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ABSTRACT
The contingency table is a work horse of official statistics,
the format of reported data for the US Census, Bureau of
Labor Statistics, and the Internal Revenue Service. In many
settings such as these privacy is not only ethically man-
dated, but frequently legally as well. Consequently there is
an extensive and diverse literature dedicated to the prob-
lems of statistical disclosure control in contingency table re-
lease. However, all current techniques for reporting contin-
gency tables fall short on at least one of privacy, accuracy,
and consistency (among multiple released tables). We pro-
pose a solution that provides strong guarantees for all three
desiderata simultaneously.

Our approach can be viewed as a special case of a more
general approach for producing synthetic data: Any privacy-
preserving mechanism for contingency table release begins
with raw data and produces a (possibly inconsistent) privacy-
preserving set of marginals. From these tables alone – and
hence without weakening privacy – we will find and output
the “nearest” consistent set of marginals. Interestingly, this
set is no farther than the tables of the raw data, and con-
sequently the additional error introduced by the imposition
of consistency is no more than the error introduced by the
privacy mechanism itself.

The privacy mechanism of [20] gives the strongest known
privacy guarantees, with very little error. Combined with
the techniques of the current paper, we therefore obtain ex-
cellent privacy, accuracy, and consistency among the tables.
Moreover, our techniques are surprisingly efficient.

Our techniques apply equally well to the logical cousin of
the contingency table, the OLAP cube.

∗Research conducted while visiting Microsoft Research.
†Supported by NSF grants CNS-0627526 and CCF-0426582
and US-Israel BSF grant 2004288.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS’07, June 11–14, 2007, Beijing, China.
Copyright 2007 ACM 978-1-59593-685-1/07/0006 ...$5.00.

Categories and Subject Descriptors
G.3 [PROBABILITY AND STATISTICS]: [Contingency
table analysis]

General Terms
Algorithms, Theory

Keywords
Privacy, OLAP, Contingency table release

1. INTRODUCTION
Privacy-preserving data-mining, also known as statisti-

cal disclosure control, has historically been the purview of
statisticians, both in practice, for example, at the Census
Bureau, the Internal Revenue Service, and the Bureau of
Labor Statistics, and in the research community. (see, for
example, [12, 24, 17, 34, 1] and the references in Section 1.1
below). In recent years the topic has experienced a resur-
gence in the computer science community (see, for example,
[2, 3, 4, 23, 14, 9, 10, 6, 20, 18, 37, 35]). In this work we focus
on contingency tables, also known as frequency tables, and
their logical cousins, On-Line Analytical Processing (OLAP)
cubes.

1.1 Contingency Table Release
Informally, a contingency table is a table of counts. From

a database consisting of n rows, each comprising values for
a fixed set of, say, binary attributes a1, . . . , ak, the contin-
gency table is the histogram of counts for each of the 2k

possible settings of these attributes. Contingency tables are
essentially equivalent to OLAP cubes, which cast traditional
relational databases as a high-dimensional cube with dimen-
sions corresponding to the attributes. While we stay with
the notation of statisticians, we stress that this is simply no-
tational, and the results can be directly mapped to privacy-
preserving OLAP.1

What is commonly released is not a contingency table
itself, but the projection of the cube onto a subset of the at-

1Typically, attributes are non-binary. While our exposition
uses binary attributes, any attribute with m possible values
can be decomposed into log(m) binary attributes. This is
even natural in many OLAP settings, where the attributes
are hierarchically organized.



tributes: the counts for each of the possible settings of the re-
stricted set of attributes. These counts are called marginals,
each marginal associated with a subset of the attributes, and
called and j-way marginals when at most j ≤ k attributes
are used. The data curator will typically release many sets
of low-order marginals for a single contingency table, with
the goal of revealing correlations between many different,
and possibly overlapping sets of attributes.

At first glance, it might seem that low-order marginals
are “naturally” privacy-preserving: after all, they are ag-
gregations over many of database rows. This, however, is
not the case. For example, small counts are considered dis-
closive: if a given pair of attribute values corresponds to a
unique individual, then these fields can be used as a key in
other databases to reveal further information about an in-
dividual. Empty cells are also potentially disclosive: while
they do not point to a specific individual, they can permit
the rejection of claims, eg: that student X received all ‘A’s
by virtue of the fact that no student received such marks.
Access to large counts over time can permit “differencing
attacks”, where the changes to the data set can serve as
the basis for inference and privacy violation. Several papers
examine the degree to which individual cell entries are re-
vealed by marginals; see, eg, [15]. Finally, recent results of
de Loera and Onn [30, 29, 31] are particularly discouraging.

The disclosure risks inherent in contingency tables have
given rise to an extensive and diverse literature on tech-
niques for altering the true tables. There are two broad
classes of techniques: non-perturbative (specifically, cell sup-
pression) and perturbative (eg, controlled rounding and con-
trolled tabular adjustment). In cell suppression, so-called
“sensitive” cells are identified (the primary cells; see [16, 33]
for a discussion of sensitivity rules). These are suppressed,
together with a set of complementary secondary cells (to
avoid the disclosure of the primary cells). The typical goal
is to suppress as few secondary cells as possible, leading to
difficult combinatorial problems with impractical execution
times on large instances. Controlled rounding, initially in-
troduced in [5], also suffers from combinatorial explosion,
and is NP-hard even for the case of three-dimensional ta-
bles [27]. Controlled Tabular Adjustment, due to Dandekar
and Cox [13], and the use of quadratic interior-point meth-
ods, due to Castro [7], were introduced to address these dif-
ficulties. This is an active area of research; see for example,
the discussion in [8].

Over the last 5 years or so, the database and cryptography
communities have provided rigorous definitions of privacy
and introduced techniques that provably satisfy the given
definitions [23, 9, 4, 14, 22, 20].

The most general and robust of these, and the notion
used in this work, captures the following intuition: the ad-
versary learns nothing more about an individual when her
data are included in the database than the adversary can
learn about the individual when her data are not included
in the database (see Section 1.2 for the formal definition
and its motivation) [20, 18]. Combined with the algorith-
mic techniques developed in a series of papers ([14, 22, 6]
and particularly [20]), these yield a simple approach to con-
tingency table release, with excellent accuracy and strong
privacy guarantees, independent of any auxiliary informa-
tion available to the adversary and regardless of the adver-
sary’s computational power. At a high level, this approach

involves adding a small amount of independently and identi-
cally distributed noise to each cell in the released marginals.
However, the small errors introduced to ensure privacy will
cause distinct breakdowns of the data to yield slightly differ-
ent counts (not to mention possibly negative and non-integer
cell counts). The current work addresses this, adding con-
sistency (and positivity and integrality) to privacy and ac-
curacy.

1.2 A Formal Statement of Our Contribution
Our contribution, as suggested by the paper’s title, comes

in the parts of privacy, accuracy, and consistency, each of
which are critical components of any data analysis system.
At an intuitive level, which we soon formalize, we are con-
cerned with

• Privacy: The presence or absence of any one data
element should not substantially influence the distri-
bution over outcomes of the computation.

• Accuracy: The difference between the reported marginals
and true marginals should be bounded, preferably in-
dependent of the size of the data set.

• Consistency: There should exist a contingency table
whose marginals equal the reported marginals.

We now formally discuss each, in the context of prior work.

1.2.1 Privacy
Since a rigorous claim about privacy is integral to our

result we begin by recalling the definition of differential pri-
vacy [18, 20], which our algorithms will ensure.

Definition 1. [18, 20]. A randomized function K gives
ε-differential privacy if for all databases D1 and D2 differing
on at most one element, and all measurable S ⊆ Range(K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (1)

A randomized function satisfying this definition addresses
any concern that a participant might have about the use
of his or her data. In a formal sense, the distribution over
outcomes is almost as if the participant had opted out of
the data set; no event is made substantially more or less
likely by the use of her data. These “events” can be viewed
mathematically, perhaps as outputs leading to a substantial
shift between prior and posterior probabilities, or pragmat-
ically, as actual objectionable events, eg: outputs leading to
telemarketing calls or denial of credit.

Remark: Differential privacy has several consequences that
follow from the definition but may not be immediately ap-
parent. Notably, the definition is agnostic to auxiliary infor-
mation an adversary may possess, and provides guarantees
against arbitrary attacks. Moreover, any function with ε-
differential privacy also ensures (εt)-differential privacy for
groups of size up to t, and the composition of s functions
with ε-differential privacy ensures (εs)-differential privacy.
See [20] for further discussion.

Comparison with Other Definitions.
Differential Privacy provides much stronger guarantees

than other privacy definitions of which we are aware. For ex-
ample, k-anonymity[35, 37, 36] and its extension l-diversity[32]
impose syntactic constraints on the outputs, requiring that



many groups of tuples appear indistinguishable, or uninfor-
mative about specific values. Nonetheless, neither of these
definitions protects against even simple background knowl-
edge of the form “My colleague Mr. R., who works in zip
code 2770*, is in the database”. For example, if, cumula-
tively, the people in the database suffer from a small set of
ailments, then the adversary learns that Mr. R suffers from
one of these ailments. This may be worse than embarassing;
it may result in Mr. R. being dropped from consideration for
promotion, say. In addition, even two k-anonymous or even
`-diverse tables taken together may be completely disclosive.

Similarly, [23] promotes the concept of the (ρ1, ρ2)-privacy
breach. Very roughly, such a breach represents a substan-
tial change in the adversary’s belief that an individual data
item satisfies some particular property P . By definition,
this notion is entangled with the adversary’s prior knowledge
about the data and seems to have forced some awkward as-
sumptions (eg, independence among data items, adversary’s
knowledge of true prior). Comparable definitional awkward-
ness appears in [22, 9, 10, 6] (eg, the “informed adversary”).
Interestingly, in hindsight we find that the algorithmic tech-
niques in [23, 22, 6] yield stronger privacy than is proved in
the papers themselves. This occurs because all three papers
provide statistical guarantees regarding the outputs of the
privacy mechanism, yielding, to differing extents, approxi-
mations to differential privacy.

Protection against (ρ1, ρ2)-privacy breaches in [23] comes
as a consequence of the γ-amplification statistical guaran-
tees. Other algorithmic approaches, such as in [4], prevent
different sets of (ρ1, ρ2) privacy breaches than does ensur-
ing at most γ-amplification, and are less satisfactory. For
example, the guarantees in [4] may fail to protect Mr. R.’s
recent purchase of “herbal supplements” – a not uncommon
event for the population in general but again, embarassing
to Mr. R.

One might – erroneously – conclude that no technique can
protect individuals against adversaries with arbitrary back-
ground knowledge. After all, it is formally proven in [18]
that, for essentially any non-trivial mechanism and defini-
tion of privacy compromise, there exists auxiliary informa-
tion for which the output of the mechanism enables a privacy
compromise that would not otherwise be possible2.

This result, and its underlying intuition, led to Differen-
tial Privacy, which does provide guarantees against arbitrary
auxiliary information. It succeeds because it makes the only
fair comparison: the probabilities of disclosure (or any event
at all, for that matter) with, versus without, the sensitive
data. If a disclosure will happen even without a partici-
pant’s data, perhaps because it is known beforehand that
the participant is in the majority, say, then it is unfair to
cast blame on the privacy mechanism: any mechanism that
reports the majority would lead to the breach. This is a
key distinction: comparing with and without a participant’s
data, rather than with and without the output of the mecha-
nism, and it is what allows Differential Privacy to give such
strong bounds. Since the definition talks about the statis-

2Intuitively, the utility of the database provides a crypto-
graphic one-time pad which can be combined with auxil-
iary information to yield a devastating privacy compromise.
The user of the system learns the utility and can therefore
subtract out the one-time pad, revealing the privacy com-
promise. Anyone not having access to the system’s utility
cannot “decode” the auxiliary information.

tical distribution of the outcome, it obviates any discussion
of the adversary’s auxiliary information.

1.2.2 Accuracy
Privacy guarantees are of course meaningless without ac-

companying accuracy guarantees. We could easily erase the
data if the former were all we cared about. We now detail
guarantees that our algorithm makes about the accuracy
of the counts in the released marginals, while ensuring ε-
differential privacy.

Our theorem statement is necessarily loose at the moment,
for notational reasons. The full version appears as Theorem
7, and is tighter than what is presented now:

Theorem 1. (Rough Version): Let C be a set of marginals
of the contingency table, each on at most j attributes. We
compute marginals C′ of a positive, integral contingency ta-
ble, preserving ε-differential privacy, such that with proba-
bility 1− δ for any marginal c ∈ C,

‖c− c′‖1 ≤ 2j+3|C| log(|C|/δ)/ε + |C| . (2)

This result does not depend on the total number of at-
tributes in the data set, nor on the total number of elements
in the data set, but rather only on the “complexity” of the
query, in terms of the number and order of the marginals.
Our result is the first we are aware of where the error in the
marginals falls below statistical error due to sampling. Note
also that while one might be concerned that 2j is a large
number, it is the number of elements that are reported by
each marginal, and a natural scale for the L1 norm.

The most natural comparison to make is with the recent
work of [4], on privacy preserving OLAP. In this work, which
provides a limited form of (ρ1, ρ2)-privacy, the data are ran-
domized with a constant probability, resulting in each count
being reconstructible to within roughly

p
|dataset|. Our ap-

proach improves the error by exploiting the property that it
is the number of marginals requested, |C|, that determines
a sufficient amount of noise.

Remark: Randomized response, or any other mechanism
that allows the user to learn answers to too many counting
queries of the form “How many of the subset S of tuples sat-
isfy property P?” must necessarily introduce large amounts
of noise. This follows from results of [14], originally ob-
tained for the interactive case, but applying here as well.
For example, given any mechanism for which the magnitude
of the error on all 2n counting queries is bounded by E,
the adversary can produce a candidate vector that agrees
with (P (tuple1), . . . , P (tuplen)) on all but 4E entries. So
for E ∈ o(n), say, E = n1−ε, the adversary learns more
than 99.99% of the P values. An efficient version of this re-
quires only that the adversary obtain responses to n log2 n
randomly chosen subset counting queries with o(

√
n) error

(in fact, an efficient attack may be carried out even if more
than 20% of O(n) queries have wild error, while the remain-
ing suffer from at most o(

√
n) error [21]). In some sense

the problem is that the randomized response mechanism re-
veals the (very roughly approximate) answers to many more
queries than the user may actually want to pose. By focusing
on interactive mechanisms we can add just enough noise to
ensure privacy for a given number of queries. Whenever the
curator knows the questions in advance, a “transcript” can
be prepared with the desired queries and responses, so for



the case of contingency tables, or OLAP cubes, we are not
restricting ourselves by focusing on the interactive model.

1.2.3 Consistency
The matter of consistency among the released marginals

might appear trivial; indeed most previous approaches, which
produced actual randomized data sets, it is a non-issue, as
their tables are produced from these specific data sets. How-
ever, there is previous work, namely [20], that assures differ-
ential privacy and strong accuracy simply by adding noise
to relased cell values. It is unlikely that there exists a sin-
gle data set that yields all of the released marginals, and
this potential inconsistency in the released data can be the
source of many technical frustrations.

As we will base our privacy and accuracy around the tech-
niques in [20], we take this section to introduce their results
and approaches, while also distinguishing our current work
from theirs.

Definition 2. [20]. For f : D → Rd, the L1-sensitivity
of f is

∆f = max
D1,D2

‖f(D1)− f(D2)‖1 (3)

for all D1, D2 differing in at most one element.

Note that sensitivity is a property of the function alone,
and is independent of the database. In the particular case
of marginals of contingency tables, which integrate counts
over disjoint regions of attribute space, the L1-sensitivity is
always two: changing a single participant’s data can alter
at most two counts, one old and one new.

Our interest in sensitivity is summarized by Theorem 2
below, connecting sensitivity to the amount of noise that
suffices to ensure ε-differential privacy.

Theorem 2. [20]. For any f : D → Rd, the addition of
Laplace noise3 with variance 2σ2 preserves (∆f/σ)-differential
privacy.

Proof. Using the definition of the Laplace density, the
density at any a is

µ[a|D] ∝ exp(‖f(D)− a‖1/σ) (4)

Applying the triangle inequality, we bound the ratio

µ[a|D1]

µ[a|D2]
=

exp(‖f(D1)− a‖1/σ)

exp(‖f(D2)− a‖1/σ)
(5)

≤ exp(‖f(D1)− f(D2)‖1/σ) . (6)

The last term is bounded by exp(∆f/σ), by the definition
of ∆f . Thus (1) holds for singleton sets S = {a}, and the
theorem follows by integrating over S.

Remark: To ensure ε-differential privacy for a query of
sensitivity ∆ we take σ = ∆/ε.

This perturbation approach directly leads to a mechanism
for releasing approximations to the marginals of the con-
tingency table: Assume the curator wishes to release the
set of marginals C. One privacy-preserving approach ap-
plies Theorem 2 to the |C| marginals (adding noise to each
cell in the collection of tables independently), with sensitiv-
ity ∆f = |C|. This yields ε-differential privacy, which is a

3The Laplace distribution is centered at zero, with exponen-
tial tails in each direction.

very strong guarantee. When n (the number of rows in the
database) is large compared to |C| this also yields excellent
accuracy. Thus we would be done, and there would be no
need for the current paper, if the small table-to-table in-
consistencies caused by independent randomization of each
(cell in each) table are not of concern, and if the user is com-
fortable with occasionally negative and typically non-integer
cell counts.

We have no philosophical or mathematical objection to
these artifacts of the privacy-enhancing technology, but in
practice they can be problematic. For example, the cell
counts may be used as input to other, possibly off-the-shelf,
programs that anticipate positive integers, giving rise to
type mismatch. We know of one real-life test case in which
poor communication with the system prototypers caused
users who experienced inconsistencies among OLAP cubes
to question the validity of the data.[19] And while such a
problem can be solved with better communication and ed-
ucation, it may be difficult to arrange, say, when users are
ordinary citizens accessing the United States Census public
interface.

1.3 Key Steps in Our Solution

Apply Theorem 2 and Never Look Back.
In this paper we always obtain privacy by applying Theo-

rem 2 to the raw data or a possibly reversible transformation
of the raw data. This gives us an intermediate object, on
which we operate further, but we never again access the raw
data. Since anything obtained via Theorem 2 is privacy-
preserving, any quantity computed from the intermediate
object is still safe: the curator could equally well release
the privacy-protective intermediate object and the user can
carry out the rest of the compuatations. The results would
be the same.

Move to the Fourier Domain.
When adding noise, two natural approaches present them-

selves: add noise to entries of the source table and compro-
mise on accuracy, or add noise to the reported marginals and
violate consistency. A third approach transforms the data
into the Fourier domain, which serves as a non-redundant
encoding of the information in the marginals. Adding noise
in this domain will not violate consistency, because any set of
Fourier coefficients corresponds to a (fractional and possibly
negative) contingency table. Morever, as we will show, very
few Fourier coefficients are required to compute low-order
marginals, and consequently the magnitude of the noise we
must add to them is small.

Use Linear Programming.
We employ linear programming to obtain a non-negative,

but likely non-integer, contingency table with (almost) the
given Fourier coefficients, and then round the results to ob-
tain integrality. Interestingly, the marginals obtained from
the linear program are no “farther” (made precise below)
from those of the noisy measurements than are the marginals
of the raw data. Consequently, the additional error intro-
duced to impose consistency is no more than the error in-
troduced by the privacy mechanism itself.

Strictly speaking, we don’t really need to move to the
Fourier domain: we can perturb the marginals directly and
then use linear programming to find a positive fractional



data set, which can then be rounded as above. The accuracy
in this case suffers slightly.

When k is Large.
The linear program requires time polynomial in 2k, which

is the size of the contingency table (because that is what
the linear program is solving for). When k is large this is
not satisfactory. However we show, somewhat surprisingly,
that non-negativity (but not integrality) can be achieved by
adding a relatively small amount to the first Fourier coef-
ficient before moving back to the data domain. No linear
program is required, and the error introduced is pleasantly
small. Thus if 2k is an unbearable cost and one can live
with non-integrality then this approach serves well. We note
that non-integrality was a non-issue in the prototyped sys-
tem mentioned above, since answers were anyway converted
to percentages.

2. NOTATION AND PRELIMINARIES
Our formal treatment of contingency table release begins

by casting our data set as a vector x in a high-dimensional
space, indexed by attribute tuples. Formally, imagine k bi-
nary attributes, and for each α ∈ {0, 1}k there is a count
xα of the number of data elements with this setting of at-
tributes. We let n = ‖x‖1 be the total number of tuples
in our data set. As it is likely that x will be sparse, with
n � 2k, we will be mindful of n and 2k independently.

For any α ∈ {0, 1}k, we use ‖α‖1 for the weight of α, the
number of non-zero locations. We write α � β for α, β ∈
{0, 1}k if every non-zero location in α is also non-zero in β.

2.1 The Marginal Operator
Central to our discussion are the operators Cα : R2k

→
R2‖α‖1

for α ∈ {0, 1}k mapping contingency tables to the
marginals of the attributes that are positively set in α. For
any β � α, the outcome of Cαx at position β is the sum over
those coordinates of x that agree with β on the coordinates
described by α:

(Cα(x))β =
X

γ:γ∧α=β

xγ (7)

Notice that we are abusing notation, and only defining Cαx
at those locations β for which β � α.

Theorem 3. The operator Cα is linear for all α.

Proof. As each output coordinate of Ci is a sum over
predetermined input coordinates, scaling and addition of its
inputs translate to equivalent scaling and addition of out-
puts.

It is common to consider the ensemble of marginals Cα

for all α with a fixed value of ‖α‖1 = i, referred to as the
i-way marginals.

2.2 The Fourier Basis
We will find it helpful to view our contingency table x in

an alternate basis; rather than a value for each position α,
we will project onto a set of 2k so-called Fourier basis vectors
that each aggregate across the table in various ways. Our
motivation lies in the observation, made formally soon, that
while a low-order marginal needs access to all coordinates
of the contingency table, it will need only a few of the new
coordinates in the Fourier basis.

The Fourier basis for real vectors defined over the Boolean
hypercube is the set of vectors fα for each α ∈ {0, 1}k,
defined coordinate-wise as

fα
β = (−1)〈α,β〉/2k/2 . (8)

That is, each Fourier basis vector is comprised of coordinates
of the form ±1/2k/2, with the sign alternating based on the
parity of the intersection between α and β. In fact, it will
occosionally be helpful to view the vectors fα as contingency
tables themselves, as we will want to apply the marginal
operators Cβ to them.

Theorem 4. The fα form an orthonormal basis for R2k

.

Proof. This is a standard result from the theory of Fourier
analysis. See for example, [28]

A change of basis allows us to rewrite a vector x as a sum
of its projections onto the basis vectors, each of which is
referred to as a Fourier coefficient. For our purposes, we
will want to rewrite x in this basis just before it is supplied
as input to a marginal computation Cβ , which by linearity
is

Cβx = Cβ
X

α

〈fα, x〉fα =
X

α

〈fα, x〉Cβfα . (9)

As promised, the motivation for this transformation comes
from the following theorem, that any marginal over few at-
tributes requires only a few Fourier coefficients.

Theorem 5. Cβfα 6= 0 if and only if α � β.

Proof. For any coordinate γ � β of the output

(Cβ(fα))γ =
X

η:η∧β=γ

fα
η =

X
η:η∧β=γ

(−1)〈α,η〉/2k/2 . (10)

If α 6� β, then there is a coordinate for which α is one and β
zero. For every η in the sum above, the same string with this
bit flipped is also in the sum, as η∧β is ignorant of this bit.
However, their coordinates in fα have opposite sign, and
their contributions to the sum cancel exactly. This holds for
all η, making the total sum zero.

If α � β, then (Cβ(fα))α is non-zero, as the sum is taken
over η with η ∧ β = α, causing 〈η, α〉 = 〈α, α〉. Thus all
terms contributing to the summation are positive.

Consequently, we are able to write any marginal as the
small summation over relevant Fourier coefficients:

Cβx =
X
α�β

〈fα, x〉Cβfα . (11)

The coefficients 〈fα, x〉 are necessary and sufficient data
from x for the computation of Cβx.

3. ALGORITHMS AND THEOREMS
We now delve into the details of our algorithm, which

comes in two parts. We first show how to create consistent
marginals by applying a privacy-preserving mechanism to
the Fourier coefficients rather than directly to the marginals.
The resulting Fourier coefficients may correspond to a con-
tingency table whose entries are negative and fractional, and
we then give a linear program which, after rounding, returns
a positive integral contingency table, from which we com-
pute marginals.



3.1 Consistency
Rather than perturb the marginals, a naive, but effective,

manner of ensuring privacy and consistency is to simply per-
turb and release each coordinate of the contingency table.
As low-order marginals are sums over many entries in the
contingency table, their entries will have noise that is Bino-
mially distributed with variance Θ(2k).

Instead, we will isolate and perturb those features of the
data set relevant to the marginal computation, the Fourier
coefficients. Because we are taking substantially fewer mea-
surements, as compared with 2k above, we can add substan-
tially less noise to each measurement. For example, we need
only 2i coefficients for a i-way marginal, and only

P
j≤i

`
k
j

´
coefficients for the full set of i-way marginals. While these
numbers may seem large, recall that a i-way marginal re-
leases 2i counts, making this the natural scale.

We use the privacy mechanism of [20], based on the addi-
tion of additive noise, to ensure ε-differential privacy. For-
mally, we let Lap(σ) be a random variable with density at
y proportional to exp(−|y|/σ). The following theorem de-
scribes the amount of noise we must add to each Fourier
coefficient, as a function of the number of coefficients we
require.

Theorem 6. Let A ⊆ {0, 1}k describe a set of Fourier
basis vectors, and let x be the contingency table that re-
sults from a data set D. Releasing the set φα = 〈fα, x〉 +

Lap(2|A|/ε2k/2) for α ∈ A preserves ε-differential privacy
of D.

Proof. Each tuple of the data set D contributes exactly
±1/2k/2 to each output coordinate, and consequently the

L1 sensitivity of the set of |A| outputs is at most 2|A|/2k/2.
By Theorem 2, the addition of Laplace noise with parameter
2|A|/ε2k/2 gives ε-differential privacy.

Remark: Note that n = |D| does not appear in Theorem
6. To get a sense of scale for the error, we could achieve
a similar perturbation to each coordinate by randomly re-
locating 4|A|2/ε individuals in the data set, which can be
much smaller than n.

3.2 Non-Negative Integrality
While there is certainly a real valued contingency table

whose Fourier coefficients equal the perturbed values, e.g.:
by returning the perturbed values to the original space,
it is unlikely that there is a non-negative, integral contin-
gency table with these coefficients. We now use linear pro-
gramming to find a non-negative, but likely fractional, con-
tingency table with nearly the correct Fourier coefficients,
which we round to an integral contingency table with little
additional error.

Letting B ⊂ {0, 1}k, suppose that we observed Fourier
coefficients φβ for β ∈ B. The following linear program
minimizes, over all contingency tables w, the largest error
b error between its Fourier coefficients 〈fβ , w〉 and the ob-

served φβ :

minimize b

subject to:

wα ≥ 0 ∀α
φβ −

X
α

wαfβ
α ≤ b ∀β ∈ B

φβ −
X

α

wαfβ
α ≥ −b ∀β ∈ B

This optimization occurs in a 2k +1 dimensional space, and
any vertex of the feasible polytope must intersect 2k + 1
constraints. At most |B| of these can relate to Fourier co-
efficients (since for each β, only one of the two constraints
corresponding to β can be satisfied by any point). Thus at
least 2k − |B|+ 1 must be non-negativity constraints. This
means that at any vertex of the polytope, all but at most
|B| weights are zero. Without loss of generality, the linear
program will return a vertex solution[25], and rounding to
the nearest integral point will result in at most an L1 change
of |B|.

3.3 Algorithmic Recap
To bring things together, we now collect the various steps

we have taken into a single algorithm.

Marginals(A ⊆ {0, 1}k, x):

1. Let B be the downward closure of A under �.

2. For β ∈ B, compute φβ = 〈fβ , x〉+ Lap(2|B|/ε2k/2).

3. Solve for wα in the following linear program, and round
to the nearest integral weights, w′

α.

minimize b

subject to:

wα ≥ 0 ∀α
φβ −

X
α

wαfβ
α ≤ b ∀β ∈ B

φβ −
X

α

wαfβ
α ≥ −b ∀β ∈ B

4. Using the contingency table w′
α, compute and return

the marginals for A.

Theorem 7. Using the notation of Marginals(A), for
all δ ∈ [0, 1] with probability 1− δ, for all α ∈ A,

‖Cαx− Cαw′‖1 ≤ 2‖α‖18|B| log(|B|/δ)/ε + |B| .(12)

Proof. Each Fourier coefficient has Laplace noise with
parameter 2|B|/ε2k/2 added to it, and with probability 1−δ

none of these exceeds 4|B| log(|B|/δ)/ε2k/2. In solving the
linear program, the error associated with each Fourier coef-
ficient is at most this bound as well, as the original contin-
gency table x is at least as close. Mapping the perturbation
of a single Fourier coefficient back to the contingency ta-
ble domain increases the L1 norm of the perturbation by at
most 2k/2, up to at most 8|B| log(|B|/δ)/ε.

Consequently, for any marginal Cα, the error Cαx−Cαw′

is a result of noise in the 2‖α‖1 Fourier coefficients that con-
tribute to the table, as well as the rounding that occurs.
Multiplying the number of coefficients, 2‖α‖1 by the bound
above, and adding the |B| error due to rounding, gives the
stated bound.



Even tighter bounds can be placed on sub-marginals of
a marginal Cα, by noting that the bounds hold for the
marginals Cβ for β � α at no additional cost. No more
Fourier coefficients are used, so |B| is not increased, but
‖β‖1 ≤ ‖α‖1.

4. ALTERNATE APPROACHES
We now describe a few variants on the previous approaches

that trade some of the accuracy of the previous approach for
some conceptual or computational simplicity.

4.1 Alternate Linear Programs
The linear program we chose to use minimizes the largest

error in any Fourier coefficient. There are other linear pro-
grams that one could write, for example minimizing the to-
tal error in Fourier coefficients, the largest error in reported
marginals, the total error in the reported marginals, or sev-
eral hybrids thereof.

This flexibility allows the data analyst with more specific
accuracy concerns (eg: per cell accuracy) to address them.
The perturbed Fourier coefficients can be released, and the
specific linear program can be run to arrive at an integral,
non-negative solution. Bounds similar to Theorem 7 can
be proven, using the same methodology: the noise added
perturbs the measurements by some distance in the norm of
choice, and the linear program finds a non-negative solution
at no greater distance from the perturbed measurements.

4.2 Non-Fourier Linear Programming
Our conversion to the Fourier domain is done because the

Fourier coefficients exactly describe the information required
by the marinals. By measuring exactly what we need, we
add the least amount of noise possible using the techniques
of [20].

Instead, we could apply the techniques of [20] directly
to the true marginals, producing a set of noisy marginals
that preserve privacy but not consistency. To these noisy
marginals we apply a linear program to find a non-negative
contingency table with nearest marginals. Imagining we
have observed the noisy marginals cβ , the linear program
is

minimize b

subject to:

wα ≥ 0 ∀α ∈ {0, 1}k

(cβ − Cβw)γ ≤ b ∀β ∈ A, γ � β

(cβ − Cβw)γ ≥ −b ∀β ∈ A, γ � β

As before, we are likely to discover a fractional contin-
gency table w. However, the number of cell constraints is
at most 2

P
β∈A 2‖β‖1 , and at most

P
β∈A 2‖β‖1 of the wα

variables are non-zero. By the reasoning above, any round-
ing to integers introduces error at most this much in the
contingency table.

Theorem 8. Using the above approach, with probability
at least 1− δ, for all β ∈ A, then ‖Cβx−Cβw′‖1 is at most

2‖β‖18|A| log(
P

β∈A 2‖β‖1/δ)/ε +
P

β∈A 2‖β‖1 . (13)

Proof. The reasoning is the same as before: the differ-
ence in the marginals is no more than twice the difference
caused by the additive noise, which is a Laplacian with pa-
rameter 2|A|/ε. We introduce the log(

P
β∈A 2‖β‖1/δ) term

to give the high probability guarantee, and the additive term
to account for rounding error.

Remark: This theorem mirrors Theorem 7, using |A| andP
β∈A 2‖β‖1 in place of |B|. Depending on the situation,

these bounds can actually be tighter than in Theorem 7,
though only when a single multi-attribute marginal is de-
sired. The tighter bounds given by Theorem 7 through sub-
tables also would not apply here.

4.3 Simple Non-Negativity
The solution of the linear programs we have described is

an expensive process, taking time polynomial in 2k. In many
settings, but not all, this is an excessive amount that must be
avoided. We now describe a very simple technique for arriv-
ing at Fourier coefficients corresponding to a non-negative,
but fractional, contingency table with high probability, with-
out the solution of a linear program. We construct the out-
put marginals directly from the Fourier coefficients, rather
than reconstructing the contingency table, which could take
time 2k.

To ensure the existence of a non-negative contingency ta-
ble with the observed Fourier coefficients turns out to be
a simple task, we simply add a small amount to the first
Fourier coefficient. Intuitively, any negativity due to the
small perturbation we have made to the Fourier coefficients
is spread uniformly across all elements of the contingency
table. Consequently, very little needs to be added to make
the elements non-negative.

Theorem 9. Let B ⊂ {0, 1}k, and let x be a non-negative
contingency table with Fourier coefficients φβ for β ∈ B. If
the Fourier coefficients are perturbed to φ′β, then the contin-
gency table

x′ = x +
X

β

(φ′β − φβ)fβ + ‖φ′ − φ‖1f0 (14)

is non-negative, and has 〈fβ , x′〉 = φ′β for β 6= 0.

Proof. Each of the coordinates of fβ are ±1/2k/2, and
the most negative an entry could become due to the per-
turbation is −‖φ′ − φ‖1/2k/2. By increasing the Fourier
coefficient of the zero vector by ‖φ′−φ‖1, we increase every
entry in the contingency table by this much, making them
all non-negative.

Our perturbation to the Fourier coefficients has L1 norm
distributed exponentially with standard deviation 23/2|B|2/ε.
It is critical that we not disclose the actual L1 norm of the
perturbation, but we can add a value for which the negativ-
ity probability is arbitrarily low:

Corollary 1. By adding t×4|B|2/ε2k/2 to the first Fourier
coefficient, the resulting contingency table is non-negative
with probability at least 1− exp(−t).

The addition of 4t|B|2/ε2k/2 to the first Fourier coefficient
corresponds to the introduction of 4t|B|2/ε individuals at
random locations in the table; a relatively minor accuracy
compromise.

5. CONCLUSIONS
We have shown a holistic solution to the problem of con-

tingency table release, that outputs an accurate and consis-
tent set of tables while guaranteeing in a very strong sense



that privacy of individuals is preserved. We also show how
to construct a positive and integral synthetic database that
corresponds to these tables—thus, e.g., one can output a
synthetic database that preserves all low-order marginals up
to a small error. Moreover, we can get a gracefully degrading
version of the results: we can compute a synthetic database
such that the error in the low-order marginals is small, and
increases smoothly with the order of the marginal.

One of the main algorithmic questions left open from this
work is that of efficiency. In particular, solving the lin-
ear program could be a bottleneck when the number of at-
tributes is large, and it seems possible that one could devise
more efficient algorithms for this step. We remark that the
simplex algorithm is already space efficient in this setting,
since each vertex of the polytope that simplex traverses has
a sparse description. We leave open the question of devising
faster combinatorial algorithms for this problem.

We have optimized for a specific measure of data quality,
the distance between the reported and true marginals. It
would also be useful to analyze the effect of our techniques
or variants thereof on statistical properties of the marginals,
such as means, variances, covariances, regressions. See the
related work on controlled tabular adjustment [11].
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