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Abstract. This paper presents new software speed records for the com-
putation of cryptographic pairings. More specifically, we present details
of an implementation which computes the optimal ate pairing on a 256-
bit Barreto-Naehrig curve in only 4,379,912 cycles on one core of an Intel
Core 2 Quad Q9550 processor.
This speed is achieved by combining 1.) state-of-the-art high-level opti-
mization techniques, 2.) a new representation of elements in the underly-
ing finite fields which makes use of the special modulus arising from the
Barreto-Naehrig curve construction, and 3.) implementing arithmetic in
this representation using the double-precision floating-point SIMD in-
structions of the AMD64 architecture.
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1 Introduction

The use of pairings in cryptography has enabled practical realizations of nu-
merous protocols. The implementation of such protocols demands the ability to
efficiently compute the pairing while guaranteeing a required level of security.
Most cryptographic pairings are derived from the Tate pairing on elliptic curves.

Since the introduction of Miller’s algorithm [28, 29] for computing pairings
on elliptic curves, a lot of research has been devoted to finding the most efficient
Tate-pairing variants for different security levels by constructing suitable pairing-
friendly elliptic curves [20] and by making specific choices for the groups and
parameters involved in the computation [8, 9]. Several variants of the Tate pairing
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have been proposed like the eta, ate and twisted ate pairings [7, 25], the R-ate [26]
and optimal ate pairings [34] (see also [6]), often increasing the computational
efficiency over that of their predecessors. Overall, these improvements have led
to a remarkable increase in the efficiency of pairing-based protocols. Still, new
protocols including the computation of a large number of pairings or pairing
products [15, 23] demand even faster pairings.

Pairing-based protocols involve elliptic-curve point groups as well as sub-
groups of the multiplicative group of a finite field. To achieve most efficient
implementations, it is desirable to choose parameters such that the discrete log-
arithm problems in all groups have roughly the same difficulty.

At the 128-bit security level, a nearly optimal choice for a pairing-friendly
curve is a Barreto-Naehrig (BN) curve [10] over a prime field of size roughly
256 bits with embedding degree k = 12. According to [5], such a curve achieves
128 bits of security, while according to [17] this is 124 bits. This paper describes
a constant-time implementation of an optimal ate pairing on a BN curve over
a prime field Fp of size 256 bits. The prime p is given by the BN polynomial
parametrization p = 36u4+36u3+24u2+6u+1, where u = v3 and v = 1868033.
The curve equation is E : y2 = x3 + 3.

We are the first to propose a software pairing implementation exploiting
the polynomial parametrization of the prime p to speed up the underlying field
arithmetic. For most pairing-friendly curves, the primes defining the base field
are constructed using polynomial parametrizations. These parametrizations have
been used to speed up the final exponentiation [33], but so far have not been
successfully exploited for field arithmetic in software. Nevertheless, Fan, Ver-
cauteren, and Verbauwhede [18] use the polynomial shape of the prime p to
achieve computational speedups in hardware.

To maximize reusability of our results we put all software4 described in this
paper into the public domain.

Related work. There exist several descriptions and benchmarks of software
implementations of cryptographic pairings. Implementations targeting the 128-
bit security level usually use 256-bit BN curves.

The software presented in [24] takes 10,000,000 cycles to compute the R-ate
pairing over a 256-bit BN curve on one core of an Intel Core 2 processor; the same
computation on one core of an AMD Opteron processor also takes 10,000,000
cycles. Unpublished benchmarks of a newer version of that software (included in
the Miracl library [27]) are claimed to take 7,850,000 cycles on an Intel Core 2
Duo T5500 processor [32]. The software presented in [31] takes 29,650,000 cycles
to compute the ate pairing over a 256-bit BN curve on one core of a Core 2
Duo processor. Software presented in [21] takes 23,319,673 cycles to compute
the ate pairing over a 256-bit BN curve on one core of an Intel Core 2 Duo
processor; another implementation described in the same paper takes 14,429,439
to compute the ate pairing on two cores of an Intel Core 2 Duo processor. The
software presented in [3] also targets the 128-bit security level and computes the
ηT pairing on a supersingular curve over a binary field in 17,400,000 cycles on one

4 Available at http://www.cryptojedi.org/crypto/#dclxvi.
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core of a 45 nm Intel Core 2. processor. The paper also presents performance
numbers of the same pairing computation on multiple cores, for example the
computation on 4 cores of a 45 nm Intel Core 2 processor takes 5,080,000 cycles,
on 8 cores it takes 3,020,000 cycles.

The software presented in this paper computes the optimal ate pairing in
4, 379, 912 cycles on one core of an Intel Core 2 Quad Q9550 processor and is
thus more than twice as fast as the fastest previously published result and more
than 40 percent faster than previous unpublished results we are aware of.

A paper published later and partially building on our results achieves even
better performance [14]. It describes an implementation of the optimal ate pair-
ing on a 254-bit BN curve which takes 3,320,000 cycles on an Intel Core 2 T7100
processor and only 2,630,000 cycles on an Intel Core i7 860 processor. This
implementation uses Montgomery arithmetic in Fp implemented using 64-bit
integer-arithmetic instructions.

Organization of the paper. In Section 2 we give a short review of the optimal
ate pairing for BN curves. Section 3 collects state-of-the-art high-level optimiza-
tion techniques for the computation of cryptographic pairings on BN curves
from the literature as we use them in our software. Section 4 describes our new
approach to represent elements of the underlying finite field Fp and algorithms
to perform arithmetic using this representation in Fp and Fp2 . In Section 5 we
explain how we use the double-precision floating-point SIMD instructions of
the AMD64 instruction set (SSE, SSE2, SSE3) to efficiently implement these
algorithms. Section 6 gives benchmarking results of our software on different
microarchitectures.

2 An optimal ate pairing over Barreto-Naehrig curves

For a Barreto-Naehrig (BN) curve, the most efficient pairings are the R-ate
pairing [26] and optimal ate pairings [34]. In this section, we provide the basic
background and notation, and describe the algorithm for an optimal ate pairing
that is used in our implementation.

Let E : y2 = x3 + b be a BN curve over the prime field Fp. This means that
there is a u ∈ Z such that both p and n, given by

p = p(u) = 36u4 + 36u3 + 24u2 + 6u+ 1,

n = n(u) = 36u4 + 36u3 + 18u2 + 6u+ 1,

are prime. The number of Fp-rational points on E is #E(Fp) = n, and E has
embedding degree k = 12 with respect to n. We denote by O the point at infinity,
i.e. the neutral element of the group operation on E. For m ∈ Z, we write [m]
for the multiplication-by-m map on E.

Let φp be the p-power Frobenius endomorphism on E and E[n] the n-torsion
subgroup of E. We define G1 = E[n] ∩ ker(φp − [1]) = E(Fp), G2 = E[n] ∩
ker(φp − [p]) ⊆ E(Fp12)[n], G3 = µn, where µn ⊂ F∗

p12 is the group of n-th roots
of unity.
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An optimal ate pairing on E is given in [34] as

aopt : G2 ×G1 → G3, (Q,P ) 7→ (f6u+2,Q(P ) · g6u+2,Q(P ))
(p12

−1)/n,

where g6u+2,Q(P ) = lQ3,−Q2
(P ) · l−Q2+Q3,Q1

(P ) · lQ1−Q2+Q3,[6u+2]Q(P ) with
Q1 = φp(Q), Q2 = φ2p(Q), and Q3 = φ3p(Q). The value lR,S(P ) ∈ Fp12 is the
function of the line through the points R and S on the curve, evaluated at P .

There is no need to compute Q3. Instead, g6u+2,Q(P ) can be replaced by

h6u+2,Q(P ) = l[6u+2]Q,Q1
(P ) · l[6u+2]Q+Q1,−Q2

(P ).

The reason for this is that for BN curves Q1 −Q2 +Q3 + [6u+ 2]Q = O, which
can be easily derived from Lemma 2.17 in [30]. By writing down the divisors
of the functions g6u+2,Q and h6u+2,Q, it can be seen that they only differ by
vertical line functions. When evaluated at P , such line functions produce values
in proper subfields of Fp12 that are mapped to 1 by the final exponentiation.

Algorithm 1 Optimal ate pairing on BN curves for u > 0

Input: P ∈ G1, Q ∈ G2, mopt = 6u+ 2 = (1,ms−1, . . . ,m0)NAF, mi ∈ {−1, 0, 1}.
Output: aopt(Q,P ).
1: R← Q, f ← 1
2: for (i← s− 1; i ≥ 0; i−−) do
3: f ← f2 · lR,R(P ), R← [2]R
4: if (mi = −1) then
5: f ← f · lR,−Q(P ), R← R −Q
6: else if (mi = 1) then
7: f ← f · lR,Q(P ), R← R +Q
8: end if

9: end for

10: Q1 = φp(Q), Q2 = φp2(Q)
11: f ← f · lR,Q1

(P ), R← R +Q1

12: f ← f · lR,−Q2
(P ), R← R −Q2

13: f ← fp6−1

14: f ← fp2+1

15: f ← f (p4−p2+1)/n

16: return f

Algorithm 1 shows how aopt(Q,P ) can be computed in the case u > 0 and
when mopt is given in non-adjacent form (NAF). Lines 2 to 9 are called the
Miller loop. It contains doubling steps in Line 3 and addition steps in Lines 5
and 7. The value h6u+2,Q(P ) is multiplied to the result of the Miller loop in
Lines 10 to 12 by two addition steps. Lines 13 to 15 together carry out the final
exponentiation to the power (p12 − 1)/n, where Lines 13 and 14 comprise its
easy part. It can be done by applying the p6-power Frobenius automorphism on
Fp12 , a single inversion and a multiplication in Fp12 . Line 15 represents the hard
part of the final exponentiation.
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As usual [10, 25, 16], we use a sextic twist E′ : y2 = x3+ b/ξ defined over Fp2

to represent the points in G2 by points on the twist using the twist isomorphism
ψ : E′ → E, (x′, y′) 7→ (ω2x′, ω3y′). The element ξ ∈ Fp2 (neither a cube nor
a square in Fp2) is chosen such that the twist has the right order, i.e. it holds
n | #E′(Fp2). The field Fp12 is generated over Fp2 by ω via the irreducible
polynomial X6 − ξ, i.e. ω6 = ξ.

The map ψ induces a group isomorphism between G′

2 = E′(Fp2)[n] and G2.
So, all points R ∈ G2 should be seen as being represented by a corresponding
point R′ ∈ G′

2, i.e. R = ψ(R′). All curve arithmetic is done on the twist and
intermediate results can be kept in their representation on E′. This means that
all curve arithmetic requires Fp2 -arithmetic only. Arithmetic in Fp12 is also based
on arithmetic in Fp2 . Overall, there are no Fp computations other than those
involved in Fp2 computations during the optimal-ate-pairing algorithm. Thus an
improvement of Fp2-arithmetic–even without improving Fp-arithmetic–leads to
an improvement of all parts of the computation.

3 High-level techniques: field extensions, Miller loop and

final exponentiation

In this section, we describe the high-level structure of our implementation. We
use state-of-the-art optimization techniques from the literature for this imple-
mentation level. Our focus is on the construction of the higher degree field exten-
sions such as Fp6 and Fp12 , the Miller loop to compute f6u+2,Q(P ), the function
value h6u+2,Q(P ) and the structure of the final exponentiation.

The construction of field extensions and the efficiency of the optimal ate
pairing depend on the chosen curve parameters. Since our new base-field repre-
sentation needs the parameter u to be a third power u = v3, we are strongly
restricted in the choice of curves. Field multiplications and squarings in Fp12 are
very expensive, so another important condition on u is that 6u+ 2 should have
a Hamming weight as low as possible, to save as many addition steps during the
Miller loop as possible.

Our specific choice here is u = v3 with v = 1868033. This value provides a
low NAF weight for 6u+ 2 together with a good addition-subtraction chain for
exponentiation with u for use in the final exponentiation. All ideas in this paper
also work for other choices of v, but might lead to less efficient implementations.

3.1 Field extensions

The above choice for u implies p ≡ 3 (mod 4) which means that the field ex-
tension Fp2 can be constructed as Fp2 = Fp(i), where i

2 = −1. The value ξ to
construct the twist and higher-degree extensions is ξ = i+ 3.

On top of the quadratic extension we build the field Fp12 as a tower, first
Fp6 = Fp2(τ) with τ3 = ξ and then Fp12 = Fp6(ω) with ω2 = τ . This is the same
construction as in [16] and we follow [16] in implementing the extension field
arithmetic.
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3.2 Miller loop

The value 6u + 2 determines the number of doubling and addition steps in the
Miller loop of the optimal ate pairing. The number of doubling steps is 65. The
NAF weight of 6u+2 is 19, so there are 18 addition steps. Throughout the pairing
computation we use the group G′

2 to represent points in G2. We use Jacobian
coordinates for the curve arithmetic in G′

2. In particular, for the doubling and
addition steps, we use the formulas given by Arène et al. in [4]. The points in
G1, at which line functions are evaluated, are kept in affine coordinates.

The multiplication of the intermediate variable f with the line function values
in the Miller loop is done via a special multiplication function exploiting the
fact that line function values are sparse elements of Fp12 , where only half of the
coefficients over Fp2 are different from zero.

After the Miller loop, the points Q1 and Q2 are computed by applying the
p-power and the p2-power Frobenius endomorphisms. We do two final addition
steps with Q1 and −Q2, respectively, to multiply the result of the Miller loop
by the function value h6u+2,Q(P ).

3.3 Final exponentiation

The final exponentiation in our implementation is done as indicated in Lines 13
to 15 of Algorithm 1. It is divided into the easy part (Lines 13, 14) and the hard
part (Line 15). The easy part has low computational costs compared to the hard
part. Raising the element to the power p6 − 1 is simply a conjugation in the
extension Fp12/Fp6 and a single division in Fp12 . The exponentiation by p2+1 is
done by applying the p2-power Frobenius automorphism and one multiplication.

Note that after the easy part of the final exponentiation, the resulting ele-
ment in Fp12 lies in the cyclotomic subgroup of F∗

p12 , i.e. the subgroup of order

Φ12(p) = p4 − p2 + 1, where Φ12 is the 12-th cyclotomic polynomial. Granger
and Scott [22] recently showed how to exploit this fact to obtain very efficient
squaring formulas for such elements. We use these formulas during the hard part
of the final exponentiation. Furthermore, the inverse of an element in the cyclo-
tomic subgroup can be computed by a conjugation over Fp6 , which means that
inversions are essentially for free.

For the hard part, we use the method proposed by Scott et al. in [33]. The
main advantage here is that the exponentiation is essentially split into three
exponentiations by the exponent u = v3, each implemented as three exponentia-
tions by v. The latter can be done with 21 special squarings and 4 multiplications
in Fp12 by using an addition-subtraction chain as shown in Algorithm 2.

In the end, the final result is obtained by applying the Frobenius automor-
phism and by using the polynomial representation in u of the fixed exponent
(p4 − p2 + 1)/n.
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Algorithm 2 Exponentiation by v = 1868033

Input: a ∈ Fp12 .
Output: av.
1: t0 ← a8

2: t1 ← t80
3: t2 ← t−1

0

4: t2 ← t2 · a
5: t2 ← t2 · t1
6: t2 ← t1282

7: t2 ← t2 · a
8: t2 ← t2562

9: t2 ← t2 · a
10: return t2

4 Mid-level techniques: arithmetic in Fp2 and Fp

This section explains the new approach for representing integers modulo p where
p is given by the BN polynomial 36u4 +36u3+24u2+6u+1. Inspired by Bern-
stein’s implementation of Curve25519 [13], we suggest to split such an integer
into 12 coefficients each of which will be stored in a double-precision floating-
point variable in the software implementation. We now give the details of our
approach.

4.1 Representing base field elements

Elements in the base field Fp are integers modulo the prime p = 36u4 + 36u3 +
24u2 + 6u + 1 for some u ∈ Z. The technique in this section does not depend
on the specific fixed value for u that we chose in our implementation. We only
need to make the assumption that there exists an integer v ∈ Z with u = v3.
Furthermore, let δ = 6

√
6. Then we have (δvx)3 =

√
6ux3.

We represent integers by polynomials in the ring

R = Z[x] ∩ Z[δvx],

where Z denotes the ring of algebraic integers in C. Note that the ring homomor-
phism R 7→ Z, F 7→ f = F (1) is surjective and thus we may represent an integer
f by any polynomial F in the preimage of f under the above map. The product
of two integers can be computed by multiplying the corresponding polynomials
in R and evaluating the product at 1.

Since δ is an algebraic integer, we see that the polynomial

P = 36u4x12 + 36u3x9 + 24u2x6 + 6ux3 + 1

= (δvx)12 + δ3(δvx)9 + 4(δvx)6 + δ3(δvx)3 + 1

is an element of R representing the prime p.
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Let α = δvx. Any integer f can be represented by a polynomial F ∈ R with
F (1) = f of the following form:

F = f0 + f1δ
5α+ f2δ

4α2 + f3δ
3α3 + f4δ

2α4 + f5δα
5

+f6α
6 + f7δ

5α7 + f8δ
4α8 + f9δ

3α9 + f10δ
2α10 + f11δα

11

= f0 + f1 · 6(vx) + f2 · 6(vx)2 + f3 · 6(vx)3 + f4 · 6(vx)4

+f5 · 6(vx)5 + f6 · 6(vx)6 + f7 · 36(vx)7 + f8 · 36(vx)8

+f9 · 36(vx)9 + f10 · 36(vx)10 + f11 · 36(vx)11,

where fi ∈ Z for all i. The integer f corresponds to the vector of coefficients
(f0, f1, . . . , f11) of F .

4.2 Multiplication modulo p

Multiplication modulo p in the new representation is done in two stages, first a
polynomial multiplication of the two polynomials representing the integers and
second a reduction step.

Let f, g ∈ Z be two integers with corresponding polynomials F,G ∈ R and
coefficient vectors (f0, f1, . . . , f11) and (g0, g1, . . . , g11). The product H = FG
then has coefficient vector (h0, h1, . . . , h22) and has the form H = h0 + h1δ

5α+
· · ·+ h21δ

2α21 + h22δα
22.

We next represent the result of the multiplication by a polynomial of degree
11 which has 12 coefficients. For the degree-reduction, we use the polynomial P
representing the BN prime p. Reducing polynomials modulo P corresponds to
reducing the corresponding integers modulo p. We have P = α12 + δ3α9 +4α6+
δ3α3 + 1, thus we can use the equation

α12 = −δ3α9 − 4α6 − δ3α3 − 1

to reduce the degree of H . The degree reduction is given in Algorithm 3.
Polynomial multiplication and degree reduction make the coefficients grow

in their absolute value. Whenever the coefficients get too large we need to do
a coefficient reduction. For that we use Algorithm 4. We address the relevant
bounds on the coefficients and how to guarantee them in Section 5.1. After the
reduction, we have

h0, h6 ∈ [−|3v|, |3v|), h1, h3, h4, h7, h9, h10 ∈ [−|v/2|, |v/2|),

the coefficients h2, h5, h8, h11 may have an absolute value only slightly larger
than |v/2|. The function rnd in Algorithm 4 denotes rounding to the nearest
integer.

5 Low-level techniques: using SIMD floating-point

arithmetic

Implementations of large-integer arithmetic on 64-bit processors usually decom-
pose a large integer into limbs of 64 bits. Arithmetic is then performed using
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Algorithm 3 Degree reduction after polynomial multiplication

Input: Coefficient vector (h0, h1, . . . , h22) ∈ Z
23 of H ∈ R with H(1) = h.

Output: Reduced coefficient vector (h′

0, h
′

1, . . . , h
′

11) of H
′ with H ′(1) = h.

1: h′

0 ← h0 − h12 + 6h15 − 2h18 − 6h21

2: h′

1 ← h1 − h13 + h16 − 2h19 − h22

3: h′

2 ← h2 − h14 + h17 − 2h20

4: h′

3 ← h3 − h12 + 5h15 − h18 − 8h21

5: h′

4 ← h4 − 6h13 + 5h16 − 6h19 − 8h22

6: h′

5 ← h5 − 6h14 + 5h17 − 6h20

7: h′

6 ← h6 − 4h12 + 18h15 − 3h18 − 30h21

8: h′

7 ← h7 − 4h13 + 3h16 − 3h19 − 5h22

9: h′

8 ← h8 − 4h14 + 3h17 − 3h20

10: h′

9 ← h9 − h12 + 2h15 + h18 − 9h21

11: h′

10 ← h10 − 6h13 + 2h16 + 6h19 − 9h22

12: h′

11 ← h11 − 6h14 + 2h17 + 6h20

13: return (h′

0, h
′

1, . . . , h
′

11).

Algorithm 4 Coefficient reduction

Input: Coefficient vector (h0, h1, . . . , h11) ∈ Z
12 of H ∈ R with H(1) = h.

Output: Reduced coefficient vector (h′

0, h
′

1, . . . , h
′

11) of H
′ with H ′(1) = h.

1: r ← rnd(h1/v), h1 ← h1 − rv, h2 ← h2 + r
2: r ← rnd(h4/v), h4 ← h4 − rv, h5 ← h5 + r
3: r ← rnd(h7/v), h7 ← h7 − rv, h8 ← h8 + r
4: r ← rnd(h10/v), h10 ← h10 − rv, h11 ← h11 + r
5: r ← rnd(h2/v), h2 ← h2 − rv, h3 ← h3 + r
6: r ← rnd(h5/v), h5 ← h5 − rv, h6 ← h6 + r
7: r ← rnd(h8/v), h8 ← h8 − rv, h9 ← h9 + r
8: r ← rnd(h11/v), h11 ← h11 − rv
9: h9 ← h9 − r
10: h6 ← h6 − 4r
11: h3 ← h3 − r
12: h0 ← h0 − r
13: r ← rnd(h0/(6v)), h0 ← h0 − r · 6v, h1 ← h1 + r
14: r ← rnd(h3/v), h3 ← h3 − rv, h4 ← h4 + r
15: r ← rnd(h6/(6v)), h6 ← h6 − r · 6v, h7 ← h7 + r
16: r ← rnd(h9/v), h9 ← h9 − rv, h10 ← h10 + r
17: r ← rnd(h1/v), h1 ← h1 − rv, h2 ← h2 + r
18: r ← rnd(h4/v), h4 ← h4 − rv, h5 ← h5 + r
19: r ← rnd(h7/v), h7 ← h7 − rv, h8 ← h8 + r
20: r ← rnd(h10/v), h10 ← h10 − rv, h11 ← h11 + r
21: return (h′

0, h
′

1, . . . , h
′

11).

fast 64-bit integer-multiply and -add instructions [1, 27, 2]. For our implementa-
tion we do not make use of these instructions but instead use double-precision
floating-point arithmetic. Many modern microprocessors including all micropro-
cessors implementing the AMD64 architecture have very fast floating-point units.
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This is due to the fact that the performance of many applications such as image
and video processing relies on fast floating-point arithmetic rather than integer
processing and that many CPU benchmarks focus on the speed of floating-point
operations.

It has been shown before that one can use these fast floating-point units for
high-speed cryptography and for arithmetic on large integers, see for example
Bernstein in [13] and [12]. In contrast to the implementation in [13] which uses
80-bit floating-point values (with a 64-bit mantissa), we decided to use 64-bit
floating-point values (with a 53-bit mantissa). This allows us to use the single-
instruction multiple-data (SIMD) instructions of the SSE2 and SSE3 instruction
set operating on double-precision (64-bit) floating-point values.

These instructions perform two double-precision floating-point operations at
once on two independent inputs layed out in 128-bit vector registers called XMM
registers. The AMD64 architecture defines 16 architectural XMM registers. For
example the instruction addpd %xmm1, %xmm2 takes the low 64 bits from register
%xmm1 and the low 64 bits of register %xmm2, adds them as double-precision
floating-point values and stores the result in the low 64 bits of register %xmm2;
at the same time it takes the high 64 bits from register %xmm1 and the high 64
bits of register %xmm2, adds them as double-precision floating-point values and
stores the result in the high 64 bits of register %xmm2.

The most important SSE2 instructions for our implementation are the addpd
and the mulpd instructions. The Intel Core 2 processors (both, 65 nm and 45 nm
models) can issue up to one mulpd and one addpd instruction per cycle and thus
execute 4 floating-point operations in one cycle. However, it can not execute
2 mulpd or 2 addpd instructions in the same cycle (for details see [19]). To
arrange data in the XMM vector registers our implementation requires additional
non-arithmetic instructions such as shufpd, unpckhpd and unpcklpd. In the
implementation of the squaring in Fp2 we also need the addsd instruction which
adds the low double values of two XMM registers and leaves the high double
value of the destination register unchanged.

Note that all arithmetic instructions only have 2 operands, one of the inputs
is overwritten by the output. This sometimes requires additional mov instructions
to copy data to other registers or memory.

5.1 Avoiding overflows

Double-precision floating point registers hold real numbers of the form 2ef , with
f ∈ {−253−1, . . . , 253−1} and e ∈ {−1022, . . . , 1023}. The result of an operation
on two such numbers is guaranteed to be exact if it is in {−253− 1, . . . , 253− 1},
otherwise the result value may overflow. To make sure that such overflows do
not occur, we cannot simply run the code on some inputs and check whether
it produces the correct results; we have to make sure that an overflow cannot
occur for any valid inputs.

We first implemented all algorithms in the C++ programming language (not
using SIMD instructions) and replace the double data type by a self-written
class CheckDouble to represent 64-bit floating-point values. This class performs
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all arithmetic operations on a member variable d of type double. Furthermore it
stores the “worst-case” absolute value of the mantissam in a member variable of
type uint64 t which is updated with each operation. Before actually performing
an operation it checks whether the worst-case result overflows; if it does, the
program is aborted. Updating m is straight-forward: Multiplying (d1,m1) and
(d2,m2) yields (d1d2,m1m2), adding (d1,m1) and (d2,m2) yields (d1 + d2,m1+
m2), and subtracting (d1,m1) from (d2,m2) yields (d2 − d1,m1 + m2). The
only divisions are by the constants v and 6v, for those divisions it is safe to
set the result to (d/v, |m/v|) or (d/6v, |m/6v|) respectively. The remainder of a
(rounding) division by v is always between −|v/2| and |v/2|, so we can just set
the maximal mantissa to |v/2| when computing the remainder of a division by
v. Analgously, the maximal mantissa of the remainder of a division by 6v is |3v|.

For all constants involved in the pairing computation we can initialize the
maximal mantissa with the actual value. For the inputs to the pairing we assume
that they are worst-case output of the reduction described in Algorithm 4.

In order to obtain the targeted performance we replaced the CheckDouble

class again by the double data type and re-implemented the speed-critical func-
tions in the qhasm programming language [11] using SIMD instructions where
possible. The operations on double-precision floating-point values in this qhasm
implementation are the same as in the C version for which we automatically
verified that no overflows can occur. Tools to verify this property on the assem-
bly level would be very helpful but we do not know of such tools. The resulting
software has passed a bilinearity and non-degeneracy test on 1,000,000 random
inputs, each test involving 3 pairing computations.

5.2 Implementation of field-arithmetic operations

The 12 coefficients f0, . . . , f11 of a polynomial F representing an element f ∈ Fp

(see Section 4) are stored consecutively in a double array of size 12. The 24
coefficients g0, . . . , g11 and h0, . . . , h11 representing an element (gi+h) ∈ Fp2 are
stored interleaved in a double array of size 24 as (h0, g0|h1, g1| . . . |h11, g11). In
the following descriptions, all SIMD instructions operate on every two adjacent
double values of this representation. Observe that the implementations do not
minimize the number of instructions but try to minimize the number of cycles.

Fp2 × Fp2 multiplication. Multiplication of ai + b and ci + d, layed out in
memory as op1 = (b0, a0| . . . |b11, a11) and op2 = (d0, c0| . . . |d11, c11), is done by
duplicating b0, . . . , b11 to obtain

t1 = (b0, b0|b1, b1| . . . |b11, b11).

We then perform a digit-sliced multiplication of t1 and op2 to obtain

t2 = (bd0, bc0| . . . |bd22, bc22).

In a second step we duplicate a0, . . . , a11, obtain

t1 = (a0, a0|a1, a1| . . . |a11, a11),
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multiply digit-sliced with op2 and obtain

t3 = (ad0, ac0| . . . |ad22, ac22).

We then multiply the high double values of t3 by i2 = −1 and obtain

t3 = (ad0,−ac0| . . . |ad22,−ac22).

Swapping in t3 yields

t3 = (−ac0, ad0| . . . | − ac22, ad22).

Finally we add t3 to t2 and apply polynomial reduction (Algorithm 3) and coeffi-
cient reduction (Algorithm 4) to obtain interleaved coefficients of (ai+b)(ci+d) =
((ad+bc)i+(bd−ac)). During this computation we keep values in XMM registers
as much as possible.

The parallel digit-sliced multiplication uses the schoolbook algorithm result-
ing in 144 multiplications (mulpd), 121 additions (addpd), and 10 more multi-
plications by 6 (mulpd). We experimented with Karatsuba multiplication but
did not gain any performance – we are planning to further examine possible
speedups by using Karatsuba multiplication.

Computing the rounded quotient and the remainder in the coefficient reduc-
tion could be done using multiplication by 1/v, using the roundpd instruction
on the result, multiplying by v and subtracting the result from the original value
to obtain the remainder. As the roundpd instruction is part of the SSE4.1 in-
struction set which is not available on 65 nm Core 2 processors and all AMD
processors we decided to implement rounding as addition and subsequent sub-
traction of a constant as explained for example by Bernstein in [12].

Fp2 squaring. When squaring an element ai+ b ∈ Fp2 , layed out in memory as
op1 = (b0, a0| . . . |b11, a11), we swap the coefficients to obtain

t1 = (a0, b0| . . . |a11, b11).

We use the subsd instruction on op1 and t1 to obtain

op1 = (b0 − a0, a0| . . . |b11 − a11, a11).

Then we copy t1 and duplicate the high double values to obtain

t2 = (b0, b0| . . . |b11, b11).

Adding t1 and t2 yields

t2 = (b0 + a0, 2b0| . . . |b11 + a11, 2b11).

Now we use digit-sliced multiplication on op1 and t2 to obtain

r = (((b − a)(a+ b))0, 2ab0| . . . |((b − a)(a+ b))22, 2ab22).
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Applying polynomial reduction and coefficient reduction yields the coefficients
of the result (2ab)i+ (b2 − a2).

Fp2 ×Fp multiplication. Evaluating the line functions requires multiplications
of an element of Fp2 with an element of Fp. This is implemented using the same
parallel schoolbook multiplication which is used in the Fp2 ×Fp2 multiplication.
This requires first duplicating the coefficients of the Fp element in memory.

Fp2 short coefficient reduction. Additions, subtractions and multiplications
with small constants in Fp2 can all be implemented using 12 SIMD instructions.
They produce results which may have coefficients that are too large to go as
input into a multiplication but are still so small that they do not require the
full-fledged coefficient reduction from Algorithm 4. If the output of an addition
or subtraction is used as input to a multiplication we apply a short coefficient
reduction which first carries from f11 to f0, f3, f6 and f9. Then it carries from all
odd coefficients f1, f3, . . . , f9 and then from all even coefficients f0, f2, . . . , f10.

Fp inversion. The final exponentation involves one inversion in Fp12 . This can be
computed with only one inversion in Fp and several multiplications as described
in, e.g., [24, Sec. 2]. We implement inversion in Fp as exponentiation with p− 2
using a simple square-and-multiply algorithm. There exist certainly faster meth-
ods to compute inverses in Fp, but this way we can easily ensure constant-time
behaviour of the inversion and the single inversion in Fp2 accounts for less than
3 percent of the total computation time.

6 Benchmarking results

This section gives benchmarking results of the pairing computation on different
microarchitectures. All benchmarks were obtained by computing the average of
50 function calls and then the median of 100 of such averages. The call to the
function reading the cycle counter and the loop control incurs some overhead so
Table 2 also gives the cycles obtained when no function is called between two
consecutive cycle counts. The counts for the Miller loop in Table 2 include the
two final addition steps in the optimal ate pairing before the final exponentiation.
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