the (channel, rate) pair with the highest success rate.
The second is the random algorithm that randomly selects a
(channel, rate) pair and uses that pair for the entire simula-
tion.

We first compare FSS-UCB with the Oracle algorithm.
We focus on a single link scenario for link A-C, and we
plot the goodputs achieved by both algorithms in Figure 5.
We observe that the performance loss of FSS-UCB is less
than 5% compared to the Oracle! Thus FSS-UCB efficiently
learns channel conditions, and is able to track the best (chan-
nel, rate) pair most of the time.

Next, we investigate how the performance of FSS-UCB
depends on the speed of channel condition variations (chan-
nel coherence time). To do so, we again use the channel
traces from Section 3, but we speed up the channel condi-
tion variations by a constant factor. We compare FSS-UCB
with the Oracle and the random algorithms. In all cases we
run the simulations over the entire trace 10 times and report
the average rate achieved. We plot the ratio of the average
goodputs achieved under FSS-UCB to the Oracle and to the
random algorithm in Figure 6. We observe first that the ran-
dom algorithm performs quite poorly. We also notice that as

10
0

10
1

10
2

0

0.5

1

1.5

Speed−up factor

G
oo

dp
ut

 r
at

io

FSS−UCB / Oracle
FSS−UCB / random

Figure 6: Ratios of the goodput achieved by FSS-UCB algorithm by
the goodputs of the Oracle and the random algorithms, as we speed-up
channel variations.

we speed up the channel variations, the performance of FSS-
UCB naturally drops. However FSS-UCB achieved 85% of
the goodput of the Oracle algorithm even with a speed-up
factor equal to 100, and it still performs 30% better than the
random algorithm.

8.2 Experimental Results
We next evaluate the FSS-UCB algorithm in the testbed

described in Section 3.1. We first evaluate the FSS-UCB
algorithm in a single-link scenario with link A-C and then in
a 3-link scenario, both using live experiments.

We compare the FSS-UCB algorithm to an algorithm that
always selects the same channel, referred to as single-channel
algorithm in the following. In the case of the single-channel
algorithm, we a priori select one channel and run the whole
experiment on that channel. To adapt the transmission rates
with the single-channel algorithm, we use SampleRate [9],
which in turns offers a performance similar to what we would
have obtained by running our learning algorithm FSS-UCB
on a single channel (just adapting the rates).

We generate synthetic traffic to always maintain the queues
backlogged. In the case of the single-channel algorithm, and
when multiple links are considered, we use a simple FIFO
scheduler to define the order at which packets are sent by
the AP. This contrasts with the FSS-UCB algorithm that tar-
gets some fairness guarantees.

Single-link Scenario: We first consider the single scenario,
with link A-C. We run 6 experiments. The first experiment
is with our learning algorithm FSS-UCB. The other five ex-
periments are with the single-channel algorithm on channels
510, 530, 550, 580 and 600 MHz, respectively. We run each
experiment for 30 min.

We present a snapshot of goodputs in Figure 7. Different
channels exhibit different performance that varies over time,
with a coherence time of order of seconds to minutes (an
observation that is consistent with Figure 4). We also see
that FSS-UCB manages to learn the best (channel, rate) well
before the coherence time: it surfs on the top of the best
channel, offering consistently good performance.

In Figure 8 we give the average goodput achieved in dif-
ferent experiments over periods of duration 30min. Our learn-
ing approach yields a 35.7% improvement over the average
of other 5 experiments, 8.2% over the single-channel algo-
rithm selecting the best channel and as much as 96.7% over
that selecting the worst channel. This suggests that FSS-

0

0.5

1

510 MHz

0

0.5

1

550 MHz

M
bp

s

0

0.5

1
580 MHz

0 1 2 3 4 5 6 7
0

0.5

1

FSS−UCB

Time [min]

Figure 7: Goodputs vs. time of the single-channel algorithm on chan-
nels 510 MHz, 550 MHz and 580 MHz, and goodput vs. time of the
learning algorithm FSS-UCB.

Channel [MHz] 510 530 550 580 600 FSS-UCB

Goodput [Mbps] 0.42 0.61 0.69 0.38 0.65 0.75
Improvement 76% 22% 8% 97% 15% N/A

Figure 8: Average goodputs under the single-channel algorithm and
under FSS-UCB over 30 min intervals and the relative improvements
of FSS-UCB over the single-channel algorithm on different channels.

UCB is able to really track the best (channel, rate) pair.

Access Point Scenario: Finally, we look at the multiple
client scenario. Three clients are served by the AP. Again we
run two types of experiments, with the single-channel algo-
rithm and with FSS-UCB. Running the single-channel algo-
rithm on different channels yields similar goodputs. This is
because the goodput is averaged over 30 min, a long period
of time where all channels exhibit similar average quality.
Thus we provide the results for 580MHz channel only. The
results are given in Figure 9.

Link A-B A-C A-D Sum

Goodput [Mbps], Single channel 0.13 0.16 0.23 0.52
Goodput [Mbps], FSS-UCB 0.22 0.19 0.21 0.62
Improvement 63% 23% -8.5% 19.2%

Figure 9: Average goodputs on different links of the single-channel
algorithm on channel 580MHz and of FSS-UCB over 30min intervals,
and the relative improvements of FSS-UCB over the single-channel al-
gorithm.

Observe that FSS-UCB provides more balanced goodputs,
i.e., improves fairness. The goodput of link A-D has de-
creased, but FSS-UCB also increased the previously smaller
goodputs on links A-B and A-C. Moreover, in addition to the
improve fairness, there is an overall goodput improvement of
almost 20% when using FSS-UCB. We see that FSS-UCB
works well with three links.

9. CONCLUSIONS AND FUTURE WORK

We have designed and implemented a learning algorithm,
FSS-UCB, for dynamic rate and channel selection for wire-
less systems exploiting white spaces, and used both simula-
tions and an SDR testbed to evaluate its performance. Us-
ing our algorithm, we observe an average performance gain
of 40% over algorithms that always stick to the same chan-
nel. Moreover, the gain can be as large as 100%, depend-
ing on which channel we choose to stick to. In a network
setting where an AP serves multiple clients, our algorithm
provides greater fairness and less variability than the single
channel algorithm, and significantly increases the aggregate
goodput. FSS-UCB is applicable to other similar environ-
ments, and we believe that its learning efficiency can be fur-
ther improved by increasing PHY rates and decreasing dif-
ferent system delays – It should then be able to track the best
channel and rate even when the channel coherence time is of
the order of seconds.

The main limitation of our algorithm is that it has not been
evaluated in a setting with multiple APs. We believe our
algorithm will still work on the top of a CSMA-like MAC
protocol, using techniques such as those described in [40] to
distinguish between PHY and MAC layer collisions. Bal-
ancing the channel quality and medium access in an optimal
and distributed way is still an open problem, as we discussed
in Section 2, and left for future work.

Acknowledgements: We’d like to thank Greg O’Shea for
pchute/ukpapi, and Steve Hodges and James Scott for help-
ing us with hardware setup.

10. REFERENCES
[1] FCC. Second memorandum opinion and order, FCC 10-174.

http://www.fcc.gov/Daily_Releases/Daily_
Business/2010/db0923/FCC-10-174A1.pdf, 2010.

[2] M. Mishra and A. Sahai. How much white space is there? Technical
Report UCB/EECS-2009-3, UC Berkeley, 2009.

[3] J. Camp and E. Knightly. Modulation rate adaptation in urban and
vehicular environments: cross-layer implementation and
experimental evaluation. In MOBICOM, 2008.

[4] D. Halperin, W. Hu, A. Sheth, and D. Wetherall. Predictable 802.11
packet delivery from wireless channel measurements. In SIGCOMM,
2010.

[5] S. Sen, N. Santhapuri, R. Choudhury, and S. Nelakuditi. CBAR:
Constellation based rate adaptation in wireless networks. In NSDI,
2010.

[6] Ubiquiti. XR1 and XR7 radio modules.
http://www.ubnt.com/xr1.

[7] Y. Yuan, P. Bahl, R. Chandra, P. Chou, J. I. Ferrell, T. Moscibroda,
S. Narlanka, and Y. Wu. KNOWS: kognitiv networking over white
spaces. In DySpan, 2007.

[8] H. Kim and K. G. Shin. In-band spectrum sensing in cognitive radio
networks: Energy detection or feature detection? In MOBICOM,
2008.

[9] J. Bicket. Bit-rate selection in wireless networks. Master’s thesis,
MIT, 2005.

[10] M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 rate
adaptation: a practical approach. In ACM MSWiM, 2004.

[11] S. Wong, H. Yang, S. Lu, and V. Bharghavan. Robust rate adaptation
for 802.11 wireless networks. In MOBICOM, 2006.

[12] D. Huang, D. Malone, and K. Duffy. The 802.11g 11 mb/s rate is
more robust than 6 mb/s. IEEE Transactions on Wireless
Communcations, 10(4):1015–1020, 2011.

[13] K. Liu, Q. Zhao, and B. Krishnamachari. Dynamic multichannel
access with imperfect channel state detection. IEEE Transactions on
Signal Processing, 58(5), 2010.

[14] Hai Jiang Lifeng Lai, Hesham El Gamal and H. Vincent Poor.
Cognitive medium access: Exploration, exploitation and competition.
IEEE/ACM Trans. on Mobile Computing, 10(2), 2011.

[15] Q. Zhao, L. Tong, A. Swami, and Chen Y. Decentralized cognitive
MAC for opportunistic spectrum access in ad hoc networks: A
POMDP framework. IEEE Journal on Selected Areas in
Communications, 25(3):589–600, 2007.

[16] S. H. Ahmad, M. Liu, T. Javidi, Q. Zhao, and B. Krishnamachari.
Optimality of myopic sensing in multi-channel opportunistic access.
IEEE Trans. on Information Theory, 55(9):4040 – 4050, 2009.

[17] J. Unnikrishnan and V. V. Veeravalli. Algorithms for dynamic
spectrum access with learning for cognitive radio. IEEE Transactions
on Signal Processing, 58(2):750 – 760, February 2010.

[18] J. Ai and A. Abouzeid. Opportunistic spectrum access based on a
constrained multi-armed bandit formulation. Journal of
Communications and Networks, 11, 2009.

[19] K. Liu and Q. Zhao. Channel probing for opportunistic access with
multi-channel sensing. In Asilomar, 2008.

[20] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time
analysis of the multiarmed bandit problem. Mach. Learn.,
47(2-3):235–256, 2002.

[21] A. Garivier and E. Moulines. On upper-confidence bound policies for
non-stationary bandit problems.
http://front.math.ucdavis.edu/0805.3415, 2008.

[22] P. Chaporkar and A. Proutiere. Optimal joint probing and
transmission strategy for maximizing throughput in wireless systems.
IEEE Journal on Selected Areas in Communications, 26(8):1546 –
1555, October 2008.

[23] S. Huang, X. Liu, and Z. Ding. Optimal sensing-transmission
structure for dynamic spectrum access. In INFOCOM, 2009.

[24] S. Guha, K. Munagala, and S. Sarkar. Jointly optimal transmission
and probing strategies for multichannel wireless systems. In CISS,
2006.

[25] N. Chang and M. Liu. Optimal channel probing and transmission for
opportunistic spectrum access. In MOBICOM, 2007.

[26] Arquiva. http://www.arqiva.com/.
[27] D. Tse and P. Viswanath. Fundamentals of Wireless Communication.

Cambridge University Press, 2005.
[28] A. Sabharwal, A. Khoshnevis, and E. Knightly. Opportunistic

spectral usage: bounds and a multi-band csma/ca protocol.
IEEE/ACM Trans. Netw., 15(3):533–545, 2007.

[29] P. Chaporkar, A. Proutiere, H. Asnani, and A. Karandikar.
Scheduling with limited information in wireless systems. In
MOBIHOC, New York, NY, USA, 2009. ACM.

[30] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and
Games. Cambridge University Press, New York, NY, USA, 2006.

[31] N. Ahmed and S. Keshav. SMARTA: a self-managing architecture
for thin access points. In CoNext, 2006.

[32] A. Anandkumar, N. Michael, and A.K. Tang. Opportunistic spectrum
access with multiple users: Learning under competition. In
INFOCOM, 2010.

[33] G. Kasbekar and A. Proutiere. Decentralized opportunistic medium
access in multi-channel wireless systems: A learning approach. In
Allerton, 2010.

[34] Y. Gai, B. Krishnamachari, and R. Jain. Learning multiuser channel
allocations in cognitive radio networks: A combinatorial multi-armed
bandit formulation. In DySPAN, 2010.

[35] H. Hashemi. The indoor radio propagation channel. Proceedings of
the IEEE, 81(7):943–968, 1993.

[36] A. Stolyar. On the asymptotic optimality of the gradient scheduling
algorithm for multi-user throughput allocation. Operations Research,
53(1), 2005.

[37] H. Kushner and G. Yin. Stochastic approximation and recursive
algorithms and applications. Springer, 1997.

[38] D. Gunawardena and B. Radunović. Colombo SDK - simulating the
innards of a wireless MAC. In Mobicom Demo, 2011.

[39] F. Herzel, G. Fischer, and H. Gustat. An integrated cmos rf
synthesizer for 802.11a wireless lan. IEEE Journal of Solid-state
Circuits, 18(10), October 2003.

[40] J. Kim, S. Kim, S. Choi, , and D. Qiao. CARA: Collision-aware rate
adaptation for IEEE 802.11 WLANs. In INFOCOM, 2006.

