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Abstract

This paper describes a novel algorithm for the efficient syn-
thesis of high-quality virtual views from only two input im-
ages. The emphasis is on the recovery of continuity of ob-
jects boundaries (figural continuity) with faithful synthesis
of transparency effects.

The contribution of this paper is two-fold: i) the Split-
Patch Search (SPS) technique is introduced for dense stereo
which handles transparency effects by assigning multiple
disparities to mixed pixels; ii) an efficient extension of
exemplar-based image synthesis to the case of two-camera
stereo is proposed. Furthermore, this paper presents an ap-
proximate but effective solution to the challenging problem
of layer estimation and compositing in the case of small im-
age patches.

The effectiveness of the proposed technique is demon-
strated on a number of stereo image pairs taken from two-
camera video-conferencing setups, where the quality of
the synthesized talking heads is of paramount importance.
Moreover, the improvement in the quality of image synthesis
is quantified by comparing the output of the SPS algorithm
with thirteen ground-truth images.

1 Introduction

This paper deals with the problem of efficiently generating
good-quality virtual images from stereo pairs. The example
in fig. 1 is used throughout the paper to explain the steps of
the proposed algorithm.

Many state of the art view-synthesis algorithms [3, 13,
15, 16] are prone to artefacts such as: i) aliasing and imper-
fect rendering of transparency effects, ii) streaky or blocky
artefacts which disrupt figural continuity, iii) fattening or
shrinking of foreground objects (see the corrupted outline
of the head in fig. 1c). The goal of this paper is that of effi-
ciently detecting and correcting those artefacts.

As observed in [18], mixed pixels occur along object
boundaries of opaque objects and where there is trans-
parency. In those situations, geometry-based techniques
which assume a single depth per pixel, are inadequate. The
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Figure 1: High-quality two-camera virtual-view synthesis.
(a,b) Left and right input images (size 320 × 240) with large dis-
parities and occlusions (60 pixel max disparity). (c) Virtual cy-
clopean image (detail) recovered by a standard dense stereo al-
gorithm [7]. Along the boundary of the head streaky and blocky
artefacts and aliasing effects occur. (c’) Virtual cyclopean image
(detail) after the proposed SPS enhancement step. The removal
of artefacts and the introduction of mixed pixels produce a more
natural-looking synthetic image.

problem is exacerbated in practical stereo matching when
multi-pixel windows are used for correspondence matching.
The window problem may be mitigated by the use of split or
shiftable windows [12, 17], but proper modeling of trans-
parency effects is also needed.

Our proposed approach for rendering can be seen as an
extension of recent exemplar-based synthesis techniques [8,
11] to stereo. It is inspired by the work of Fitzgibbon et
al. [9] who realised the potential of dictionaries of exem-
plars in procuring high quality detail at boundaries and over
texture. Their virtual-view synthesis algorithm operates on
a collection of calibrated input images (26 or more in their
examples) to produce interpolated views of striking quality.
They use a patch dictionary, gathered from the sequence it-



self, to define patch priors. One important property of this
approach is that images are rendered without the need for
explicit matting, simply by stealing pixels from appropriate
locations in their rich dictionary. However their approach is
very slow owing to the use of a substantial dictionary and
a comprehensive but expensive treatment of the data likeli-
hood. In contrast, our aim is to develop an effective strategy
for artefacts which is nonetheless efficient enough to be in-
cluded, on the fly, with real-time stereo matching.

The “SPS” — Split-Patch Search — algorithm achieves
high computational efficiency (quasi real-time) without sac-
rificing image quality. Efficiency is achieved by a variety of
means:

• restricting candidate patches to those lying on corre-
sponding (left or right) epipolar lines;

• constraining the search region using tight, geometric
depth bounds;

• applying exemplar-based synthesis sparsely, only
where flagged by an inconsistency test.

Elsewhere, away from detected artefacts, synthesis is con-
ventional and geometrically-based, and hence efficient.
This parsimonious approach would fail however in the algo-
rithm of Fitzgibbon et al. which relies on a plentiful supply
of patches to achieve accurate rendering. Instead, repaired
patches in SPS are composed of two part-patches, one at-
tributed to the foreground and one to the background. This
in turn demands the detection and representation of multi-
ple depths, one for background and one for foreground, and
is achieved by testing explicitly both foreground and back-
ground depth hypotheses. Transparency effects are ren-
dered by effective compositing of the foreground and back-
ground portions to achieve realistic-looking virtual images.

2 Problem Statement and Notation

This paper assumes given the two left and right input images
Il and Ir which have been epipolar-rectified (as opposed
to the full camera calibration of [9]) and photometrically
registered.
Our goal. We seek an efficient (possibly real-time) algo-
rithm for the high-quality synthesis of the image that would
be seen by a virtual camera placed in a new viewpoint. For
simplicity of explanation, the focus here is on the synthesis
of cyclopean images1. The extension to the case of general
virtual viewpoint is straightforward.
Notation. Image points are indicated by boldface letters,
e.g. p or q. Uppercase typesets indicate matrices, e.g. A.
Capital letters indicate images or patches (subimages), e.g.
I or Π. Furthermore, Πp indicates a patch centred on the

1Cyclopean image (denoted I) is defined as the image that would be
seen by a camera positioned half-way between the two input cameras.

a b
Figure 2: Geometry-based virtual view synthesis. (a) The dis-
parity map D computed from the two input images in fig. 1a,b.
The disparities are computed with reference to the cyclopean coor-
dinate system. (b) The reconstructed virtual cyclopean image (de-
noted I in the text). The left and right occluded regions (around
the foreground head) have been filled with pixels extracted from
the left and right input views by making use of the fronto-parallel
background assumption [7].

point p and Πp(q) denotes the colour (or grey-scale inten-
sity) of point q contained in the patch Πp. Finally, super-
scripts f and b indicate foreground and background patches,
respectively.

3 New-View Synthesis by SPS

This section outlines our view-synthesis algorithm which is
composed of two steps. In the first step a standard dense-
stereo technique generates a rough virtual image I . In the
second phase, the image I is efficiently refined by the Split-
Patch Search algorithm to produce the final virtual image
I ′. The main contribution of this paper is the SPS technique
for efficient, exemplar-based image synthesis.

3.1. Estimating disparity and occlusion maps. Given
the two input images Il and Ir a disparity map D is gen-
erated with respect to the coordinate system defined by the
desired virtual viewpoint and, at the same time, the virtual
image I is synthesized (see fig. 2). For this purpose we use
the algorithm in [7] but, as demonstrated in the results sec-
tion, the refinement step of our algorithm is independent of
the choice of the specific dense-stereo reconstruction tech-
nique. The main contribution of this paper lies in the way
the unavoidable artefacts of I are removed. The next sec-
tions describe: i) an algorithm for the detection of the arte-
facts in I , and, ii) an algorithm for the removal of such arte-
facts by guided exemplar-based image re-synthesis.

3.2. Artefact detection and ordering. Given the input
left and right images (Il and Ir, respectively), the disparity
map D and the corresponding occlusion map O (a product
of dense stereo), each input image can be projected into the
new, desired viewpoint. Let us call Iw

l the result of pro-
jecting the left input image Il into the target viewpoint (see
fig. 3a); and Iw

r for the right input image (fig. 3b). A pixel-
wise distance d(Iw

l , Iw
r ) between the two projected images
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Figure 3: Artefact detection. (a,b) Projections of left and
right input images into the target viewpoint, respectively (de-
noted Iw

l and Iw
r in text). Green and red regions denote es-

timated half-occlusions. (c) Aliasing-insensitive image distance
map, d(Iw

l , Iw
r ). Darker points correspond to larger pixel dis-

tances (pixel intensities have been rescaled for improved visibil-
ity). (d) Detected set of artefact pixels A (≈ 7% of image area).
These pixels will be re-synthesized and corrected by the SPS al-
gorithm.

indicates the location and entity of artefacts (the dark points
in fig. 3c). Assuming low levels of image noise, large values
of d(Iw

l , Iw
r ) occur in places where the dense-stereo algo-

rithm has failed to estimate the correct pixel correspondence
between the two input images Il and Ir. Note that inaccu-
rate disparities do not necessarily produce inaccurate pixel
synthesis; however, here, since we are interested in quality
of image synthesis, we are correctly measuring artefacts in
image space rather than disparity space. Furthermore, in or-
der to overcome issues related to the (often) discrete nature
of the disparity map, it is convenient to define the image
distance d(I1, I2) between two generic images I1 and I2 as
a sampling-independent function [1], where half-occlusions
are ignored.

Finally, artefacts are defined as the set A of points p ∈ I
such that d(Iw

l , Iw
r ) > λ (fig. 3d) with λ a predefined

value2. Furthermore, we have found it helpful to augment
A with a one-pixel-wide boundary of the foreground. This
can be achieved readily from the detected left and right oc-
clusions. The algorithm then proceeds to the removal of the
artefacts of the cyclopean image by a re-synthesis process.

As it will be clearer later this refinement procedure can
be interpreted as an extension of the many exemplar-based
texture and image synthesis algorithms [8, 11] to two-view
stereo. The work of [2, 6, 10] has pointed out that exemplar-

2Typically we choose λ very small (e.g. λ = 5 intensity levels) since
the quality of image synthesis is fairly robust to large numbers of false
positives.

based synthesis benefits from processing the most reliable
pixels first. Here we follow the same philosophy and assign
a priority value P (p) to each of the pixels p ∈ A with the
synthesis proceeding from highest- to lowest-priority pix-
els. Similar to [2] we adopt P (p) to be proportional to the
number of already filled neighbouring pixels although more
sophisticated ordering algorithms may be employed [6, 10].

3.3. Artefact removal by SPS and re-rendering. The
algorithm proceeds as follows: We have given the first (cor-
rupt) estimate of the cyclopean image I , and the set of de-
tected artefacts A. For each point p ∈ A we extract the
source patch Φp (fig. 4, typically 5 × 5), centred on p and
we seek a new, target patch Ψp which is similar to Φp but
where the artefacts have been removed (cf. fig. 6). Replac-
ing Φp with Ψp for all the points p in A achieves the desired
correction. The steps of one iteration of the artefact-removal
algorithm are:

• Split-Patch Search: given Φp centred on p, search
along the corresponding scanlines in Il and Ir for the
two patches that are most similar to the foreground and
background portions of Φp;

• Compositing and Rendering: combine those patches to
generate the target patch Ψp and replace Φp with Ψp.

The details of each step are explained next.

3.3.1. Split-Patch Search. Given p ∈ A, its correspond-
ing patch Φp and a low-pass filtered version D̃ of the cy-
clopean disparity map D, we compute the foreground and
background weight arrays Ωf

p and Ωb
p as follows:

Ωf
p(q) =

D̃(q) − D̃min

D̃max − D̃min
; Ωb

p(q) = 1−Ωf
p(q); ∀q ∈ Φp

(1)
with D̃min and D̃max respectively the minimum and max-
imum value of the (filtered) disparities within Φp. Notice
that larger values of Ωf

p (cf. fig. 4) occur for points which
are closer to the observer, and thus more likely to be fore-
ground in a patch straddling foreground and background.
Ωb

p is the complement of Ωf
p.

These approximate foreground and background weights
are sufficient to drive the search algorithm described be-
low. The low-pass filtering of the disparities achieves ro-
bustness of the search algorithm by reducing the influence
of high-frequency disparity artefacts (e.g. the horizontal
streaks along the head boundary in fig. 2a). Moreover,
robust variants of the weights in (1) may be defined, e.g.
by means of an activation-like sigmoid transformation. In
practice, though, we have found the definitions in (1) suffi-
cient.

The SPS algorithm proceeds by searching for the two
patches that are most similar to the foreground and back-
ground portions of the source cyclopean patch Φp. The re-
covered pair of left-view patches are denoted Lf

p and Lb
p,

3



I

Il

Ir

a

b

c

pscanline

y

Curl

px

C
yc

lo
p

ea
n

L
ef

t
R

ig
h

t

y

Figure 4: Split-Patch Search. Given the source patch Φp in the
corrupt cyclopean image I , we seek the two patches in Il and Ir

which are most similar to the foreground and background regions
of Φp, respectively. Results of the automatic search are the pairs
of patches Lf

p and Lb
p for the left input image and Rf

p and Rb
p

for the right input image. The automatically computed value of
δy determines the small portion of the current scanline in which
the search is performed. In this running example we use patches
of size 25 × 25 for clarity, however the SPS algorithm normally
employs 5 × 5 patches for efficiency.

and the right-view ones Rf
p and Rb

p (fig. 4). It is important
to stress that the search is limited, for efficiency, to small
segments along the corresponding left and right scanlines
as follows:

Lf
p = Lq̂ with q̂ = arg min

px≤qx≤px+δy

d′(Ωf
p∗Φp,Ωf

p∗Lq)

Lb
p = Lq̂ with q̂ = arg min

px≤qx≤px+δy

d′(Ωb
p∗Φp,Ωb

p∗Lq)

Rf
p = Rq̂ with q̂ = arg min

px−δy≤qx≤px

d′(Ωf
p∗Φp,Ωf

p∗Rq)

Rb
p = Rq̂ with q̂ = arg min

px−δy≤qx≤px

d′(Ωb
p∗Φp,Ωb

p∗Rq)

with Lq and Rq generic left-view and right-view patches
centred on the generic point q | qy = py . Here the sym-
bol ∗ denotes point-wise multiplication between images (or
patches). The distance d′(Π1,Π2) between two generic
patches Π1 and Π2 is defined as the sum of squared dis-
tances (SSD) of pixel values where artefact pixels are ig-
nored. The value δy which restricts the search region for
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Figure 5: Patch distances. These two plots show the values of
the weighted SSD distance functions d′(Ωf

p ∗ Φp, Ωf
p ∗ Rq) and

d′(Ωb
p ∗ Φp, Ωb

p ∗ Rq) for varying values of qx ∈ [px − δy, px]
along the right scanline. Φp is the example source patch in fig. 4.
Restricting the search to a small scanline segment of length δy

achieves efficiency. Our winner-take-all algorithm selects the
patches Rf

p and Rb
p corresponding to the minima of the above

plots (marked in green and blue, cf. fig. 4). These correspond to
the two correct foreground and background disparities at point p.

efficiency is a scanline-dependent value defined as δy =
maxq∈I|qy=y D̃(q)/2. Examples of such automatically ex-
tracted patches are shown in fig. 4.

The SPS algorithm may be interpreted as a winner-take-
all algorithm for dense stereo. However, unlike previous
approaches of this kind, here the algorithm is applied twice,
once to the foreground and once to the background portions
of the source patch Φp. This has the effect of assigning two
depth values to the artefact pixels in A. Notably, in the case
of mixed pixels the two estimated depths correspond to the
depths of the foreground and background components of
the mix. The reduced search region and the large autocor-
relation of the Φp patch3 make the typically fragile winner-
take-all algorithm sufficiently robust.
Efficiency. It is important to stress that the SPS algorithm is
economical since for each point p ∈ A the search region is
restricted to a short scanline segment of length δy . Figure 5
shows the typical behaviour of the patch distance function
for varying values of the qx coordinate.

3.3.2. Selecting the best background patch. Figure 4
demonstrates the successful detection of the two left and
right foreground patches Lf

p and Rf
p (the foreground hair

curl is present in both and in the same position). How-
ever, due to occlusion, only one of the two retrieved back-
ground patches is meaningful. In fact, the true background
of Φp (the vertical door frame) is occluded in the left view
Il, thus the retrieved patch Lb

p is meaningless. In con-
trast, the right background patch Rb

p contains the correct
background information. The actual choice between Lb

p

and Rb
p is performed automatically by retaining the patch

Πb
p which is most similar to the background of Φp, i.e. :

Πb
p = arg minΛ∈{Lb

p,Rb
p} d′(Ωb

p ∗ Λ,Ωb
p ∗ Φp). In the ex-

ample in fig. 4 the selected background patch is Πb
p = Rb

p.

3Artefacts tipically occur along high-contrast object boundaries.
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Figure 6: Patch matting and compositing. See text for notation. (a) Once the two backgrounds (L̂b
p,R̂b

p) associated to the two
foreground patches (Lf

p,Rf
p) have been estimated transparencies (Γp) and foreground colours (Πf

p) of the target patch can be computed.
Finally, the target patch Ψp is computed by the conventional compositing equation (2). The patch Ψp is a clear improvement with respect
to the original, corrupted cyclopean patch Φp. (b) A 3D height-map visualization of the estimated opacities Γp showing the correctly
recovered semi-transparent hole in the hair curl.

At this point we have computed Πb
p which is one of

the elements needed for compositing the artefact-free target
patch Ψp (fig. 6). Further steps are: i) for each pixel q ∈ Φp

estimating its (uncontaminated) foreground colour Πf
p(q)

and transparency Γp(q). ii) combine foreground Πf
p, back-

ground Πb
p and transparencies Γp to obtain the desired tar-

get patch Ψp. These steps are described next.

3.3.3. Patch matting, compositing and rendering. For
each point p ∈ A, we have described how to extract two
foreground-registered patches Lf

p and Rf
p. If we knew their

corresponding backgrounds we could apply the technique
described in [19] to estimate pixel opacities and uncon-
taminated foreground colours necessary to generate the tar-
get patch Ψp. This section attacks this problem; however,
having available only two input images makes the prob-
lem ill-posed, and reasonable assumptions will be neces-
sary. Segmentation-based matting techniques [4] are not
suited here since they target single-image cases. The ad-
ditional information provided by the comparison of the two
foreground patches is exploited in this paper.

We begin by noting that the patch Lf
p extracted from the

left input image can be interpreted itself as a composite im-
age. In our example, its background L̂b

p (the poster on the
back wall) is completely visible in the right input view and
can be extracted by the following search process:

L̂b
p = Rq̂ where q̂ = arg min

px≤qx≤px+δy

d′(Ωb
p∗Lf

p,Ωb
p∗Rq)

and simmetrically for R̂b
p. In our running example, how-

ever, the background corresponding to the right foreground
patch Rf

p (the brown door in fig. 4c) is occluded, in the
left image, by the person. Thus, the automatically extracted
patch R̂b

p is meaningless. This situation can be automat-

ically detected by checking the sign of the quantity ∆ de-
fined as:

∆ = d′(Ωb
p ∗ R̂b

p,Ωb
p ∗ Rf

p) − d′(Ωb
p ∗ L̂b

p,Ωb
p ∗ Lf

p).

In fact, the situation presented in our example corresponds
to a value ∆ > 0. Similarly, ∆ < 0 corresponds to the
occlusion of the left background patch L̂b

p.
The problem of occluded background patches is of a gen-

eral nature and assumptions are needed to estimate the miss-
ing information. In the case of occluded R̂b

p we proceed as
follows: given the right foreground patch Rf

p and the back-
ground filter Ωb

p, we extract the pixels of Rf
p which belong

to the background and then fit a parametric surface model
(e.g. polynomial, spline etc.) to the corresponding colour
values4. Finally, the fitted surface model is used to extrapo-
late the colours of the pixels in the occluded portion of Rf

p.
We have found that for small patches (5 × 5) extrapolation
via a generic planar fit (generally not at constant height)
produces good results. More powerful extrapolation tech-
niques may be considered for larger and highly textured
patches. Figure 6 shows the estimated R̂b

p patch of the
example; notice the extrapolated area behind the hair curl.
Symmetrical reasoning applies when ∆ < 0.

Now, similarly to [19] we have available two known
foreground-registered patches (Lf

p and Rf
p) and the two cor-

responding (different) background patches (L̂b
p and R̂b

p).
For Lf

p and Rf
p the conventional compositing equation gen-

eralized to the case of patches is:

Lf
p = Γp ∗ Πf

p + (1 − Γp) ∗ L̂b
p

Rf
p = Γp ∗ Πf

p + (1 − Γp) ∗ R̂b
p

4we employ an RGB colour model.
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with Γp the opacities and Πf
p the uncontaminated fore-

ground colours. Since both background patches are known,
then both Γp and Πf

p are uniquely determined. Opacities
are assumed to apply equally to each of the RGB channels.

Unfortunately, some of the corresponding pixels in the
two backgrounds L̂b

p and R̂b
p may have very similar

colours, thus making the accurate recovery of transparen-
cies and foreground colours ill-posed [19]. Image noise can
further exacerbate this pathological situation. However, rea-
sonable estimates of transparencies and colours can be ob-
tained through the incorporation of prior information (e.g.
on the distribution of alpha and colour values). This regular-
ization effect can be achieved either by means of a Bayesian
approach [19] or, simply by a depth-driven, low-pass filter-
ing of the transparency and colour signals. We have found
the latter to work sufficiently well in the case of small image
patches. Examples of estimation of Γp and Πf

p are shown
in fig. 6, where foreground colours have been composited
on a white background for aided visualization.

Finally, given the foreground Πf
p, the opacities Γp and

the background Πb
p, the target patch Ψp remains defined:

Ψp = Γp ∗ Πf
p + (1 − Γp) ∗ Πb

p. (2)

Figure 6 shows the results of running one iteration of the
SPS algorithm on a real-image example: comparison be-
tween the original patch Φp and the estimated target patch
Ψp, demonstrates the effective removal of artefacts. In
fig. 6b notice how the estimated transparency map Γp cor-
rectly captures the semi-transparent nature of the hole in the
hair curl. The enhancement of the entire virtual image I is
achieved by copying the content of Ψp inside Φp for all
pixels p ∈ A ∩ Φp and repeating the steps above until all
the pixels in A have been re-synthesized. Figure 1c’ shows
the result of applying the SPS enhancement algorithm to the
entire cyclopean image in fig. 1c. In the current version of
the algorithm a pixel p ∈ A may be synthesized more than
once since it belongs to a number of overlapping patches.
In this case only the last value is retained. Moreover, we
have found larger patch sizes to yield better quality of syn-
thesis at the expense of CPU cycles. The SPS algorithm is
validated next on a number of ground-truth data and further
real-image examples.

4 Results and Comparisons
This section presents a quantitative and qualitative evalua-
tion of the performance of the proposed SPS algorithm. The
improvement in the quality of the synthetic image is mea-
sured by comparisons against ground-truth data. Further
examples of virtual-image synthesis in typical two-camera
video-conferencing sessions are also presented.

Comparison with ground truth. The performance of the
SPS algorithm is measured as follows: given the input im-

Figure 7: Additional ground-truth data. Sample frames from the two
additional ground-truth sequences used to quantify the performance of the
SPS algorithm. The camera is translating horizontally with constant ve-
locity. (a) Oranges sequence. Image size is 256 × 192 and max object
occlusion is about 4% of the image width. (b) Cube sequence. Image size
is 192 × 80 and max object occlusion is about 3% of the image width.

ages Il and Ir and the corresponding ground-truth cyclo-
pean image Igt we first synthesize the cyclopean view I us-
ing a standard dense-stereo algorithm. Secondly, we apply
the outline-enhancement SPS algorithm to the image I and
generate the improved image I ′. The proportionate quality
improvement is measured as the ratio

ρ =
d(I, Igt) − d(I ′, Igt)

d(I, Igt)
.

Thus, positive values of ρ indicate an actual improvement
of the image quality (because d(I ′, Igt) < d(I, Igt)) and
vice-versa for negative values of ρ. The image distance
d(I1, I2) between two generic images I1 and I2 is defined as
the sampling-independent distance of [1]. These distances
are computed only at the points labelled as artefacts.

We run our experiments on all nine ground-
truth sequences from the Middlebury data set
(www.middlebury.edu/stereo). For each se-
quence we chose the first and last frames (frames
0 and 8) as the left and right input images and
the middle frame (frame 4) as the ground-truth cy-
clopean image Igt. The results are as follows:

data barn1 barn2 bull
ρ +0.20% +1.57% +7.33%

data cones poster sawtooth
ρ +2.94% +6.59% +2.33%

data teddy tsukuba venus
ρ +3.89% +0.8% +1.66%

It can be observed that in all the above experiments the
sign of ρ is positive, confirming the actual improvement of
image quality achieved by the SPS algorithm.

The Middlebury dataset uses short baselines and,
consequently, is characterized by very small occluded re-
gions. This is not very representative of real-world stereo
pairs. For instance, the stereo images in fig. 1 are charac-
terized by a maximum cyclopean occlusion of 8% of the
image width (to be compared to the 2.6% average of max-
imum cyclopean occlusions in the Middlebury dataset).
Thus, in order to test the SPS algorithm with larger occlu-
sions we generated our own ground-truth data by acquir-
ing two sequences from a horizontally-translating camera
(fig. 7). From each of the two sequences we extracted two
triplets of “left-cyclopean-right” images (labelled as “exp1”
and “exp2”), and the measured values of ρ are as follows:
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Figure 8: A furry toy example. (a) The cyclopean image generated by
a standard geometry-based dense stereo algorithm. The input left and right
images are not shown here. (a’) The cyclopean image after SPS enhance-
ment. (b,c,d) details of (a). (b’,c’,d’) corresponding details of (a’). The
artefacts in the donkey’s hair, the donkey’s neck and the teddy’s nose have
been removed and the quality of the synthetic images enhanced.

data oranges, exp1 oranges, exp2
ρ +6.50% +3.52%

data cube, exp1 cube, exp2
ρ +5.47% +9.95%

Once again, all the entries of the above table show pos-
itive values of ρ, thus confirming the efficacy of the SPS
technique. The larger (on average) values of ρ in this sec-
ond set of experiments are explained by the fact that larger
occlusion regions are more likely to cause failure of the
geometry-based synthesis. Consequently, the contribution
of our exemplar-based enhancement becomes more evident.

A furry toy example. Figure 8 shows the results of syn-
thesizing cyclopean images on a difficult furry toy example.
The detail images highlight the removal of boundary blocks
and streaks, and the improved rendering of mixed pixels.

Using different dense-stereo algorithms. To demon-
strate the general nature of SPS we have applied it to the vir-
tual images generated by different dense-stereo algorithms.
Figures 9a,b show the cyclopean images obtained from the
disparities estimated by the algorithms in [5] and [14], re-

b'a a' b

Figure 9: SPS with different stereo algorithms. (a,b) Virtual images
generated by the Dynamic Programming algorithm in [5] and the Graph-
Cut algorithm in [14], respectively. (a’,b’) The corresponding images after
SPS enhancement. In both cases artefacts have been removed and the out-
line of the teddy bear enhanced.

a b c

a' b' c'

Figure 10: A two-camera video-conferencing example. (a) Cyclopean
view after first pass. The two input images are not shown here. (b,c) Details
of (a) showing aliasing artefacts along the head boundary. (a’) Cyclopean
view after SPS enhancement. (b’,c’) Details of (a’) where the introduction
of pixel mixing produces an enhanced outline of the foreground object.

spectively. Figures 9a’,b’ show the corresponding SPS-
enhanced cyclopean images.

Video-conferencing examples. Finally, we present two
more video-conferencing examples (of the kind in fig. 1).
Comparing fig. 10b’ with fig. 10b and fig. 10c’ with fig. 10c
highlights the enhanced quality.

Figure 11 demonstrates that the SPS algorithm is par-
ticularly useful for background substitution. Notably,
the unavoidable aliasing that arises from disparity-based
background removal and substitution is fixed by running
the SPS algorithm along the boundary of the foreground
object, thus producing a smooth and artefact-free fore-
ground/background transition.

Image sequences. Our experiments demonstrate that syn-
thesized temporal sequences also benefit from the SPS al-
gorithm, however, due to space constraints we are unable to
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a b

c c'

Figure 11: SPS enhances background substitution. (a) Input left im-
age, the right image is not shown here. (b) Desired new background. (c)
Replacing the desired background in the synthetic cyclopean view by sim-
ple depth thresholding produces unnaturally sharp foreground/background
transitions. Moreover, lack of pixel mixing make the head appear “stuck”
upon the background. (c’) The result of applying SPS to (c). Boundary
artefacts (aliasing and lack of pixel mixing) have been fixed, thus yielding
a more realistic-looking composition.

show results here. Numerous examples and results on both
static and temporal data are available at [20].

5 Conclusion
This paper has presented a novel technique for the efficient
and accurate synthesis of virtual views from only two input
images. The emphasis is on the synthesis of artefact-free
objects boundaries (figural continuity) with faithful pixel
mixing. We employ a two-pass new-view synthesis algo-
rithm which combines the efficiency of disparity-based tech-
niques with the quality of exemplar-based synthesis algo-
rithms.

The main contribution is the Split-Patch Search algo-
rithm for virtual-image synthesis which: i) detects the arte-
facts generated by the geometry-based synthesis and ii) re-
moves them by means of a multiple-depth stereo algorithm.
The actual image synthesis is performed in an exemplar-
based fashion, adapted to the case of stereo images. Trans-
parency effects and mixed pixels are rendered by patch-
based matting and compositing.

Computational efficiency is achieved by taking advan-
tage of the geometry-based reconstruction to constrain
tightly the search for exemplar patches in the SPS step. In
our C++ implementation, which exploits SSE2 instructions,
the first pass (dense stereo) runs at approximately 7.5 f.p.s.
on a dual-processor 3GHz Pentium IV with 1Gb RAM. The
SPS refinement phase reduces the speed down to about 5.5

f.p.s. for artefacts which typically cover less than 10% of the
image area. The result is a nearly real-time algorithm for the
synthesis of high-quality virtual views from only two input
images.

Areas of further research include: i) integrating SPS into
stereo matching, ii) investigating a probabilistic framework
for accurate patch matting in the challenging two-image
scenario, iii) extending the SPS algorithm to explicitly im-
pose temporal consistency in image sequences.
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