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Abstract

This paper is concerned with ranking model construction in document retrieval.
Traditionally, the ranking model is defined as a function of a query and a document.
In practice, many factors affecting ranking can and must be taken into considera-
tion, for instance, similarities between documents and hyper links between docu-
ments. One needs to exploit a new ranking model which is a function of a query
and the entire set of documents retrieved with the query. This paper names this
new problem ‘global ranking of documents’, in contrast to traditional ‘local rank-
ing of documents’. The paper proposes a novel learning to rank method to perform
the task. The method employs Continuous Conditional Random Fields (CRF) as
model, which is a conditional probability distribution representing the mapping
relationship from the retrieved documents to their ranking scores. The model can
naturally utilize as features the content information of documents as well as the re-
lation information between documents for global ranking. A learning algorithm for
creating Continuous CRF is also presented in the paper. Taking Pseudo Relevance
Feedback and Topic Distillation as examples, this paper shows how the learning
method can be applied to global ranking. Experimental results on benchmark data
show that the proposed method outperforms the baseline methods.

1 Introduction

Ranking is a central issue for search, because the goodness of a search system is mainly
evaluated by the accuracy of its ranking results. Traditionally, the ranking model is
defined as a function of a query and a document, which represents the relevance of the
document with respect to the query. In search, given a query the ranking model assigns
a score to each of the documents retrieved with the query and outputs the ranked list
of documents sorted by the scores. The ranking model is a local model in the sense
that the creation and utilization of the model only needs the involvement of a single
document. In this paper, we refer to this problem setting ‘local ranking of documents’.



As search evolves, more and more useful information for ranking becomes avail-
able. This includes the content information of documents as well as the relation in-
formation between documents. The relations can be hyper links between documents,
similarities between documents, etc. Ideally, the ranking model would be a function of
the query and all the retrieved documents with the query. That is to say, ranking should
be conducted on the basis of the contents of documents as well as the relations between
documents. We refer to this setting ‘global ranking of documents’. Obviously global
ranking contains local ranking as its special case.

The necessity and importance of conducting global ranking has already been rec-
ognized in IR. However, it is only considered as separated issues. For instance, ap-
plication tasks such as Topic Distillation, Pseudo Relevance Feedback, and Subtopic
Retrieval were studied.

In this paper we investigate how to conduct global ranking with a general and prin-
cipled approach. (1) We first give a formal definition of the problem of global ranking.
(2) We then propose employing a Continuous CRF model for conducting global rank-
ing. The Continuous CRF model is defined as a conditional probability distribution
representing the mapping relationship from the retrieved documents to their ranking
scores, where the ranking scores are represented by continuous variables. In Continu-
ous CRF, we make use of both content information and relation information as features.
The model is general in the sense that various types of relations for global ranking can
be incorporated as features. (3) We further propose a learning method for training
Continuous CRF. Specifically, we use Maximum Likelihood Estimation and Gradient
Ascent for parameter estimation. Our learning method turns out to be a novel learning-
to-rank method for global ranking, in contrast to the exiting learning-to-rank methods
which are by design local ranking methods. (4) We apply Continuous CRF to Pseudo
Relevance Feedback and Topic Distillation. Experimental results on benchmark data
show that our method performs better than the baseline methods.

The remaining part of the paper is organized as follows. In Section 2, we introduce
related work. We give a formal definition of global ranking in Section 3. We define
Continuous CRF for global ranking in Section 4. We then show how to use Continu-
ous CRF in Pseudo Relevance Feedback and Topic Distillation in Section 5. We give
experimental results in Section 6. Finally, we conclude the paper in the last section.

2 Related work

2.1 Ranking Using Relation Information

Traditionally, document ranking was only conducted locally, in the sense that the rank-
ing model is a function of a query and a single document. Although this makes the
ranking model easy to create and use, its limitation is also clear. There is a large
amount of information which is useful for ranking, but is not local, for example, the
relation information between documents.

Relation information between documents plays an important role in many infor-
mation retrieval tasks. For example, ranking web pages on the basis of importance,
improving relevance ranking by using similarity information, and diversifying search



results.

Relation information has been used for importance ranking in web search. PageRank[21]
and HITS[14] are well known algorithms for computing importance of web pages.
They rank web pages based on the Markov chain model and authority-hub model re-
spectively; both leverage the hyperlink (relation) information between web pages.

Topic Distillation [32, 25] is another example of using relation information in web
search. Here, Topic Distillation refers to the search task in which one selects a page that
can best represent the topic of the query from a web site by using structure (relation)
information of the site. If both a page and its parent page are concerned with the topic,
then the parent page is to be ranked higher. It is found that propagating the relevance of
a web page to its neighborhood through the hyperlink graph can improve the accuracy
of Topic Distillation [27]. Furthermore, propagating the relevance of a web page to its
parent page can also boost the accuracy [24].

Similarity between documents is useful information for relevance search. In Pseudo
Relevance Feedback [5, 6, 7, 30, 15], we first conduct a round of relevance ranking,
assuming that the top ranked documents are relevant; then conduct another round of
ranking, using similarity information between the top ranked documents and the other
documents, and boost some relevant documents dropped in the first round. Existing
Pseudo Relevance Feedback methods can be clustered into two groups. In one group,
the documents are ranked first based on relevance. Then, the top results are used to
make an expansion of the query and the re-ranking with the expanded query is per-
formed [30]. In the other group [15, 28], it is assumed that similar documents are likely
to have similar ranking scores, and documents are re-ranked based on the similarities
between documents.

In Subtopic Retrieval one also utilizes document similarity information [34]. In the
task, given a query, the returned documents should cover as many subtopics as possi-
ble. If there are multiple documents about the same subtopic, then only one document
should be selected and ranked high.

Although relation information between documents has been used in search, so far
there has been no previous work which generalizes the specific ranking tasks.

2.2 Learning to Rank

Recently machine learning technologies called ‘learning to rank’ have been applied
to information retrieval. In the approach, supervised learning is employed in rank-
ing model construction. Previous work demonstrates that learning to rank has certain
advantages when compared with the traditional non-learning approaches.

Previously people have tried to transform the problem of ranking into that of clas-
sification and apply existing classification techniques to the task. This is called the
pairwise approach in the literature. For example, as classification techniques one can
employ SVM and Neural Network, and derive the methods of RankSVM [10, 13] and
RankNet [2]. See also [31, 35, 23]. More recently, a number of authors have proposed
directly defining a loss function on list of objects and optimizing the loss function in
learning [3, 33]. This listwise approach formalizes the ranking problem in a more
straightforward way and thus appears to be more effective.



All the learning to rank methods, however, do not consider using the relation infor-
mation between objects (documents) in the models. As a result, they are not directly
applicable to the cases in which relation information should be used. Making exten-
sions of existing methods on the basis of heuristics would not work well, as will be
seen in the experiment section.

2.3 Conditional Random Fields

Conditional Random Fields (CRF) is a discriminative model for sequence data pre-
diction. It is defined as a conditional probability distribution of output label sequence
given input observation sequence [29]. The conditional probability distribution is an
exponential model containing features based on both the input and output. It is assumed
that there exists dependency between the adjacent labels in the output.

CREF was first applied to sequential data labeling [16] such as shallow parsing [26],
named entity recognition [20], and table extraction [22]. Later, it was also applied to
other problems such as web information extraction [36].

Sutton and McCallum give a tutorial on CRF [29]. They conclude in the paper:
“Conditional Random Fields are a natural choice for many relational problems because
they allow both graphically representing dependencies between entities, and including
rich observed features of entities.” CRF is powerful because it is easy to include inde-
pendent and non-independent features in the model [19], where the non-independent
features can represent various types of relations.

In this paper, we apply CRF to document ranking. As far as we know, this is the
first time that CRF is used in such kind of applications.

3 Global Ranking Problem

Document ranking in search is a problem as follows. When the user submits a query,
the search system retrieves all the documents containing the query, calculates a ranking
score for each of the documents using the ranking model, and sorts the documents
according to the ranking scores. The scores determine the ranking orders of documents,
and can indicate relevance, importance, and/or diversity of documents.

Let ¢ denote a query. Let d9 = {dgq), d(zq) e, d,(l?;)} denote the documents retrieved

with ¢, and y© = {y(lq),y(zq), . yf,‘fq))} denote the ranking scores assigned to the doc-

uments. Here n, stands for number of documents retrieved with g. Note that the
numbers of documents vary according to queries. We assume that y?' is determined by
a ranking model.

We call the ranking ‘local ranking’, if the ranking model is defined as

W = flg.d®)i=1,... 0 (1)
Furthermore, we call the ranking ‘global ranking’, if the ranking model is defined as
Y = F(q.d?) @

The major difference between the two is that F takes on all the documents as input,
while f takes on individual documents as input. Note global ranking contains local



Figure 1: CRF Model

ranking as its special case. Intuitively, in local ranking we look at the documents indi-
vidually, while in global ranking we treat the documents as a whole. In global ranking,
we use not only the content information of documents but also the relation information
between documents. There are many specific application tasks that can be viewed as
examples of global ranking. These include Pseudo Relevance Feedback, Topic Distil-
lation, and Subtopic Retrieval.

4 Ranking with Continuous CRF

We propose a learning to rank method for global ranking, using Continuous CRF as
model.

4.1 Continuous CRF Model

Let x = {x1,x2,...,x,} denotes the input vectors of the documents retrieved with
the query, y = {y1,¥2,...,y,} denotes the ranking scores assigned to the documents,
and R denotes the relation between the documents (and also the ranking scores of
the documents). Here n stands for number of documents retrieved by the query and
xi € #K'.y; € #,i = 1,2,..,n and K1 is an integer. Note that in this paper we call x
input vector, not feature vector, in order to distinguish it from the feature functions in
the CRF model. Let 6 = {a,8},a € ZX',B € %% be a vector of parameters respec-
tively, where K2 is an integer. Let { fi(y;, x)},’le1 be a set of real-valued feature functions
defined on x and y; (i = 1,...,n), and {g(yi, ;s )c)},ff1 be a set of real-valued feature
functions definedony;, yj,and x (i = 1,...,n, j=1,...,n,1 # j).

Continuous Conditional Random Fields (CRF) is a conditional probability distri-
bution with density function:

1 K1 . K2

PrOTo) = 5o exp {Z DLk 0+ DD By, 01, 3)
i k=1 ij k=1

where Z(x) is a normalization function

K1 K2
2(x) = f exp {Z D afinD+ ) > By, x)} dy. “)
:

i k=1 i,j k=1



Continuous CRF is a graphical model, as depicted in Figure 1. In the conditioned
undirected graph, a white vertex represents a ranking score, a gray vertex represents an
input vector, an edge between two white vertexes represents relation between ranking
scores, and an edge between a gray vertex and a white vertex represents dependency of
ranking score on input vector. (In principle a ranking score can depend on all the input
vectors; here for ease of presentation we only consider the simplified case in which it
depends only on the corresponding input vector.)

In Continuous CREF, feature function f; represents the dependency between the
ranking score of a document and the input vector of the document, and feature function
gk represents the relationship between the ranking scores of two documents (e.g. sim-
ilarity relation, parent-child relation). We call the feature functions f; vertex features,
and the feature functions g; edge features. The edge feature functions are determined
by the relation R. Different retrieval tasks have different definitions on R, as will be
explained in Section 5.

There are clear differences between the conventional CRF and the Continuous CRF
proposed here. (1) The conventional CRF is usually defined on a chain while Contin-
uous CREF is defined on a graph. (2) In the conventional CRF random variable y is
discrete while in Continuous CRF y is continuous. This makes the inference of Con-
tinuous CRF is very different from that of conventional CRF, as will be seen in Section
5. (3) The R in Continuous CRF defines the relations between ranking scores as well
as specifies the corresponding feature function g;. An R is associated with a query and
different queries may have different R’s.

4.2 Learning and Inference

In learning, given training data we estimate the parameters 8 = {a, 8} of Continuous
CRF. Suppose that the training data {x?, y(q)}[q\’:1 is generated i.i.d. from a unknown

probability distribution, where each x@ = {x(lq), x(zq), .y xfz;)} is a set of input vectors
associated with the documents of query ¢, and each y9 = {y(f), y(f), - y;‘g)} is a set of

ranking scores associated with the documents of query g. Note that we do not assume
that the documents of a query are generated i.i.d. Further suppose that the relation
data {R(’?)}f]\’:1 is given, where each R is a set of relations on the documents (ranking
scores) of query q.

We employ Maximum Likelihood Estimation to estimate the parameters. Specifi-
cally, we calculate the conditional log likelihood of the data with respect to the Contin-
uous CRF model.

N
L) = Z log Pr(y'?[x?; 6). )
q=1
Specifically,
N K1 K2
LO) = YA > a0 20+ >3 g0y, 6
g=1 i k=1 i,j k=1
N
- Z log Z(x9)). (6)
g=1



We take the parameter 6 that can maximize the log likelihood function as output. We
know of no analytic solution to the optimization problem. We can employ the numeri-
cal method of Gradient Ascent to solve it.

In inference, given new data x and relation R we use the model with estimated
parameter 6 to calculate the conditional probability Pr(y|x) and select the y satisfying

y = argmax Pr(y|x;0)
y

K1 K2
arg max Z Z afivi, x) + Z Zﬁkgk(yi’ij X) ¢ @)
=1

i ij k=1

Equation (7) then becomes the ranking model.

5 Tasks

In this section we show how to apply Continuous CRF to two global ranking tasks.

5.1 Pseudo Relevance Feedback

Here we consider a method of using Continuous CRF for Pseudo Relevance Feedback,
which belongs to the second group of existing methods (cf., Section 2.1). In fact, the
method combines the two rounds of ranking of Pseudo Relevance Feedback into one
by using the Continuous CRF model. In the method the similarities between any two
documents are given and the input vectors are also defined. What we need to do is to
specify the feature functions.

For each component in the input vector, we introduce a vertex feature function.
Suppose that x; is the k-th component of input vector x;, we define the k-th feature
function f(y;, x) as

Jein ) = =i = %) ®

Next, we introduce one (and only one) edge feature function.

1
g(yi,y,-,X) = _Esi,j(yi - yj)z, )

where §; ; is similarity between documents d; and d;. The larger S;; is, the more
similar the two documents are. Here the relation R is represented by a matrix S, whose
element in i-th row and j-th column is §; ;. Note that this specific feature function does
not depend on x.

The Continuous CRF for Pseudo Relevance Feedback then becomes

1 K1

PrOLY) = 75 exp {Z D i)+ —gsi,_,(yi - y,)z}, (10)
i k=1 ij

where Z(x) is defined as

K1
2(x) = f exp {Z D= x) ) —’;s,-,,-(y,» - y,»)z} dy. (11)

i k=1 i



To guarantee that exp {Z Zk L= X))t Y- X Siji—y j)z} is integrable, we
require that @ > 0 and 8 > 0.

The Continuous CRF can naturally model Pseudo Relevance Feedback. First, if the
value of x;; is high, then the value of y; is high with high probability. (For example, x; «
can be a feature representing tf-idf.) Second, if the value of S ; is large, then ranking
scores y; and y; are close with high probability.

With some derivation, we obtain

Z(x) = Q)i 2A1 2 exp(bTA™'b - ), (12)

where A = a’el + BD — BS, D is an n x n diagonal matrix with D,, ZJ ij» Iis an
n X n matrix, |A| is determinant of matrix A, b = X, ¢ = ); Zk I apx?
matrix whose i-th row k-th column element is x;.

In learning, we try to maximize the log likelihood. Note that maximization of L(6)
in Eq. (6) is a constrained optimization problem because we need to guarantee that a; >
0 and 8 > 0. Gradient Ascent cannot be directly applied to a constrained optimization
problem. Here we adopt a technique similar to that in [4] and then employ Gradient
Ascent. Specifically, we maximize L(6) with respect to log ; and log 8 instead of a;
and . As a result, the new optimization issue becomes unconstrained.

The gradients of L(8) with respect to log a; and log 8 are computed as follows.

i and X is a

_ OLO) _ N 0 _ oy, dlog Z(x'?)
Viwns = Fiosar = —ak;{Z O (13)
61‘(9) S @@ _ (q) ,  Olog Z(x')
Vioos = 51005 /3;{2 2SO0 - = (14)
Now we show how to get the partial derivative alo%iix(q)) d [)logaZﬁ(x(‘”). For simplicity,
we omit the super script (¢) in the equations hereafter. First
logZ 1 JA bTA b
Ologz(y) 1 JAl b A"DH _ dc (15)
8ak 2|A| 6ak 6a/k ﬁak
dlogZ(x) _LM ObTA™'b (16)
B - 2/Al 68 B
Furthermore,
A 0A
- _ ATy T — = 1AAaT) T T a7
ﬁak 6ak
dlA| ry.r 9A -Ty.T
— = JAlAT) 7 —==AlAT) T (D-S): 18
9B Il()aﬁll()( ) (18)
TA—l
WAD XA D -b"AT'AT D+ BT AT X, (19)
oay, ’ ’
ObTA'b
e -b"A™Y(D - S)A ', (20)



Algorithm 1 Learning Algorithm of Continuous CRF for Pseudo Relevance Feedback
Input:training data {(x", y, S D), (x@,y> @) (xM y™ WMy}
Parameter: number of iterations 7 and learning rate i
Initialize parameter log o and log 8
fort=1to T do
fori=1toN do
Compute gradient Viog o, and Vi using Eq. (13) and (14) for a single query
(x(i), y(i), S (i))_
Update log ay = log ai + M X Vigge, and log 8 = log B + 1 X Vigep
end for
end for
Output parameters of CRF model ¢; and §.

where X : denotes the long column vector formed by concatenating the columns' of
matrix X, and X denotes the k-th column of matrix X.

Substituting Eq.(15)-(20) into Eq. (13) and (14), we obtain the gradient of the log
likelihood function. Algorithm 1 shows the learning algorithm based on Stochastic
Gradient Ascent 2.

In inference, we calculate the ranking scores of documents with respect to a new
query in the following way.

$ = arg max Pr(y|x; 0) = (a” el + 8D — 8S) ' Xa. ¥3))
¢

Note that here the inference can be conducted with matrix computation, which is
different from that in conventional CRF. The reason is that in Continuous CRF the
output variable is continuous, while in conventional CRF it is discrete.

If we ignore the relation between documents and set 8 = 0, then the ranking model
degenerates to

¥y = Xa,
which is equivalent to a linear model used in conventional local ranking.

For n documents, the time complexity of straightforwardly computing the ranking
model (21) is of order O(n?) and thus it is expensive. The main cost of the computation
comes from matrix inversion. In this paper we employ a fast computation technique
to quickly perform the task. First, we make S a sparse matrix, which has at most K
non-zero values in each row and each column. We can do so by only considering the
similarity between each document and its % nearest neighbors. Next, we use the Gibbs-
Poole-Stockmeyer algorithm [17] to convert S to a banded matrix. Finally we solve the
following system of linear equation and take the solution as ranking scores.

(@"el +BD - BS) = Xa (22)

1 3
2 4

2Stochastic Gradient means conducting gradient ascent from one instance to another. In our case, an
instance corresponds to a query.

IFor example, if X = [ ], then X := [1,2,3,4]T.



Let A = o’el + B(D - S). A is a banded matrix when S is a banded matrix. Then, the
scores y in Eq.(22) can be computed with time complexity of O(n) when K <« n [9].
That is to say, the time complexity of testing a new query is comparable with those of
existing local ranking methods.

5.2 Topic Distillation

We can also specify Continuous CRF to make it suitable for Topic Distillation. Here
we assume that the parent-child relation between two pages is given. The input vectors
are also defined. What we need to do is to specify the feature functions.

We define the vertex feature function f;(y;, x) in the same way as that in Eq.(8).
Furthermore, we define the only edge feature function as

80, yj»X) = Rij(vi — ¥, (23)

where R; ; denotes the parent-child relation: R;; = 1 if document i is the parent of j,
and R; ; = O for other cases.
The Continuous CRF for Topic Distillation then becomes

K1
Pr(ylx) = % exp {Z D~ = x50 + ) AR = y,-)}, (24)
i k=1 ij

where Z(x) is defined as

2(x) = f exp{ZZ ak(y,—x,k)%ZﬂRl,(yl y»}dy (25)

i k=1

To guarantee that exp {Zi Z,’f:ll —a (i — i) + 2 BRi j(yi—y j)} is integrable, we re-
quire that a; > 0.

The Continuous CRF can naturally model Topic Distillation. First, if the value of
Xix is high, then the value of y; is high with high probability. Second, if the value of
R; j is one, then the value of y; is large than that of y; with high probability.

With some derivation, we have

Z(x) = a) 2 (2m)? exp(ﬁbTb -0), (26)

where n is the number of documents for this query, and a = a” e, b = 2Xa+8(D,—D,)e,
D, and D, are two diagonal matrixes with D,;; = 3;R;j and D; = X ;Rji, ¢ =
PPIRTE

In learning, we use Gradient Ascent to maximize the log likelihood. Again, we use
the technique for optimization to guarantee a; > 0. We compute the derivative of L(6)
with respect to 8 and the new optimization variable log a; as follows.

_ oL ZN T @ 0y _ 9log Z(x?)
Vlogm - 610g a - = { l (y a(l’k (27)
_OLO) _ ¥ dlog Z(x@
oL z{z R0 -y - 222D )} o

10



dlog Z(x@)

. o ' @ S
Now we show how to get the partial derivative and dlogazﬁ(x O simplicity,

oc
we omit the super script (¢) hereafter. .

0log Z(x) n 1, - 5

—= = —— — — b+ —bTX, - » 29
da 20 42" VT 2" Z Fik %)

dlog Z(x) | -

—F—F—F = —b'(D,—-D, 30
9B 27 ¢ )e (30)

where X denotes the k-th column of matrix X.

Substituting Eq. (29) and (30) into Eq. (27) and (28), we obtain the gradient of the
log likelihood function. Here we omit the details of the learning algorithm, which is
similar to Algorithm 1.

In inference, we calculate the ranking scores of documents with respect to a new
query in the following way.

1
9 = arg max Pr(y|x; 0) = — 2Xa +B(D, — D.)e) 31
¥ ale

Similarly to Pseudo Relevance Feedback, if we ignore the relation between documents
and set 8 = 0, the ranking model degenerates to a linear ranking model in conventional
local ranking.

5.3 Combination

We can also conduct multiple global ranking tasks simultaneously. For example, we
can combine Pseudo Relevance Feedback and Topic Distillation by using the following
Continuous CRF model

! K1 X
Pr(ylx) = 70 exp {Z kz:; —ar(yi — Xix)
Sij 2
+ Z (ﬁlRi,_j(Yi )] —ﬁ27(yi -y )}
ij

In this case, the ranking scores of documents for a new query is calculated as follows.

$ = arg max Pr(y|x; 0) = (@” el + BoD — BoS)”! (Xa + %‘(Dr - Dc)e)
:

Continuous CRF is a powerful model in the sense that various types of relations can be
incorporated as edge feature functions.

6 Experiments
We applied Continuous CRF to Pseudo Relevance Feedback and Topic Distillation.

We also compared the performances of Continuous CRF model against several base-
line methods in the two tasks. As data, we used LETOR [18], which is a dataset for

11



learning to rank research®. We made use of OHSUMED in LETOR for Pseudo Rele-
vance Feedback and TREC in LETOR for Topic Distillation. As evaluation measure,
we utilized NDCG@n (Normalized Discounted Cumulative Gain) [12].

6.1 OHSUMED: Pseudo Relevance Feedback
6.1.1 Data Set

The OHSUMED dataset in LETOR is derived from the OHSUMED data for research
on relevance search [11]. The document collection is a subset of MEDLINE, a database
on medical publications.

There are 106 queries in OHSUMED data set, each associated with a number of
documents. The relevance degrees of documents with respect to the queries are judged
by humans, on three levels: definitely relevant, partially relevant, or not relevant.
There are in total 16,140 query-document pairs with relevance judgments. Each query-
document pair is represented by a 25 dimension feature vector, which means K1 = 25
in Eq. (10). Details of features can be found in [18].

Similarity between documents is provided as relation information in the data, which
is defined in the following way. First stop words are removed from the documents.
Each document is represented as a term vector in the vector space model [1]. Then the
similarity §; ; between two documents 7 and j is calculated as cosine between the term
vectors of the two documents. (One should not confuse the term vector with the input
vector in learning.)

6.1.2 Baseline Methods

As baseline methods, we used RankSVM [10] and ListNet [3]. RankSVM is a state-
of-the-art algorithm of the pairwise approach to learning to rank, and ListNet is a state-
of-the-art algorithm of the listwise approach.

The two learning to rank methods only use content information, but not relation
information. To make fair comparisons, we added post processing to the two methods
in which we incorporated relation information into the final ranking model creation.
We refer to the methods as ‘RankSVM plus relation’ (RankSVM+R) and ‘ListNet
plus relation’ (ListNet+R). Following the work in [8], we first calculated the scores of
documents based on content information using a learning to rank method (RankSVM or
ListNet), then propagated the scores using similarities between documents, and finally
ranked the documents based on the propagated scores. Specifically, the final score list
is calculated as

Yir = +BD=85)y,
where y is the score list output by a learning algorithm (e.g. RankSVM or ListNet), and
D and S are the same as those in Eq.(12). Here § is a parameter balancing the influence
from content information and relation information.

For reference purposes, we also tried BM25 and Pseudo Relevance Feedback based
on BM25. For the two baselines, we used the tools provided in Lemur toolkit*.

3The data is available at http://research.microsoft.com/users/LETOR/.
“http://www.lemurproject.org/
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Table 1: Ranking Accuracy on OHSUMED
Algorithms ndcgl ndcg2 ndcg3 ndcg5 ndcgl0

BM25 0.3994 0.3931 0.3939 0.3972  0.3967
PRF 0.3962 0.4277 0.4104 0.3981 0.3925
RankSVM 04952 0.4755 0.4649 0.4579 0.4411
ListNet 0.5231 0497 04777 0.4662 0.4489
RankSVM+R 0.5143 0.4676 0.462 0.4593 0.4431
ListNet+R 0.5391 0.4946 0.4663 0.4555 0.4308
CRF 0.5443 0.4986 0.4881 0.4808 0.4537

6.1.3 Experimental Results

We conducted 5 fold cross validation for Continuous CRF and all the baseline methods,
using the partition provided in LETOR.

Continuous CRF needs to use queries, their associated documents, and relevance
scores as training data. Since LETOR only provides relevance labels, we mapped the
labels to scores using heuristics. The rule is the ground truth score of a relevant doc-
ument should be larger than that of an irrelevant document. We used validation set in
LETOR to select the best mapping function.

For RankSVM+R and ListNet+R, we ran a number of experiments based on differ-
ent values of parameter 5. Here, we report the best performances of the methods. For
RankSVM+R, g8 = 0.2; for ListNet+R, 8 = 0.1.

Table 1 shows the ranking accuracies of BM25, BM25 based Pseudo Relevance
Feedback (PRF), RankSVM, ListNet, RankSVM+R, ListNet+R, and Continuous CRF
(CRF), in terms of NDCG averaged over five trials.

CRF’s performance is superior to the performances of RankSVM and ListNet. This
is particularly true for NDCG@ 1; CRF achieves about 5 points higher accuracy than
RankSVM and more than 2 points higher accuracy than ListNet. The results indicate
that learning with similarity information can indeed improve search relevance.

We can see that CRF performs much better than RankSVM+R and ListNet+R at
all NDCG positions. This indicates that with the same information the proposed CRF
can indeed perform better than the heuristic baseline methods.

RankSVM+R beats RankSVM largely at NDCG @ 1, while obtains similar results
at NDCG@3-10, but a worse result at NDCG@2. ListNet+R works better than ListNet
at NDCG@1, but does not as well as ListNet at the other positions. This seems to
indicate that heuristically using relation in post-processing does not work well.

Continuous CRF also outperforms PRF (Pseudo Relevance Feedback), the tradi-
tional method of using similarity information for ranking. The result suggests that it is
better to leverage the machine learning techniques in Pseudo Relevance Feedback.

We made analysis on the results and found that CRF can indeed improve relevance.
Table 2 and 3 show the top 10 results of RankSVM and CREF for query “back pain-mri
sensitivity etc in comparison to ct of lumbar spine” respectively. The documents in red
are ‘definitely relevant’, documents in blue are ‘partially relevant’, and documents in
black are ‘not relevant’.
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Table 2: Top 10 Results of RankSVM

DocID Title

184771 The pseudoradicular syndrome. Lower extremity
peripheral nerve entrapment masquerading as lum-
bar radiculopathy.

188516  Infections caused by central venous catheters in
patients with acquired immunodeficiency syn-
drome.

277424 A randomized double-blind prospective study of
the efficacy of pulsed electromagnetic fields for in-
terbody lumbar fusions.

169405 No clinical effect of back schools in an HMO. A
randomized prospective trial.

93130 The relationship between leg length discrepancy
and lumbar facet orientation.

217695 Lumbar intraspinal synovial cysts. Recognition
and CT diagnosis [see comments]

171218  Pain provocation and disc deterioration by age. A
CT/discography study in a low-back pain popula-
tion.

189343  Metaplastic proliferative fibrocartilage as an alter-
native concept to herniated intervertebral disc.

255894  Thoracic and lumbar spine trauma.

202875 Macroamylasemia: a simple stepwise approach to
diagnosis [see comments]

It is obvious that CRF works better than RankSVM for this query. Document
262357 is a ‘definitely relevant’ document, but is ranked out of top 10 by RankSVM.
Since this document is similar to documents 277424 and 169405 which are ranked at
position 2 and 5, it is boosted to position 6 by CRF using similarity information.

6.2 TREC: Topic Distillation
6.2.1 Data Set

In TREC 2004, there was a track for web search, called Topic Distillation, which is
aimed at enhancing research on Topic Distillation, the task described in Section 2.
The TREC dataset in LETOR is derived from the TREC 2004 Topic Distillation
data. There are 75 queries, and each query associated with about 1,000 documents.
Each query document pair is associated with a label, representing whether the docu-
ment is an entry page to the query (an answer) or not. There are 44 features defined
over a query-document pair (refer to [18] for the details). It implies that K1 = 44 in
Eq.(24). Furthermore, information on parent-child relation is also given. The element
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Table 3: Top 10 Results of CRF

Doc ID

Title

184771

277424

188516

189343

169405

262357

249197

254602

217695

255894

The pseudoradicular syndrome. Lower extremity
peripheral nerve entrapment masquerading as lum-
bar radiculopathy.

A randomized double-blind prospective study of
the efficacy of pulsed electromagnetic fields for in-
terbody lumbar fusions.

Infections caused by central venous catheters in
patients with acquired immunodeficiency syn-
drome.

Metaplastic proliferative fibrocartilage as an alter-
native concept to herniated intervertebral disc.

No clinical effect of back schools in an HMO. A
randomized prospective trial.

Intramuscular depot methylprednisolone induction
of chrysotherapy in rheumatoid arthritis: a 24-
week randomized controlled trial.

A prospective study of nerve root infiltration in the
diagnosis of sciatica. A comparison with radicu-
lography, computed tomography, and operative
findings.

The neuroradiographic diagnosis of lumbar her-
niated nucleus pulposus: II. A comparison of
computed tomography (CT), myelography, CT-
myelography, and magnetic resonance imaging.
Lumbar intraspinal synovial cysts. Recognition
and CT diagnosis [see comments]

Thoracic and lumbar spine trauma.

R; j equals 1 if page i is parent of page j in a website, and equals 0 otherwise

6.2.2 Baseline Methods

As baseline methods, we used RankSVM [10] and ListNet [3].

Since RankSVM and ListNet do not use relation information, we tried two modi-
fications of them, in which we used relation information in post processing. We refer
to them as ‘RankSVM plus relation’ (RankSVM+R) and ‘ListNet plus relation’ (List-
Net+R). In RSVM+R (or ListNet+R), we use the ranking score of a child page output
by RankSVM (or ListNet) to enhance the ranking score of its parent also output by

5This can be mined from the URL hierarchy [25].
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RankSVM (or ListNet). The idea is similar to that of sitemap based score propagation
[24].

We also tested non-learning methods of BM25 and sitemap based relevance prop-
agation [24]. The basic idea of sitemap based relevance propagation is to use the rel-
evance of a child page to enhance the relevance of its parent page. There are two
variants of the method: sitemap based term propagation (‘ST for short) and sitemap
based score propagation (‘SS’ for short).

6.2.3 Experimental Results

We conduced 5-fold cross validation on our method and the baseline methods, using
the partitions in LETOR. For RankSVM and ListNet, we refer to the results in LETOR.

Continuous CRF needs to use queries, their associated documents, and relevance
scores as training data, while LETOR only provides ranking labels. Again, we used
heuristics to map ranking labels to ranking score. The rule is that the score of an
answer document should be larger than that of a non-answer document. We used the
validation set in LETOR to select the best mapping function.

Table 4 shows the performances of BM25, SS, ST, RankSVM, ListNet, and CRF
model in terms of NDCG averaged over 5 trials.

CREF outperforms RankSVM and ListNet at all NDCG positions. This is partic-
ularly true for NDCG@1. CRF achieves 8 points higher accuracy than RankSVM
and ListNet, which is a more than 15% relative improvement. Overall, learning using
relation information can achieve better results than learning without using relation in-
formation. The result indicates that our method can effectively use the information in
training of a Topic Distillation model.

CRF performs much better than RankSVM+R and ListNet+R at all NDCG po-
sitions. This indicates that with the same information the proposed CRF can indeed
perform better than the heuristic methods.

RankSVM+R beats RankSVM largely at NDCG@ 1, while obtains slightly better
results at NDCG@3-10 but a slightly worse result at NDCG@2. ListNet+R works
better than ListNet at NDCG@2-10, but does not at NDCG@1. The results seem to
indicate that simply using relation information as post-processing does not work very
well.

Continuous CRF also outperforms SS and ST, the traditional method of using
parent-child information for Topic Distillation. The result suggests that it is better to
leverage the machine learning techniques using both content information and relation
information in ranking.

We investigated the reason that CRF can achieve better results than other algorithms
and concluded that it is because CRF can successfully leverage the relation informa-
tion in ranking. Without loss of generality, we make a comparison between CRF and
RankSVM.

Table 5 show top 10 results of RankSVM and CRF for query “HIV/AID”. The
answer pages for this query are in red color. The answer page 643908 is not ranked
in top 10 by RankSVM, because its content feature is not strong. Since the content
features of its child pages (such as 220602, 887722, and other pages) are very strong,
CREF can effectively use the parent-child relation information and boost it to position 4.
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Table 4: Ranking Accuracy on TREC2004
Algorithms ndcgl ndcg2 ndcg3 ndcg5 ndcgl0

BM25 0.3067 0.2933 0.2578 0.2293  0.1747

ST 0.3200 0.3133 03111 0.3232  0.3452

SS 0.3200 0.3200 0.3130 0.3227 0.3440
RankSVM 0.4400 0.4333 0.4092 0.3935 0.4201
ListNet 0.4400 0.4267 0.4371 0.4209 0.4579
RankSVM+R 0.4933 0.4200 0.4118 0.4027 0.4197
ListNet+R  0.4400 0.4467 0.4481 0.4327 0.4591
CRF 0.5200 0.4733 0.4552 0.4428 0.4604

7 Conclusions

In search, not only content information of documents, but also relation information
between documents are needed for ranking of documents. Not only relevance, but also
importance and diversity need to be considered in ranking. Previously, the problems
were addressed as separated issues. In this paper, we call the general problem as global
ranking and have given a definition of it.

We have further proposed a learning to rank method for global ranking, using a
Continuous CRF model. We have devised a learning method for creating Continuous
CRF using training data. Taking Pseudo Relevance Feedback and Topic Distillation as
examples, we have showed how to use Continuous CRF in global ranking. Experimen-
tal results on benchmark data show that our method using Continuous CRF improves
upon the baseline methods for the two tasks.

There are still issues which we need to investigate at the next step. (1) We have
assumed that in training each training document is assigned a ranking score. In prac-
tice, such training data would be difficult to obtain. One possibility is to use click
through data. How to generate ranking scores from click through data is still an open
problem. (2) We have studied the method of learning Continuous CRF with Maximum
Likelihood Estimation. It is interesting to see how to apply Maximum A Posteriori
Estimation to the problem as well. (3) We have studied two retrieval tasks: Pseudo
Relevance Feedback and Topic Distillation. We plan to look at more tasks in the fu-
ture. (4) We have applied CRF model to two global ranking tasks separately. We will
investigate the combination of multiple global ranking tasks.
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