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Figure 1: An example of automatic foreground/background separation in binocular stereo sequences. The extracted foreground sequence
can be composited free of aliasing with different static or moving backgrounds; a useful tool in video-conferencing applications. Note, the
input synchronized stereo sequences used throughout this paper can be downloaded from [1], as well as hand-labeled segmentations.

Abstract

This paper describes two algorithms capable of real-time
segmentation of foreground from background layers in
stereo video sequences. Automatic separation of layers
from colour/contrast or from stereo alone is known to be
error-prone. Here, colour, contrast and stereo matching
information are fused to infer layers accurately and effi-
ciently. The first algorithm, Layered Dynamic Program-
ming (LDP), solves stereo in an extended 6-state space
that represents both foreground/background layers and oc-
cluded regions. The stereo-match likelihood is then fused
with a contrast-sensitive colour model that is learned on the
fly, and stereo disparities are obtained by dynamic program-
ming. The second algorithm, Layered Graph Cut (LGC),
does not directly solve stereo. Instead the stereo match like-
lihood is marginalised over foreground and background hy-
potheses, and fused with a contrast-sensitive colour model
like the one used in LDP. Segmentation is solved efficiently
by ternary graph cut.

Both algorithms are evaluated with respect to ground
truth data and found to have similar perfomance, substan-
tially better than stereo or colour/contrast alone. How-
ever, their characteristics with respect to computational ef-
ficiency are rather different. The algorithms are demon-
strated in the application of background substitution and
shown to give good quality composite video output.

1. Introduction
This paper addresses the problem of separating a fore-
ground layer from stereo video in real time. A prime ap-
plication is for teleconferencing in which the use of a stereo

webcam already makes possible various transformations of
the video stream including digital pan/zoom/tilt and object
insertion1. Here we concentrate on providing the infrastruc-
ture for live background substitution. This demands fore-
ground layer separation to near Computer Graphics qual-
ity, including α-channel determination as in video-matting
[9], but with computational efficiency sufficient to attain
live streaming speed.

Layer extraction from images has long been an active
area of research [6, 4, 18, 24, 25]. The challenge addressed
here is to segment the foreground layer both accurately and
efficiently. Conventional stereo algorithms e.g. [19, 10]
have proven competent at computing depth. Stereo oc-
clusion is a further cue that needs to be accurately com-
puted [15, 5, 17, 11] to achieve good layer extraction. How-
ever, the strength of stereo cues degrade over low-texture re-
gions such as blank walls, sky or saturated image areas. Re-
cently interactive colour/contrast-based segmentation tech-
niques have been demonstrated to be very effective [7, 20],
even in the absence of texture. Segmentation based on
colour/contrast alone is nonetheless beyond the capability
of fully automatic methods. This suggests a robust approach
that exploits fusion of a variety of cues. Here we propose a
model and algorithms for fusion of stereo with colour and
contrast, and a prior for intra-layer spatial coherence.

The efficiency requirements of live background substitu-
tion have restricted us to algorithms that are known to be
capable of near frame-rate operation, specifically dynamic
programming and ternary graph cut (i.e. α-expansion al-
gorithm [8] with three labels). Therefore two approaches
to segmentation are proposed here: Layered Dynamic Pro-

1research.microsoft.com/vision/cambridge/i2i
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Figure 2: Segmentation by fusing colour, contrast and stereo.
Results of three different segmentation algorithms run on the left
input image of fig. 1 (see [2] or video in the CD-ROM pro-
ceedings for more examples). (a) Stereo-based segmentation. (b)
Colour/contrast-based segmentation. (c) The algorithm proposed
here, by fusing colour, contrast and stereo achieves more accu-
rate segmentation. The foreground artefacts visible in (a) and (b)
(marked in red) are corrected in (c), where the person and chair are
correctly extracted. Note, we do not just combine images (a) and
(b) to produce (c); see text for algorithmic details.

gramming (LDP) and Layered Graph Cut (LGC). Each
works by fusing likelihoods for stereo-matching, colour and
contrast to achieve segmentation quality unnattainable from
either stereo or colour/contrast on their own (see fig. 2).
This claim is verified by evaluation on stereo videos with
respect to ground truth (section 5). Finally, efficient post-
processing for matting [13] is applied to obtain good video
quality as illustrated in stills and accompanying video in the
CD-ROM proceedings.

The paper is organised as follows. In section 2 we de-
scribe components of our probabilistic model that are com-
mon in both techniques. In sections 3 and 4 we present LDP
and LGC algorithms, respectively. Experimental results are
given in section 5. Finally, section 6 contains conclusions.
Note that due to space limitations some details of the algo-
rithms have been omitted, but can be found in [16].

2. Probabilistic models for bi-layer
segmentation of stereo images

First we outline the probabilistic structure of the stereo and
colour/contrast models.

2.1 Notation and basic framework

Pixels in the left and right images are m,n respectively and
index either the entire images, or just a pair of matching
epipolar lines, as required. Over epipolar lines, the intensity
functions from left and right images are

L = {Lm, m = 0, . . . , N}, R = {Rn, n = 0, . . . , N}.
Stereo disparity along the cyclopean2 epipolar line is d =
{dk, k = 0, . . . , 2N} and disparity is simply related to im-
age coordinates:

dk = m − n with m =
(k + dk)

2
and n =

(k − dk)
2

.

(1)

2cyclopean here means mid-way between left and right input cameras.
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Figure 3: Disparity and the cyclopean image. Notation conven-
tions for left and right epipolar lines with pixel coordinates m, n,
cyclopean coordinates k and stereo disparity d = m−n. Possible
matching path shown dashed (cf. [5, 10]).

Left and right pixels are ordered by any particular matching
path (fig. 3) to give 2N cyclopean pixels

z = {zk, k = 0, . . . , 2N},
where k = m + n. Only single-step horizontal and verti-
cal moves are allowed — no diagonal or multistep moves.
This means that, for a given path, z consists of a sequence
of Lm and Rn elements, such that each left and right pixel
appears exactly once on the path. This is essential to a con-
sistent probabilistic interpretation, as explained shortly. In
addition an array x of state variables, either in cyclopean co-
ordinates x = {xk} or image coordinates x = {xm}, takes
values xk ∈ {F,B,O} according to whether the pixels is a
foreground match, a background match or occluded.

Sets of model parameters: Φ are defined for priors on
stereo; Θ for colour/contrast and match likelihoods. De-
tails are given later. This enables Gibbs energies to be de-
fined, in terms of probabilistic models, which are globally
minimised to obtain a segmentation. The LDP algorithm
minimises, independently over each epipolar line, an en-
ergy E(z,d,x; Θ,Φ) in which there is explicit dependency
on disparity d. The presence of parameters Φ indicates that
the LDP energy incorporates priors on stereo disparity as
a further constraint on the solution for segmentation. Con-
versely LGC minimises, globally over an image, an energy
E(z,x; Θ) in which disparity variables do not explicitly ap-
pear.

2.2. Likelihood for stereo
We need to model the stereo-matching likelihood function
p(z | x,d) and this is expanded as

p(z | x,d) =
∏
k

p(zk | xk, dk, z1, . . . , zk−1)

= K(z)
∏
k

exp−Lk(xk, dk) (2)

2



0 0.2 0.4 0.6 0.8 1
-1

0

1
linear region

Figure 4: Likelihood model: the empirical log-likelihood ratio
−Lk is shown for stereo matches, plotted here as a function of the
NSSD measure N(LP, RP), using the ground truth stereo data
“Teddy” from the Middlebury set [3]. Note the linearity in the
region of L = 0, where most data falls. Similar behaviour has
been observed for other ground-truth datasets.

where the pixelwise negative log-likelihood ratio, for match
vs. non-match, is

Lk(xk, dk) = − log p(zk | xk, dk, z1, . . . , zk−1)
+ log p(zk | xk = O). (3)

According to the definition, Lk(xk = O, dk) = 0. Com-
monly [22] stereo matches are scored using SSD (sum-
squared difference), that is L2-norm of difference between
image patches LP

m, RP
n surrounding hypothetically match-

ing pixels m,n. Like [11, 12] we model Lk using SSD with
additive and multiplicative normalisation for robustness to
non-Lambertian effects (NSSD - normalized SSD):

Lk(xk, dk) =
{

M(LP
m, RP

n) − M0 if xk ∈ {F,B}
0 if xk = O,

(4)
where M = λN with λ a constant, and

N(LP, RP) =
1
2

‖LP − RP‖2

‖LP − LP‖2 + ‖RP − RP‖2
∈ [0, 1].

(5)
This model has been tested against the Middlebury data-
sets [3] and found to be reasonable — an example of results
is given in fig. 4. Such analysis gives also useful working
values for λ (typical value for monochrome images is λ =
10, which holds for a variety of patch sizes; we used 3 × 7
patches for LGC and 5 × 5 patches for LGC). For M0 this
analysis yields value of approximately 0.3. However, we
found that discriminatively learned M0 is usually larger: a
typical value is M0 = 0.4, and that value gives better error
rates in practice.

2.3 Stepwise restriction for matching paths

Previous algorithms e.g. [10, 14] have allowed multiple
and/or diagonal moves on the stereo matching paths. How-
ever, the single-step restriction (fig. 3) allows for a consis-
tent probabilistic interpretation of the sequence matching

problem to exist (see [16] for details). With the restric-
tion in place, each element Lm and Rn is “explained” once
and only once: it appears once and only once as zk in the
p(zk| . . .) term of (2), as required. The existence of a prob-
abilistic interpretation then allows a consistent account of
fusion of different modalities, by multiplication of likeli-
hoods. The practical benefit is that the weighting coeffi-
cients of the various energy terms are mostly determined
automatically, from statistics, rather than having to be set
by hand.

2.4. Likelihood for colour
Following previous approaches to two-layer segmentation
[7, 20] we model likelihoods for colour in foreground and
background using Gaussian mixtures in RGB colour space,
learned from image frames labelled (automatically) from
earlier in the sequence. In addition, the background model
is enhanced by mixing in a probability density learned, for
each pixel, by pixelwise background maintenance [21, 23].

The foreground colour model p(z | x = F) is simply a
spatially global Gaussian mixture learned from foreground
pixels. In the background there is a similar learned Gaussian
mixture p(z | x = B) and also a per-pixel single Gaussian
density pk(zk) available wherever the stability flag sk ∈
{0, 1} indicates that there has been stasis over a sufficient
number of previous frames. The occluding state x = O
refers to background pixels and therefore shares a colour
model with x = B. The combined colour model is then
given by an energy UC

k :

UC
k (zk, xk) = − log p(zk | xk) if x = F, (6)

and for x = B,O:

UC
k (zk, xk) = − log

[
(1 − sk

2
)p(zk|xk = B) +

sk

2
pk(zk)

]
(7)

a mixture between the global background model and the
pixelwise one. This approach is both powerful and robust:
pixelwise densities UC

k are typically strongly peaked, and
hence very informative, but sensitive to movement in the
background. That sensitivity is robustified by adding in the
general background distribution p(zk|xk = B) as the con-
tamination component in the mixture.

2.5 Contrast model

There is a natural tendency for segmentation boundaries to
align with contours of high image contrast. Similarly to [7],
this is represented by an image energy of the form

Vk,k′ = Fk,k′ [xk, xk′ ]V ∗(zk, zk′), (8)

where k, k′ are neighbouring pixel-pairs in the cyclopean
image. Function Fk,k′ [xk, xk′ ] is the potential coeffi-
cient which implements geometric constraints (it must be
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anisotropic because of epipolarity). The exact form of Fk,k′

is different for LDP and LGC, and it is given later in corre-
sponding sections. The term V ∗ applies contrast sensitivity:

V ∗(z, z′) =
1

1 + ε

(
ε + exp−‖z − z′‖2

2σ2

)
(9)

with σ2 =
〈‖z − z′‖2

〉
, a mean over all pairs of neighbours

in the left and right images.
The energy made by summing up Vk,k′ in fact repre-

sents an Ising prior for labelling coherence, modified by a
contrast factor that acts to discount partially the coherence
terms. The constant ε is a “dilution” constant for contrast,
previously [7] set to ε = 0 for pure colour segmentation.
Here, ε = 1 is more appropriate — diluting the influence
of contrast in recognition of the increased diversity of seg-
mentation cues.

3. Layered Dynamic Programming
(LDP)

The LDP algorithm solves for disparity over individual
scanlines on the (virtual) cyclopean image zk. It is based
on the classic dynamic programming approach [10, 19] to-
gether with augmentation of the state space to handle oc-
clusion [11, 12]. The 4-state model of [12] is described
in section 3.1. The foreground/background states are then
added in the 6-state model (section 3.2).

3.1 4-state stereo with occlusions

This can be expressed concisely as a 4-state system that
is summarised in fig. 5. A basic 4-state system is anno-
tated with transitions and associated energy terms to define
a global energy

E(z,d,x; Θ,Φ) =
∑

k

Ek(dk, dk−1, xk, xk−1) (10)

where xk ∈ {M,O} in which M denotes a stereo match and
O an occlusion. Each Ek(. . .) term consists of the sum

Ek = UM
k + Vk−1,k (11)

of a cost Vk−1,k of transition k − 1 → k (on arcs) and a
state cost UM

k (inside nodes) on the diagram of fig. 5. The
occluding state xk = O is split into two sub-states (red
circles in fig. 5), left-occluding and right-occluding (which
do not intercommunicate, reflecting geometric constraints).
The matching state xk = M also has two substates (green
circles in fig. 5):

Left match if dk = dk−1 + 1 (12)

Right match if dk = dk−1 − 1

aa

aO

aO

bO

b

bObO

bO

Μ0
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bb

b

M(Lm , Rn )

L-occ

R-occ

cM(Lm , Rn )

L-matchR-match

Figure 5: State space for stereo matching with occlusion.
Matched and occluded states (each in left and right versions) form
a 4-state system. Successive pixels along a cyclopean epipolar line
(fig. 3) incur a cost increment (e.g. b) for the arc k − 1 → k tra-
versed, plus an increment (e.g. M0) for the new node k.

representing the typical stepwise progress of the matching
path as in figure 3. There are a total then of 4 possible states:
xk ∈ {L-match, R-match, L-occ, R-occ}.

The model has a number of parameters Φ =
{a0, b0, a, b, c} which specify the stereo prior over match-
ing paths. It might seem problematic that so many param-
eters need to be set, but in fact they can be learned from
previous labelled frames as follows:

b0 = log(2WO) b = log(2WM) (13)

where WM and WO are the mean widths of matched and
occlusion regions respectively. This follows simply from
the fact that 2 exp−b is the probability of escape from a
matched state, and similarly for 2 exp−b0 in an occluded
state. Then consideration of viewing geometry (details
omitted) indicates:

a = log(1 + D/b) − log(1 − 1/WM), (14)

where D is a nominal distance to objects in the scene and b
is the interocular distance (camera baseline). Lastly, proba-
bilistic normalisation demands that

c = − log(1 − 2e−b − e−a) and a0 = − log(1 − 2e−b0),

so there are really just 3 independent parameters in Φ.
Match costs inside nodes are defined in terms of match like-
lihood energy, as in (4). The total energy is then minimised
by Dynamic Programming in a manner similar to [11].

3.2 6-state stereo with occlusion and layers

Next, we distinguish foreground and background layers and
use an extended 6-state algorithm in which matched states
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Figure 6: Extended state space for LDP in which the matched state of fig. 5 is split into a foregound and a background substate. Note
that from the foreground state (yellow circles), only the right occluding state is accessible, and from background (blue circles) only the left
occluding state, constraints of the geometry of occlusion.

from the 4-state system are split into foreground and back-
ground substates. The diagram of fig. 5 is cut by the
splitting of the matched states and unfolded into the dia-
gram of fig. 6. There are now a total of 6 possible states:
xk ∈ {L-match-F, R-match-F, L-match-B, R-match-B, L-
occ, R-occ}. The model has a number of parameters Φ =
{aF , aB , aO, bF , bB , bOF , bOB , cF , cB} all of which can be
set from statistics and geometry as before, but now statistics
are collected separately for the xk = F and xk = B condi-
tions.

3.3 The 6-state model with disparity-pull and
colour/contrast fusion

Now the stereo infrastructure for LDP is capable of repre-
senting the two layers, it remains to add in energies for the
colour and contrast likelihoods. The full energy for stereo
matching, per cyclopean pixel, is now

Ek = UM
k + Vk−1,k + UC

k + UD
k (15)

where UM
k and Vk−1,k are respectively the node and transi-

tion energies from section 3.2. The nodal energy is now ex-
tended, from UM

k to UM
k +UC

k +UD
k , to take account of addi-

tional colour and “disparity-pull” information, respectively.
The colour energy term UC

k is as described earlier (6). The
disparity-pull energy

UD
k (zk, xk) = − log p(dk|xk) (16)

represents the pull of each layer towards certain dispari-
ties, as determined by the densities p(dk|xk = F,B,O)
which are learned as Gaussians from labelled data in
previous frames. Typically this term pulls the fore-
ground/background layers towards larger/smaller values of
disparity respectively.

Finally, the transition component Vk−1,k from the 6-state
model is further modified to take account of contrast (8).
This is done by modifying each transition energy between
occluding and foreground states (fig. 6) as follows:

bF → bF V ∗(zk−1, zk) and bOF → bOF V ∗(zk−1, zk),
(17)

where V ∗ is the contrast term defined earlier (9). Note that
colour/contrast in the 6-state model have to be computed
jointly over left and right images (see [16] for details).

Now the full 6-state system, augmented both for bi-layer
inference and for fusion of colour/contrast with stereo can
be optimised by dynamic programming as before. Results
of this approach are shown below in section 5, but in the
meantime the alternative LGC algorithm is described.

4. Layered Graph Cut (LGC)
Layered Graph Cut (LGC) determines segmentation x as
the minimum of an energy function E(z,x; Θ), in which,
unlike LDP, stereo disparity d does not appear explic-
itly. Instead, disparity is marginalised to give a likelihood
p(L | x,R), in which stereo-match likelihoods have been
aggregated to compute support for each of the three labels
in x: foreground, background and occlusion (F,B,O). The
segmentation is ternary so the α-expansion form of graph-
cut [8] is needed. Space forbids a detailed description of
the LGC algorithm, however, it represents another, very ef-
fective way of implementing the colour-stereo fusion idea.
Therefore, it was felt important to include a sketch of the
method. A particular difference between LDP and LGC is
that LGC is specified with respect to one (e.g. left) image,
rather than the cyclopean frame as in LDP.

The energy function for LGC is composed of three
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terms:

E(z,x; Θ) = UC(z,x; Θ)+V (z,x; Θ)+US(z,x), (18)

representing energies for colour-likelihood, spatial coher-
ence/contrast and stereo likelihood respectively. The colour
energy is simply a sum over pixels in the left image

UC(z,x; Θ) =
∑
m

UC
m(Lm, xm) (19)

of the pixelwise colour energy defined earlier (6). The co-
herence/contrast energy is a sum of pairwise energies of
the form (8) where coefficient Fm,m′ is defined as follows.
For vertical and diagonal cliques it acts as a switch ac-
tive across a transition in or out of the foreground state:
Fm,m′ [x, x′] = γ if exactly one variable x, x′ equals F,
and Fm,m′ [x, x′] = 0 otherwise. For horizontal lines it im-
plements geometric constraints: Fm,m′ [x, x′] is infinity for
transitions O→B and F→O, and zero for all other transi-
tions.

4.1 Marginalisation of stereo likelihood

The remaining term in (18) is US(z,x) which captures the
influence of stereo matching likelihood on the probability
of a particular segmentation. It is defined to be

US(z,x) =
∑
m

US
m(xm) (20)

where US
m(xm) = − log p(Lm|xm,R)+const, (21)

p(Lm|xm,R) =
∑

d

p(Lm|xm, dm = d,R)p(dm = d|xm)

(22)
— marginalizing over disparity, and the distributions
p(dm = d|xm) for xm ∈ {F,B} are learned from labelled
data in previous frames. The const term in (21) allows us
to make use of the likelihood-ratio model of section 2.2 for
stereo matches, giving

US
m(xm) = (23)

− log
[∑

d p(dm = d|xm) exp−λM(LP
m, RP

n)
] − M0.

Results of LDP and LGC are given next.

5. Results
Performance of the LGC and LDP algorithms was evaluated
with respect to ground-truth segmentations of every fifth
frame (left view) in each of two test stereo sequences3. The
data was labelled manually, labelling each pixel as back-
ground, foreground or unknown. The unknown label was
used to mark mixed pixels occurring along layer bound-
aries. Error is then measured as percentage of misclassified
pixels, ignoring “unknown” pixels.

3Ground truth segmentation data is available at [1].
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Figure 7: Measuring segmentation performance. Segmenta-
tion error (percentage of misclassified pixels) is computed on the
S1 sequence, with respect to ground truth. Average error val-
ues and 1-std bars are also plotted. Note that fused stereo and
colour/contrast (LGC and LDP) perform substantially better than
either stereo or colour/contrast alone.

Measuring accuracy of segmentation. Segmentation
performance for the stereo sequence pair S1 (example in-
put images in fig.1) is compared for colour/contrast, for
stereo alone, and for colour/contrast and stereo fused to-
gether (fig. 7). The colour/contrast algorithm here is simply
LGC in which the stereo component is switched off. The
stereo-only algorithm is 4-state DP as in section 3.1. Fu-
sion of colour/contrast and stereo by the LGC and LDP al-
gorithms both show similarly enhanced performance com-
pared with colour/contrast or stereo alone. As a test of ro-
bustness, the algorithms have also been tested on a sequence
S2 with motion in the background (example input images
in fig. 12). Two people enter the scene and move around
behind a person occupying the foreground. Once again the
power of fusing colour/contrast and stereo is immediately
apparent (fig. 8). An example of a segmented image is
shown in fig. 9 and the spatial distribution of segmentation
errors is illustrated in fig. 10: errors tend to cluster closely
around object boundaries.

Background substitution in sequences. Finally, figs. 11-
13 demonstrate the application of segmentation to back-
ground replacement in video sequences (additional results
are available at [2]). Background substitution in sequences
is challenging as the human eye is very sensitive to flicker
artefacts. Following foreground/background segmentation,
α-matting has been computed using SPS [13] as a post-
process. Both the LGC and LDP algorithms give good
results, with blended boundaries and little visible flicker.
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Figure 8: Segmentation performance is robust to background
motion. As for fig. 7 but for the S2 sequence: fusion by LDP or
LGC is robust to movement in the background.

LDP LGC

Figure 9: Extracted foreground layer for the left view of S1,
frame 100.

6. Conclusion

This paper has addressed the important problem of seg-
menting stereo sequences. Disparity-based segmentation
and colour/contrast-based segmentation alone are prone to
failure. LDP and LGC are algorithms capable of fusing the
two kinds of information with a substantial consequent im-
provement in segmentation accuracy. Moreover, both al-
gorithms are suited for real-time implementation. Fast im-
plementations of DP techniques are well known [10, 11].
Ternary graph cut has been applied, in our laboratory, at
around 10 frames per second for 320×240 image on a 3GHz
Pentium desktop machine. Given that the segmentation ac-
curacies of LDP and LGC are comparable, what is to choose
between them? In fact the choice may depend on architec-
ture: the stereo component of LGC can be done, in principle
on a graphics co-processor, including the marginalisation
over disparities. In LDP however, although stereo-match
scores could be computed with the graphics coprocessor,

LDP LGC

Figure 10: Spatial distribution of segmentation error. Red
pixels are misclassified (with respect to ground-truth). Results for
S1 at frame 100.

LDP, frame 0 LGC, frame 0

LDP, frame 100 LGC, frame 100

Figure 11: Segmentation and background substitution. Here
we show background substitution for two frames of the S1 se-
quence. Visual quality of LDP and LGC results are similar.

communicating the entire cost array Lk(xk, dk) to the gen-
eral processor is beyond the bandwidth limitations of cur-
rent GPU designs. On the other hand LDP is economical in
memory usage, in that it can proceed scanline by scanline.

In conclusion, we have demonstrated properties of the
LDP and LGC algorithms and underlying model as follows.

• Fusion of stereo with colour and contrast can be cap-
tured in a probabilistic model, in which parameters can
mostly be learned, or are otherwise stable.

• Fusion of stereo with colour and contrast makes
for more powerful segmentation than for stereo or
colour/contrast alone.

• Good quality segmentation of temporal sequences
(stereo) can be achieved, without imposing any explicit
temporal consistency between neighbouring frames.
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Figure 12: Segmentation with non-stationary background.
(Left) Three frames of the input left sequence S2 (right frame
not shown here). (Right) Corresponding LGC segmentation and
background substitution. Note the robustness of the segmentation
to motion in the original background.
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