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This article describes the design, implementation, and evaluation of Depot, a cloud storage system that min-
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1. INTRODUCTION

This article describes the design, implementation, and evaluation of Depot, a cloud
storage system in the spirit of Amazon S31, Microsoft Azure2, and Google Storage3 but
with a crucial difference: Depot clients do not have to trust, that is assume, that Depot
servers operate correctly.

1http://aws.amazon.com/s3
2http://www.microsoft.com/windowsazure/windowsazure
3http://code.google.com/apis/storage/docs/overview.html
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What motivates Depot is that cloud Storage Service Providers (SSPs), such as S3
and Azure, are fault-prone black boxes operated by a party other than the data owner.
Indeed, clouds can experience correlated software bugs [Beckmann 2009; CNet News
2011], correlated manufacturing defects [Pinheiro et al. 2007], misconfigured servers
and operator error [Amazon 2011; Oppenheimer et al. 2003], malicious insiders [US
2005], bankruptcy [News 2002] or change of business strategy [Yahoo 2011], undiag-
nosed problems [Calore 2009], Acts of God (e.g., fires [Cook 2009]) and Man [Miller
2009]. Thus, it seems prudent for clients to avoid strong assumptions about an SSP’s
design, implementation, operation, and status—and instead to rely on end-to-end
checks of well-defined properties. In fact, removing such assumptions promises to help
SSPs too: today, a significant barrier to adopting cloud services is precisely that many
organizations hesitate to place trust in the cloud [CircleID 2009].

Given this motivation, Depot assumes less than any prior system about the correct-
ness of participating hosts.

— Depot eliminates trust for safety. A client can ensure safety by assuming the cor-
rectness of only itself. Depot guarantees that any subset of correct clients observes
sensible, well-defined semantics. This holds regardless of how many nodes fail and
no matter whether they are clients or servers, whether these are failures of omission
or commission, and whether these failures are accidental or malicious.

— Depot minimizes trust for liveness and availability. We wish we could say “trust
only yourself” for liveness and availability. Depot does eliminate trust for updates:
a client can always update any object for which it is authorized, and any subset of
connected, correct clients can always share updates. However, for reads, there is a
fundamental limit to what any storage system can guarantee: if no correct, reach-
able node has an object, that object may be unavailable. We cope with this funda-
mental limit by allowing reads to be served by any node (even other clients) while
preserving the system’s guarantees, and by configuring the replication policy to use
several servers (which protects against failures of clients and subsets of servers)
and at least one client (which protects against cloud failures, temporary [Amazon
S3 Team 2008] and permanent [Calore 2009; News 2002]).

Though prior work has reduced trust assumptions in storage systems, it has not
minimized trust with respect to safety, liveness, or both. For example, quorum and
replicated state machine approaches [Castro and Liskov 2002; Clement et al. 2009;
Guerraoui et al. 2010] tolerate failures by a fraction of servers. However, they sacrifice
safety when faults exceed a threshold and liveness when too few servers are reachable.
Fork-based systems [Cachin et al. 2007, 2009; Li and Mazières 2007; Li et al. 2004] re-
main safe without trusting a server, but they compromise liveness in two ways. First, if
the server is unreachable, clients must block. Second, a faulty server can permanently
partition correct clients, preventing them from ever observing each other’s subsequent
updates.

Indeed, it is challenging to guarantee safety and liveness while minimizing trust
assumptions: without some assumptions about correct operation, providing even a
weak guarantee like eventual consistency—the bare minimum of what a storage ser-
vice should provide—seems difficult. For example, a faulty storage node receiving an
update from a correct client might quietly fail to propagate that update, thereby hiding
it from the rest of the system. Perhaps surprisingly, we find that eventual consistency
is possible in this environment.

In fact, Depot meets a contract far stronger than eventual consistency even under
assorted and abundant faults and failures. This set of well-defined guarantees under
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weak assumptions is Depot’s top-level contribution, and it derives from a novel syn-
thesis of prior mechanisms and our own. Depot is built around three key ideas.

(1) Reduce misbehavior to concurrency. As in prior work [Cachin et al. 2007, 2009; Li
and Mazières 2007; Li et al. 2004], the protocol requires that an update be signed
and that it name both its antecedents and the system state seen by the updater.
Then, misbehavior by clients or servers is limited to forking: showing divergent
histories to different nodes. However, previous work detects but does not repair
forks. In contrast, Depot allows correct clients to join forks, that is, to incorporate
the divergence into a sensible history, which allows them to keep operating in the
face of faults. Specifically, a correct node regards a fork as logically concurrent
updates by two virtual nodes. At that point, correct nodes can handle forking by
faulty nodes using the same techniques [Birrell et al. 1982; Demmer et al. 2008;
Kistler and Satyanarayanan 1992; Reiher et al. 1994; Terry et al. 1995] that they
need anyway to handle a better understood problem: logically concurrent updates
during disconnected operation.

(2) Enforce Fork-Join-Causal consistency. To allow end-to-end checks on SSP behavior,
we must specify a contract: When must an update be visible to a read? When is it
okay for a read to “miss” a recent update? Depot guarantees that a correct client
observes Fork-Join-Causal consistency (FJC) no matter how many other nodes
are faulty. FJC is a slight weakening of causal consistency [Ahamad et al. 1995;
Lamport 1978; Petersen et al. 1997]. Depot defines FJC as its consistency contract
because it is weak enough to enforce despite faulty nodes and without hurting
availability. At the same time, FJC is strong enough to be useful: nodes see each
other’s updates in an order that reflects dependencies among both correct and
faulty nodes’ writes. This ordering is useful not only for end users of Depot but
also internally, within Depot.

(3) Layer other storage properties over FJC. Depot has a layered architecture. It
builds on the ordering guarantees provided by FJC to provide other desirable
properties: eventual consistency, bounded staleness, durability, high availability,
integrity (ensuring that only authorized nodes can update an object), snapshotting
of versions (to guard against spurious updates from faulty clients), garbage
collection, and eviction of faulty nodes.4 For all of these properties, the challenge
is to precisely define the strongest guarantee that Depot can provide with minimal
assumptions about correct operation. Once each property is defined, implementa-
tion is straightforward because we can build on FJC, which lets us reason about
the order in which updates propagate through the system.

The price of providing these guarantees is tolerable, as demonstrated by an experi-
mental evaluation of a prototype implementation of Depot. Depot adds a few hundred
bytes of metadata to each update and each stored object, and it requires a client to
sign and store each of its updates. We demonstrate that Depot can tolerate faults
and maintain good availability, latency, overhead, and staleness even when significant
faults occur. Additionally, because Depot makes minimal assumptions about servers,
we can implement Teapot, a variation of Depot that provides many of Depot’s guaran-
tees using an unmodified SSP, such as Amazon’s S3. The difference between Depot and
Teapot suggests several modest extensions to SSPs’ interfaces that would strengthen
their guarantees.

4We are not explicitly addressing confidentiality and privacy, but, as discussed in Section 3.1, existing ap-
proaches can be layered on Depot.
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2. WHY UNTRUSTED STORAGE?

When we say that a component is untrusted, we are not adopting a “tinfoil hat” stance
that the component is operated by a malicious actor, nor are we challenging the hon-
esty of Storage Service Providers (SSPs). What we mean is that the system provides
guarantees, usually achieved by end-to-end checks, even if the given component is in-
correct. Since components could be incorrect for many reasons (as stated in the Intro-
duction), we believe that designing to tolerate incorrectness is prudence, not paranoia.
We now answer some natural questions.

SSPs are operated by large, reputable companies, so why not trust them? That is
like asking, “Banks are large, reputable repositories of money, so why do we need bank
statements?” For many reasons, customers as well as banks want customers to be able
to check the bank’s view of their account activity. Likewise, our approach might appeal
not only to customers but also to SSPs: by requiring less trust, a service might attract
more business.

How likely are faults in the SSP? We do not know the precise probability. However,
we know that providers do fail (as mentioned in the Introduction). More broadly, SSPs
are subject to nonnegligible risks. First, they are opaque (by nature). Second, they
are complex distributed systems. Indeed, it is difficult to cope with known hardware
failure modes in file systems that are local [Prabhakaran et al. 2005]; in the case of
cloud storage, this difficulty can only grow. Given the opacity and complexity, it seems
prudent not to assume the unfailing correctness of an SSP’s internals.

Even if we do not assume that SSPs are perfect, the most likely failure is the oc-
casional corrupted or lost block, which can be addressed with checksums and replica-
tion. Do you really need mechanisms to handle other cases (that all of the nodes are
faulty, that a fork happens, that old or out-of-order data is returned, etc.)? Replication
and checksums are helpful, and they are part of Depot. However, they are not suffi-
cient. First, failures are often correlated: as Vogels notes, uncorrelated failures are
“absolutely unrealistic . . . as [failures] are often triggered by external or environmen-
tal events” [Vogels 2006]. These events include the litany in the Introduction. Second,
other types of failures are possible. For example, a machine that loses power after
failing to commit its output [Nightingale et al. 2008; Yang et al. 2006] may lose recent
updates, leading to forks in history. Or, a network failure might delay propagation of
an update from one SSP node to another, causing some clients to read stale data. In
general, our position is that rather than try to handle every possible failure individ-
ually, it is preferable to define an end-to-end contract and then design a system that
always meets that contract.

The preceding events seem unlikely. Is tolerating them worth the cost? One of our
purposes in this article is to report for the first time what that cost is. Whether to pay
for the guarantees is up to the application, but as the price is modest, we anticipate,
with hope, that many applications will find it attractive.

What about clients? We also minimize trust of clients (since they are, of course, also
vulnerable to faults).

3. ARCHITECTURE, SCOPE, AND USE

Figure 1 depicts Depot’s high-level architecture. A set of clients stores key-value pairs
on a set of servers. Keys and values are uninterpreted bytes. The servers are operated
by one or more Storage Service Providers (SSPs) that are distinct from the data owner
that operates the clients. Depot runs as a library on both clients and servers, and a
Depot client exposes an interface of GET and PUT to its application users.

Depot’s target scenarios—and the cases where it is engineered to incur modest
cost—are when the values are at least a few KB, and each key-value pair is shared
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Fig. 1. Architecture of Depot. The arrows between servers represent replication and exchange. Clients can
exchange data directly (as represented by the dotted arrows between clients) and continue functioning in
the event of a catastrophic SSP failure. Each volume is replicated over a set of servers that can be connected
using any topology.

by at most a few hundreds of clients. For example, the Depot clients could be run-
ning on the Web servers of a small- or medium-scale Web service that uses an SSP for
back-end storage.

For scalability, we slice the system into groups of servers, with each group respon-
sible for one or more volumes. Each volume corresponds to a range of one customer’s
keys, and a server independently runs the protocol for each volume assigned to it.
Many strategies for partitioning keys are possible [DeCandia et al. 2007; Karger et al.
1997; Nath et al. 2006], and we leave the assignment of keys to volumes to the lay-
ers above Depot. The servers for each volume may be geographically distributed,
and servers may replicate updates using any topology (chain, mesh, star, etc.). De-
pot clients can access data through any server; for maximal availability, Depot, like
Dynamo [DeCandia et al. 2007], does not require overlapping read and write quorums.

Depot supports many strategies for coping with the failure of an SSP. In a single-
SSP deployment, clients are configured such that each client stores a copy of the data
that it authors. Then, if the SSP fails, clients can ensure availability by exchanging
metadata with each other directly (as indicated by the dotted arrows in Figure 1) and
by using the data stored at the authoring clients. If the SSP later recovers, clients can
continue using the SSP (after sending the missed updates to the SSP servers). This
raises a question: why have the SSP at all? We point to the usual benefits of cloud
services: cost, scalability, geographic replication, management, and performance.

Indeed, SSPs are useful enough that a customer might use a multiple-SSP deploy-
ment, with servers for the same volume hosted by different SSPs. This configuration
drastically reduces the risk of correlated failures across replicas [Abu-Libdeh et al.
2010; Kotla et al. 2007]. Thus, clients in this configuration need not exchange with
each other or stored authored data locally. For simplicity, the rest of this article de-
scribes and evaluates the single-SSP configuration.
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Most mechanisms in Depot treat clients and servers indistinguishably; in describing
these mechanisms, we use the term node to refer to both clients and servers. Certain
subprotocols, however, treat clients and servers differently; in those cases we explicitly
use the terms client and server.

3.1. Issues Addressed

One of our aims in this work is to push the envelope in the trade-offs between trust
assumptions and system guarantees. Specifically, for a set of standard properties that
one might desire in a storage system, we ask: what is the minimum assumption that
we need to provide useful guarantees, and what are those guarantees? The issues that
we examine are as follows.

— Consistency (Section 5–Section 6.2) and bounded staleness (Section 6.4). Once a
write occurs, the update should be visible to reads “soon”. Consistency limits the
extent to which the storage system can reorder or omit updates; bounded staleness
limits the extent to which updates can be delayed undetectably.

— Availability and durability (Section 6.3). Our availability goal is to maximize the
fraction of time that a client succeeds in reading or writing an object. Durability
means that the system does not lose data permanently.

— Integrity and authorization (Section 6.5). Only clients authorized to update an object
should be able to create valid updates that affect reads on that object.

— Data recovery (Section 6.6). Data owners care about end-to-end reliability. Consis-
tency, durability, and integrity are not enough when the layers above Depot—faulty
clients, applications, or users—can issue authorized writes that replace good data
with bad. Depot does not try to distinguish good updates from bad ones, nor does it
innovate on the abstractions used to defend data from higher-layer failures. We do,
however, explore how Depot can support standard techniques such as snapshots to
recover earlier versions of data.

— Evicting faulty nodes (Section 6.7). If a faulty node provably deviates from the pro-
tocol, we wish to evict it from the system so that it will not continue to disrupt
operation. However, we must never evict correct nodes.

Depot provides these properties with a layered approach. Its core protocol (Section 5)
addresses consistency. Specifically, the protocol enforces Fork-Join-Causal consistency
(FJC), which is the same as causal consistency [Ahamad et al. 1995; Lamport 1978;
Petersen et al. 1997] in benign runs. This protocol is the essential building block for the
other properties listed (availability and durability, integrity and authorization, etc.). In
Section 6, we define these properties precisely and discuss how Depot provides them.

Note that we explicitly do not try to solve the confidentiality/privacy problem within
Depot. Instead, like commercial storage systems (S3, Azure, Google Storage), Depot
enforces integrity and authorization (via client signatures) but leaves it to higher lay-
ers to use appropriate techniques for the privacy requirements of each application (e.g.,
allow global access, encrypt values, encrypt both keys and values, introduce artificial
requests to thwart traffic analysis, etc.).

We also do not claim that the aforesaid list of issues is exhaustive. For example, it
may be useful to audit SSPs with black-box tests to verify that they are storing data as
promised [Kotla et al. 2007; Shah et al. 2007], but we do not examine that issue. Still,
we believe that the properties are sufficient to make the resulting system useful.

3.2. Depot in Use: Applications and Conflicts

Depot’s key-value store is a low-level building block over which many applications
can be built. For example, hundreds of widely used applications—including backup,
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point of sale software, file transfer, investment analytics, cross-company collaboration,
and telemedicine—use the S3 key-value store [S3 App Catalog 2011], and Depot can
serve all of them: it provides a similar interface to S3, and it provides strictly stronger
guarantees.

An issue in systems that are causally consistent and weaker—a set that includes not
just Depot and S3 but also CVS, SVN, Git, Bayou [Petersen et al. 1997], Coda [Kistler
and Satyanarayanan 1992], and others—is handling concurrent writes to the same
object. Such conflicts are unfortunate but unavoidable: they are provably the price of
high availability [Gilbert and Lynch 2002].

Many approaches to resolving conflicting updates have been proposed [Kistler and
Satyanarayanan 1992; Reiher et al. 1994; Terry et al. 1995], and Depot does not claim
to extend the state-of-the-art on this front. In fact, Depot is less ambitious than some
past efforts: rather than try to resolve conflicts internally (e.g., by picking a winner,
merging concurrent updates, or rolling back and reexecuting transactions [Terry et al.
1995]), Depot simply exposes concurrency when it occurs: a read of key k returns the
set of updates to k that have not been superseded by any logically later update of k.5

This approach is similar to that of S3’s replication substrate, Dynamo [DeCandia
et al. 2007], and it supports a range of application-level policies. For example, appli-
cations using Depot may resolve conflicts by filtering (e.g., reads return the update by
the highest-numbered node, reads return an application-specific merge of all updates,
or reads return all updates) or by replacing (e.g., the application reads the multiple
concurrent values, performs some computation on them, and then writes a new value
that thus appears logically after and thereby supersedes the conflicting writes).

3.3. System and Threat Model

We now briefly state our technical assumptions. First, nodes are subject to standard
cryptographic hardness assumptions, and each node has a public key known to all
nodes. Second, any number of nodes can fail in arbitrary (Byzantine [Lamport et al.
1982]) ways: they can crash, corrupt data, lose data, process some updates but not
others, process messages incorrectly, collude, etc. Third, we assume that any pair
of timely, connected, and correct nodes can eventually exchange any finite number
of messages. That is, a faulty node cannot forever prevent two correct nodes from
communicating (but we make no assumptions about how long “eventually” is).

Fourth, we have just used the term correct node. This term refers to a node that
never deviates from the protocol nor becomes permanently unavailable. A node that
obeys the protocol for a time but later deviates is not counted as correct. Conversely, a
node that crashes and recovers with committed state intact is equivalent to a correct
node that is slow. Fifth, we assume that unresponsive clients are eventually repaired
or replaced. To satisfy this assumption, an administrator can install an unresponsive
client’s keys and configuration on new hardware [Castro and Liskov 2002]. Sixth, we
assume that the clocks at clients are synchronized, that is, that there is a bound on
worst-case skew.6

5Note that Depot neither creates concurrency nor makes the problem worse. If an application cannot deal
with conflicts, it can still use Depot but must restrict its use (e.g., by adding locks and sending all operations
through a single SSP node), and it must sacrifice the ability to tolerate faults (such as forks) that appear as
concurrency.
6This assumption is required only for the bounded staleness property (Section 6.4); a deployment that does
not need the property can avoid making the assumption: the bounded staleness subprotocol is modular and
can be separately turned off.
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Fig. 2. Overview of Depot’s operation in a single-SSP deployment. Striped boxes denote data whereas
shaded boxes denote metadata (updates). Depot runs as a library at clients and servers. 1© On receiving
a PUT request from the application, a client generates a signed update that summarizes the prior updates
seen by this client and contains a hash of the data provided in the PUT request. Clients store all updates that
they receive or create but store data only for updates that they create. 2© The client pushes this update to
the servers when connectivity permits. 3© Each server verifies all incoming updates and data. 4© All verified
updates are stored and propagated to other servers through background gossip. 5© Clients periodically fetch
new updates from the server in the background. 6© Like servers, clients also verify updates before accepting
them. 7© On receiving a GET request, a client uses its stored updates to identify the hash of data that
must be accessed and attempts to fetch this data from the servers or, if the servers are unavailable, from
the client that created this update. 8© A GET completes when a client receives data that matches the most
recent update(s) stored at a client. 9© If a catastrophic cloud failure occurs, clients gossip updates with each
other.

4. OVERVIEW

This section gives a high-level operational description of Depot while the sections
ahead go bottom-up.

Figure 2 depicts Depot’s handling of PUTs and GETs in a single-SSP deployment. On
receiving a PUT request (step 1), a client creates an update (as described in Section 5)
and a collision-resistant hash of the data (the value in the PUT request). Each update
completely overwrites the previous value of that object. The update is signed and
contains information necessary to enforce the consistency, integrity, and other safety
properties that Depot guarantees. While a PUT request can be completed by simply
creating the appropriate update and storing it locally, a client tries to push the update
(step 2) to its preferred server (typically the nearest one) to ensure that other clients
can observe its PUT in a timely manner (Section 7).

Each correct node (client and server) verifies incoming updates to ensure Depot’s
safety and liveness properties (step 3 and step 6). These update checks are described
in Section 5, Section 6.3, Section 6.5, and Section 6.7. All correct nodes store all the
updates until they are garbage collected by unanimous consent (Section 6.6).

Servers gossip updates and data with each other to ensure quick convergence
(step 4). In the background, clients periodically fetch new updates from their preferred
servers (step 5, detailed in Section 7) to minimize the metadata (update) transfer on a
GET. Clients, like servers, verify received updates before accepting them (step 6).

On a GET to a key k, the client uses its local update store to identify the hash of
the most recent PUT(s) to k. The client then tries to fetch appropriate data from the
server (step 7, detailed in Section 7). The server responds by sending the appropriate
data if it has that or newer data for the requested key k (step 8, detailed in Section 7).
The client fails over to other servers and eventually to client-to-client mode (step 9,
detailed in Section 7) if no server has the appropriate data or if all the servers are
unavailable. In client-to-client mode, clients continue exchanging updates with each
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other until the servers recover, in which case they first notify the servers of any new
updates generated since the last failure.

The next three sections detail Depot’s design and implementation. Section 5 de-
scribes the core replication protocol that all nodes (clients and servers) use to replicate
updates. Section 6 describes the subprotocols that are layered over the replication pro-
tocol, along with the properties that are provided by Depot. Last, Section 7 puts the
pieces together, explaining how the various subprotocols are composed.

5. CORE PROTOCOL

In Depot, clients’ reads and updates to shared objects should always appear in an order
that reflects the logic of higher layers. For example, an update that removes one’s
parents from a friend list and an update that posts spring break photos should appear
in that order, not the other way around [Cooper et al. 2008]. However, Depot has
two challenges. First, it aims for maximum availability, which fundamentally conflicts
with the strictest orderings [Gilbert and Lynch 2002]. Second, it aims to provide its
ordering guarantees despite arbitrary misbehavior from any subset of nodes. In this
section, we describe how the protocol at Depot’s core achieves a sensible and robust
order of updates while optimizing for availability and tolerating arbitrary misbehavior.

As mentioned earlier, this protocol is run by both clients and servers (and we will
describe it in terms of nodes). This symmetry simplifies the design; for example, it
allows client-to-client and client-to-server data exchange to look similar.

5.1. Basic Protocol

This subsection describes the basic protocol to propagate updates, ignoring the prob-
lems raised by faulty nodes. The protocol is essentially a standard log exchange proto-
col [Belaramani et al. 2006; Petersen et al. 1997]; we describe it here for background
and to define terms.

The core message in Depot is an update that changes the value associated with a
key. It has the following form.

dVV, {key, H(value), logicalClock@nodeID, H(history)}σnodeID

Updates are associated with logical times. A node assigns each update an accept stamp
of the form logicalClock@nodeID [Petersen et al. 1997]. A node N increments its logical
clock on each local write. Also, when N receives an update u from another node, N
advances its logical clock to exceed u’s. Thus, an update’s accept stamp exceeds the
accept stamp of any update on which it depends [Lamport 1978]. The remaining fields,
dVV and H(history), and the writer’s signature, σnodeID, defend against faults and are
discussed in Sections 5.2 and 5.3.

Each node maintains two local data structures: a log of the updates that it has
seen and a checkpoint reflecting the current state of the system. For efficiency, Depot
separates data from metadata [Belaramani et al. 2006], so the log and checkpoint con-
tain collision-resistant hashes of values. (A node fetches the actual values on demand,
which it can do by using the hash as an index [Fu et al. 2002]; this happens in mod-
ules layered over the core replication protocol.) Each node sorts the updates in its log
by accept stamp, sorting first by logicalClock and breaking ties with nodeID. Thus,
each new write issued by a node appears at the end of its own log and (assuming no
faulty nodes) the log reflects a causally consistent [Ahamad et al. 1995; Lamport 1978;
Petersen et al. 1997] ordering of all writes.

Information about updates propagates through the system when nodes exchange
tails of their logs. Each node N maintains a version vector VV with an entry for each
node M in the system: N.VV[M] is the highest logical clock N has observed for any
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update by M [Parker et al. 1983]. To transmit updates from node M to node N, M
sends to N the updates from its log that N has not seen.

Two updates are logically concurrent if neither appears in the other’s history. Con-
current writes may conflict if they update the same object; conflicts are handled as
described in Section 3.2.

5.2. Consistency Despite Faults

There are three fields in an update that defend the protocol against faulty nodes. The
first is a history hash, H(history), that encodes the history on which the update de-
pends using a collision-resistant hash that covers the most recent update by each node
known to the writer when it issued the update. By recursion, this hash covers all up-
dates included by the writer’s current version vector. Second, each update is sent with
a dependency version vector, dVV, that indicates the version vector that the history
hash covers. (We discuss the scalability of this mechanism in Section 7. Briefly, dVV
logically represents a full version vector, but when node N creates an update u, u’s dVV
actually contains only the entries that have changed since the last write by N.) Third,
a node signs its updates with its private key.

A correct node C accepts an update u only if it meets five conditions. First, u must
be properly signed. Second, except as described in the next subsection, u must be
newer than any updates from the signing node that C has already received. This check
prevents C from accepting updates that modify the history of another node’s writes.
Third, C’s version vector must include u’s dVV. Fourth, u’s history hash must match
a hash computed by C across every node’s last update at time dVV. The third and
fourth checks ensure that before receiving update u, C has received all of the updates
on which u depends. Fifth, u’s accept stamp must be at most a constant times C’s
current wall-clock time (e.g., u.acceptStamp < 1000 ∗ currentTimeMillis()). This check
defends against exhaustion of the 64-bit logical time space. Note that C can always
issue new updates (e.g., at a rate of at least 1 update per microsecond), and C can
communicate new updates to other correct nodes after a worst-case delay determined
by the difference in their clocks.

Given these checks, attempts by a faulty node to fabricate u and pass it as coming
from a correct node, to omit updates on which u depends, or to reorder updates on
which u depends will result in C rejecting u. To compromise causal consistency, a
faulty node has one remaining option: to fork, that is, to show different sequences of
updates to different communication partners [Li et al. 2004]. Such behavior certainly
damages consistency. However, the damage is limited, as we now illustrate. Then, in
Section 5.3 we describe how Depot recovers from forks.

Example: The history hash in action. A faulty node M can create two updates u1@M and
u′

1@M such that neither update’s history includes the other’s. M can then send u1@M
and the updates on which it depends to one node, N1, and u′

1@M and its preceding
updates to another node, N2. N1 can then issue new updates (like u2@N1) that de-
pend on updates from one of M’s forked updates (here, u1@M) and send these new
updates to N2. At this point, absent the history hash, N2 would receive N1’s new
updates without receiving the updates by M on which they depend: N2 already re-
ceived u′

1@M, so its version vector appears to already include the prior updates. Then,
if N2 applies just N1’s writes to its log and checkpoint, multiple consistency viola-
tions could occur. First, the system may never achieve eventual consistency because
N2 may never see write u1@M. Further, the system may violate causality because
N2 has updates from N1 but not some earlier updates (e.g., u1@M) on which they
depend.
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The preceding confusion is prevented by the history hash. If N1 tries to send its
new updates to N2, N2 will be unable to match the new updates’ history hashes to the
updates that N2 actually observed, and N2 will reject N1’s updates (and vice versa).
As a result, N1 and N2 will be unable to exchange any updates after the fork junction
introduced by M after u0@M.

Discussion. At this point, we have composed mechanisms from Bayou [Petersen et al.
1997] and PRACTI [Belaramani et al. 2006] (update exchange), SUNDR [Li et al. 2004]
(signed version vectors), and BFT2F [Li and Mazières 2007] (history hashes, here used
by clients and modified to apply to history trees instead of linear histories) to provide
Fork-Causal Consistency (FCC) under arbitrary faults. We define FCC precisely in Ap-
pendix A. Informally, it means that each node sees a causally consistent subset of the
system’s updates even though the whole system may no longer be causally consistent.
Thus, although the global history has branched, as each node peers backward from its
branch to the beginning of time, it sees causal events the entire way.

Unfortunately, enforcing even this weakening of causal consistency would prohibit
eventual consistency, crippling the system: FCC requires that once two nodes have
been forked, they can never observe one another’s updates after the fork junction
[Li et al. 2004]. In many environments, partitioning nodes this way is unacceptable.
In those cases, it would be far preferable to further weaken consistency to ensure an
availability property: connected, correct nodes can always share updates. We now de-
scribe how Depot achieves this property, using a new mechanism: joining forks in the
system’s history.

5.3. Protecting Availability: Joining Forks

To join forks, nodes use a simple coping strategy: they convert concurrent updates by
a single faulty node into concurrent updates by a pair of virtual nodes. A node that
receives these updates handles them as it would “normal” concurrency: it applies both
sets of updates to its state and, if both branches modify the same object, it returns both
conflicting updates on reads (Section 3.2). We now fill in some details.

Version-and-hash vectors. Each node N’s locally maintained N.VV[M] contains not
only the highest logical clock that N has observed for M but also a hash of M’s update
at that logical clock. As a result, if a faulty node creates logically different updates
with the same accept stamp, other nodes can detect the discrepancy through update
exchange.

Identifying a fork. First consider a two-way fork. A fork junction comprises exactly
three updates where a faulty node M has created two updates (e.g., u1@M and u′

1@M)
such that: (i) neither update includes the other in its history and (ii) each update’s
history hash links it to the same previous update by that writer (e.g., u0@M). If a
node N2 receives from a node N1 an update whose history is incompatible with the
updates it has already received, and if neither node has yet identified the fork junction,
N1 and N2 identify the three forking updates as follows. First, N1 and N2 perform
a search on the updates included in the nodes’ version vectors to identify a version
vector, VVc, encompassing a common history (the search proceeds with N2 requesting
exponentially older updates until it identifies an encompassing VVc). Then, N1 sends
its log of updates beginning from VVc. Finally, at some point, N2 receives the first
update by M (e.g., u1@M) that is incompatible with the updates by M that N2 has
already received (e.g., u0@M and u′

1@M).

Tracking forked histories. After a node identifies the three updates in the fork junction,
it expands its version vector to include three entries for the node that issued the
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forking updates. The first is the prefork entry, whose index is the index (e.g., M) before
the fork and whose contents will not advance past the logical clock of the last update
before the fork (e.g., u0@M). The other two are the postfork entries, whose indices
consist of the index before the fork augmented with the history hash of the respective
first update after the fork (e.g., the indices are M || H(u1@M) and M || H(u′

1@M)). Each
of these entries initially holds the logical clock of the first update after the fork; these
values advance as the node receives new updates after the fork junction.

Note that this approach works without modification if a faulty node creates a j-way
fork, creating updates u1

1@M, u2
1@M, . . ., uj

1@M that link to the same prior update (e.g.,
u0@M). The reason is that, regardless of the order in which nodes detect fork junctions,
the branches receive identical names (because branches are named by the first update
in the branch). A faulty node that is responsible for multiple dependent forks does not
stymie this construction either. After i dependent forks, a virtual node’s index in the
version vector is well-defined: it is M || H(ufork1 ) || H(ufork2 ) || . . . || H(uforki) [Petersen
et al. 1997].

Log exchange revisited. The expanded version vector allows a node to identify which
updates to send to a peer. In the basic protocol, when a node N2 wants to receive
updates from N1, it sends its current version vector to N1 to identify which updates it
needs. After N2 detects a fork and splits one version vector entry into three, it simply
includes all three entries when asking N1 for updates. Note that N1 may not be
aware of the fork, but the history hashes that are part of the indices of N2’s expanded
version vector (as per the virtual node construction) tell N2 to which branch N1’s
updates should be applied and tell N1 which updates to actually send. Conversely, if
the sender N1 has received updates that belong to neither branch, then N1 and N2
identify the new fork junction as described earlier.

Bounding forks. The overhead of this coping strategy is the extra space, bandwidth,
and computation to deal with larger version vectors and with conflict detection. How-
ever, this overhead is negligible (as shown in Section 8.3). Moreover, the number of
forks is curtailed by three mechanisms that together bound the number of forks cor-
rect nodes will accept before the faulty node is evicted from the system. First, once a
correct node learns that a faulty node has created a fork, it has a proof of misbehavior
from that node, and it will not communicate with, and thus not accept any new updates
directly from, that node. Second, once a correct node is aware of a fork, it accepts a new
update by the forking node only if some other node signs an i-vouch-for-this certificate
that accepts responsibility for having received the update before having learned of the
fork. Third, we bound the number of i-vouch-for-this certificates. We give the details
in Section 6.7.

6. PROPERTIES AND GUARANTEES

This section defines the properties that Depot enforces and describes how Depot pro-
vides them under minimal trust assumptions. The key idea is that the replication
protocol enforces Fork-Join-Causal consistency (FJC). Given FJC, we can constrain
and reason about the order that updates propagate, and use those constraints to help
enforce the remaining properties. Figure 3 summarizes these properties and lists the
required assumptions.

6.1. Fork-Join-Causal Consistency

Clients expect a storage service to provide consistent access to stored data. Depot
guarantees a new consistency semantic for all reads and updates (to a volume) that

ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 12, Publication date: December 2011.



Depot: Cloud Storage with Minimal Trust 12:13

Fig. 3. Summary of properties provided by Depot.

are observed by any correct node: Fork-Join-Causal consistency (FJC). A formal de-
scription of FJC appears in Appendix A. Here we describe its core property.

— Dependency preservation. If update u1 by a correct node depends on an update u0 by
any node, then u0 becomes observable before u1 at any correct node. (An update u of
an object o is observable at a node if a read of o would return a version at least as
new as u [Frigo and Luchangco 1998].)

To explain FJC, we contrast it with Causal Consistency (CC) in fail-stop sys-
tems [Ahamad et al. 1995; Lamport 1978; Petersen et al. 1997]. CC is based on a
dependency preservation property that is identical to the one just given, except that
it omits the “correct nodes” qualification. Thus, to applications and users, FJC ap-
pears almost identical to causal consistency with two exceptions. First, under FJC, a
faulty node can issue forking writes w and w′ such that one correct node observes w
without first observing w′ while another observes w′ without first observing w. Sec-
ond, under FJC, faulty nodes can issue updates whose stated histories do not include
all updates on which they actually depend. For example, when creating the forking
updates w and w′ just described, the faulty node might have first read updates uC1
and uC2 from nodes C1 and C2, then created w that claimed to depend on uC1 but not
uC2, and finally created update w′ that claimed to depend on uC2 but not uC1. Note,
however, that once a correct node observes w (or w′), it will include w (or w′) in its
subsequent writes’ histories. Thus, as correct nodes observe each others’ writes, they
will also observe both w and w′ and their respective dependencies in a consistent way.
Specifically, w and w′ will appear as causally concurrent writes by two virtual nodes
(Section 5.3).

Though FJC is weaker than linearizability [Herlihy and Wing 1990], sequential
consistency [Lamport 1979], or causal consistency, it still provides properties that
are critical to programmers. First, FJC implies a number of useful session guaran-
tees [Terry et al. 1994] for programs at correct nodes, including monotonic reads, mono-
tonic writes, read-your-writes, and writes-follow-reads. Second, as we describe in the
subsections that follow, FJC is the foundation for eventual consistency, for bounded
staleness, and for further properties beyond consistency.

Stronger consistency during benign runs. Depot guarantees FJC even if an arbitrary
number of nodes fail in arbitrary ways. However, it provides a stronger guarantee—
causal consistency—during runs with only omission failures. Of course, causal
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consistency itself is weaker than sequential consistency or linearizability. We accept
this weakening because it allows Depot to remain available to reads and writes during
partitions [DeCandia et al. 2007; Gilbert and Lynch 2002].

6.2. Eventual Consistency

The term eventual consistency is often used informally, and, as the name suggests, it
is usually associated with both liveness (“eventual”) and safety (“consistency”). For
precision, we define eventual consistency as follows.

— Eventual consistency (safety). Successful reads of an object at correct nodes that
observe the same set of updates return the same values.

— Eventual consistency (liveness). Any update issued or observed by a correct node is
eventually observable by all correct nodes.

The safety property is directly implied by FJC. The liveness property follows from the
availability properties in the next subsection.

6.3. Availability and Durability

In this subsection, we consider availability of writes, of update propagation, and of
reads. We also consider durability.

The write availability properties described next follow from the replication protocol
(Section 5), which entangles updates to prevent selective transmission, and by com-
munication heuristics (Section 7), under which a node that is unable to communicate
with a given server then communicates with any other server or client.

— Always write. An authorized node can always update any object.
— Always exchange. Any subset of correct nodes can exchange any updates that they

have observed (assuming that they can communicate, as per the model in Sec-
tion 3.3).

— Write propagation. If a correct node issues a write, eventually all correct nodes ob-
serve that write (again assuming the model in Section 3.3, namely that any message
sent between correct nodes is eventually delivered).

Unfortunately, there is a limit to what any storage system can guarantee for reads:
if no correct node has an object, then the object may not be durable, and if no correct,
reachable node has an object, then the object may not be available. Nevertheless, we
could, at least in principle, still have each node rely only on itself for read availability
and durability: nodes could propagate updates and values, and all servers and all
clients could store all values. However, fully replicating all data is not appealing for
many cloud storage applications.

Depot copes with these limits in two ways. First, Depot provides guarantees on
read availability and durability that minimize the required number of correct nodes.
Second, Depot makes it likely that this number of correct nodes actually exists. The
guarantees are as follows (note that durability—roughly, “the system does not perma-
nently lose data”—manifests as a liveness property).

— Read availability. If some correct node N stores a given object’s value, then reads
to this object at any correct node that can communicate with N in a timely manner
will succeed.

— Durability. If any correct hoarding node, as defined shortly, has an object’s value,
then a read of that object will eventually succeed. That is, an update is durable once
its value reaches a correct node that will not prematurely discard it.
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A hoarding node is a node that stores the value of a version of an object until that
version is garbage collected (Section 6.6). In contrast, a caching node may discard a
value at any time.

To make it likely that the premise of the guarantees holds—namely, that a correct
node has the data—Depot does three things. First, its configuration replicates data
to survive important failure scenarios. In the single-SSP configuration, all servers
usually store values for all updates they receive: except as discussed in the remain-
der of this subsection, when a client sends an update to a server and when servers
transmit updates to other servers, the associated value is included with the update.
Additionally, the client that issues an update also stores the associated value, so even
if all servers become unavailable, clients can fetch the value from the original writer.
Such replication—where an object’s hoarding nodes are all servers and the authoring
client—allows the system to handle not only the routine failure case where a subset
of servers and clients fail and lose data but also the client disaster and cloud disaster
cases where all clients or all servers fail [Calore 2009; News 2002] or become unavail-
able [Amazon S3 Team 2008].

Second, receipts allow a node to avoid accepting an insufficiently replicated update.
When a server processes an update and stores the update’s value, it signs a receipt and
sends the receipt to the other servers. Then, we extend the basic protocol to require
that an update carry either: (a) a receipt set indicating that at least k servers have
stored the value or (b) the value, itself. In normal operation, servers receive and store
updates with values, and clients receive and store updates with receipt sets. However,
if over some interval, fewer than k servers are available, clients will instead receive,
store, and propagate both updates and values for updates created during this interval.
And although servers normally receive updates and values together, there are corner
cases where—to avoid violating the always exchange property—they must accept an
update with only a receipt set. Even in the worst case, therefore, Depot guarantees
that if a value is not stored locally, then it is replicated by the client that created it and
by at least k servers.

Third, if a client has an outstanding read for version v, it withholds assent to
garbage collect v (Section 6.6) until the read completes with either v or a newer version.

6.4. Bounded Staleness

A client expects that soon after it updates an object, other clients that read the object
see the update. Depot is therefore designed to allow a client either to know that it
has seen all recent updates or else to suspect that it has not. The following guarantee
codifies what clients can expect.

— Bounded staleness. If correct clients C1 and C2 have clocks that remain within � of
a true clock and C1 updates an object at time t0, then by no later than t0 + 2Tann +
Tprop + �, either: (1) the update is observable to C2 or (2) C2 suspects that it has
missed an update from C1.

Tann and Tprop are configuration parameters indicating how often a node announces its
liveness and how long propagating such announcements is expected to take; reason-
able values for Tann and Tprop are a few tens of seconds.

Depot relies on FJC consistency to provide the above guarantee, as follows. Every
Tann preceding, each client updates a per-client beacon object [Li et al. 2004] in each
volume with its current physical time. When C2 sees that C1’s beacon object indicates
time t, then C2 is guaranteed—by FJC consistency—to see all updates issued by C1
before time t. On the other hand, if C1’s beacon object does not show a recent time,
C2 suspects that it may not have seen other recent updates by C1. At that point, C2
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can switch to receiving updates from a different server. If that does not resolve the
problem, C2 can contact C1 directly to fetch any missed updates and the updates on
which those missed updates depend.

Applications use the preceding mechanism as follows. If a node suspects missing
updates, then an application that calls GET has two options. First, GET can return
a warning that the result might be stale. This option is our default; it provides the
bounded staleness guarantee. Alternatively, an application that prefers to trade worse
availability for better consistency [Gilbert and Lynch 2002] can retry with different
servers and clients, blocking until the local client has received all recent beacons.

Note that a faulty client might fail to update its beacon, making all clients suspi-
cious all the time. What, then, are the benefits of this bounded staleness guarantee?
First, although Depot is prepared for the worst failures, we expect that it often oper-
ates in benign conditions. When clients, servers, and the network operate properly,
clients are given an explicit guarantee that they are reading fresh data. Second, when
some servers or network paths are faulty, suspicion causes clients to fail-over to other
communication paths to get recent updates. Additionally, stale reads can be reported
to the client’s administrator who may attempt to diagnose the problem (Is C1 down?,
Is my network down?, Is my ISP down?, Is the SSP down?, etc.) and repair it.

Bounded staleness vs. FJC. Bounded staleness and FJC consistency are complemen-
tary properties in Depot. Without bounded staleness, a faulty server could serve a
client an arbitrarily old snapshot of the system’s state—and be correct according to
FJC. Conversely, bounding staleness without a consistency guarantee (assuming that
is even possible; we bound staleness by relying on consistency) is not enough. For
engineering reasons, our staleness guarantees are tens of seconds; absent consistency
guarantees, applications would get confused because there could be significant periods
of time when some updates are visible, but related ones are not.

6.5. Integrity and Authorization

Under Depot, no matter how many nodes are faulty, only authorized clients can update
a key-value pair in a way that affects correct clients’ reads: the protocol requires nodes
to sign their updates, and correct nodes reject unauthorized updates.

A natural question is: how does the system know which nodes are authorized to
update which objects? Our prototype takes a simple approach. Volumes are statically
configured to associate ranges of lookup keys with specific nodes’ public keys. This lets
specific clients write specific subsets of the system’s objects, and it prevents servers
from modifying clients’ objects. Implementing more sophisticated approaches to key
management [Mazières et al. 1999; Wobber et al. 2010] is future work. We speculate
that FJC will make it relatively easy to ensure a sensible ordering of policy updates
and access control decisions [Feldman et al. 2010; Wobber et al. 2010].

6.6. Data Recovery

Data owners care about end-to-end reliability. Thus, even if a storage system retains a
consistent, fresh view of the data written to it, we have to consider the significant risk
from the applications and users above the storage system. More specifically, we have
to consider what happens when these applications or users corrupt or destroy data,
whether accidentally or intentionally.

Depot does not try to distinguish “good” and “bad” updates or advance the state-of-
the-art in protecting storage systems from bad updates. Depot’s FJC consistency does,
however, provide a basis for applying many standard defenses. For example, Depot
can keep all versions of the objects in a volume, or it can provide a basic backup ladder
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(all versions of an object kept for a day, daily versions kept for a week, weekly versions
kept for a month, and monthly versions kept for a year).

Given FJC consistency, implementing laddered backups is straightforward. Ini-
tially, servers retain every update and value that they receive, and clients retain the
update and value for every update that they create. Then, servers and clients dis-
card the nonladdered versions by unanimous consent of clients. This process works
as follows, at a high level (tedious details are omitted). Every day, clients garbage
collect a prefix of the system’s logs by producing a checkpoint of the system’s state,
using techniques adopted from Bayou [Petersen et al. 1997]. The checkpoint includes
information needed to protect the system’s consistency and a Candidate Discard List
(CDL) that states which prior checkpoints and which versions of which objects may be
discarded. The job of proposing the checkpoint rotates over the clients each day.

The keys to correctness here are: (a) a correct client will not sign a CDL that would
delete a checkpoint prematurely and (b) a correct node discards a checkpoint or version
if and only if it is listed in a CDL signed by all clients. These checks ensure the
following property.

— Valid discard. If at least one client is correct, a correct node will never discard a
checkpoint or a version of an object required by the backup ladder.

Note that a faulty client cannot cause the system to discard data that it needs: the pre-
ceding approach provides the same read availability and durability guarantees (Sec-
tion 6.3) for backup versions as for the current version. A faulty client can, however,
delay garbage collection, though if a checkpoint fails to garner unanimous consent,
clients notify an administrator, who troubleshoots the faulty client or, if all else fails,
replaces it with a new machine. Thus, faulty clients can cause the system to consume
extra storage, but only temporarily, assuming that unresponsive clients are eventually
repaired or replaced (Section 3.3).

6.7. Evicting Faulty Nodes and Bounding Forks

Recall that a faulty node can weaken consistency by issuing a pair of illegal forking
updates such that neither update depends on the other. We now explain how Depot
evicts provably faulty nodes and how it bounds the number of forks that faulty nodes
introduce.

Eviction of a provably faulty node is triggered when a correct node first observes
a pair of updates from different forks, thus providing a Proof Of Misbehavior (POM)
against the faulty node. At that point, the correct node refuses to accept new updates
from the faulty node directly; moreover, since the POMs propagate, all correct nodes
will eventually refuse to communicate with the provably faulty node. This mechanism
ensures that, if all nodes other than N are correct, then N can introduce at most
n− 1 forks in an n-node system before all nodes stop communicating with it. However,
absent any more checks, a faulty node could launder infinitely many forks through
another node that has not issued forking updates yet. Unfortunately, laundering a
forking update is not itself evidence of misbehavior, as a node propagating one of the
updates might simply be unaware of the fork.

To mitigate laundering while allowing for correct nodes that unwittingly launder,
Depot does the following. Before a correct node accepts updates created by a prov-
ably faulty node, the correct node requires i-vouch-for-this certificates from nodes not
known to be faulty. Such a certificate is created by a correct node when it first learns
of a fork; the certificate contains a single entry version-and-hash vector that covers
all previously received updates issued by the faulty node. Then, the i-vouch-for-this
certificate propagates with the forking updates via log exchange, allowing each node
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to maintain the invariant that, for all updates that it has received by the faulty node
after the fork junction, it has received i-vouch-for-this certificates covering those up-
dates. Moreover, a correct node issues at most one such certificate per faulty node,
which, as we will see shortly, helps to bound the number of forks.

Unfortunately, we are still not done because a faulty node N2 could create incon-
sistent i-vouch-for-this certificates and thereby introduce additional forks by N into
the system. To handle this case, a correct node treats conflicting i-vouch-for-this cer-
tificates roughly as it treats forking updates: it views the conflicting certificates as a
proof of misbehavior by N2, stops communicating directly with N2, creates an i-vouch-
for-this certificate for the updates that it has already received from N2, supplies N2’s
conflicting i-vouch-for-this certificates to peers during log exchange, and demands i-
vouch-for-this certificates for any new updates by N2 that it receives.

Next, we show that, as a result of the POMs and i-vouch-for-this certificates, k
colluding faulty nodes in a group of n nodes cannot cause correct nodes to evict faulty
nodes or observe more than (n − k) · (2k − 1) forks (this number might seem high, but
we expect POMs to circulate and cut off faulty nodes much more quickly than that).
Thus, Depot ensures the following.

— Valid eviction. No correct node is ever evicted.
— Bounded forks. In a n-node system with k faulty nodes, no correct node will ever

observe more than (n − k) · (2k − 1) forks introduced by faulty nodes.

We next explain the intuition for these two properties based on our eviction and update
checks.

Valid eviction. Eviction occurs only if nodes sign messages constituting a crypto-
graphic proof of misbehavior. If a faulty node is merely unresponsive, that is handled
exactly as SLA violations are today.

Bounded forks. Toward an upper bound, we first consider the conditions under which
faulty nodes can produce the maximum number of forks. To do so, faulty nodes must
expose different sets of forks to different correct nodes. Moreover, these correct nodes
should not exchange i-vouch-for-this certificates or POMs until the very end of execu-
tion, when faulty nodes have revealed as many forks as possible to each correct node.
(If a correct node received a POM or i-vouch-for-this certificate earlier, a faulty node
could be flagged as such, causing correct nodes to reject forks, lowering the number of
exposed forks.) Based on the foregoing, the number of forks observed by a set of correct
nodes will be a product of the number of correct nodes and the maximum number of
forks that each correct node can observe.

We now argue that the maximum number of forks observed by a correct node in the
presence of k colluding faulty nodes is 2k − 1. We induct over k. For the base case,
k = 1, a correct node can observe at most one fork if there is one faulty node. For the
induction step, we assume the claim holds for k.

Now, consider an execution with 1 correct node and k + 1 colluding faulty nodes
(k ≥ 1) that exposes the maximum number of forks to the correct node C. Note that
in an execution that exposes the maximum number of forks to correct nodes, each
faulty node will attempt to expose multiple forks to correct nodes; otherwise, in an
execution with multiple faulty nodes, we can increase the number of forks exposed to
correct nodes by laundering one faulty node’s forks through other faulty nodes. Now,
because of our eviction checks, multiple forks from a node must be accompanied by a
corresponding i-vouch-for-this certificate by a node not known to be faulty. Hence, in an
execution that contains multiple faulty nodes and in which correct nodes observe the
maximum number of forks, each correct node will ultimately receive i-vouch-for-this
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certificate(s) against at least some faulty node. Now consider the last such i-vouch-for-
this certificate that a correct node C accepts; since all nodes other than C are faulty,
this i-vouch-for-this has been created by a faulty node N. Since C accepts this i-vouch-
for-this certificate, C must not have observed an i-vouch-for-this certificate against
N yet.

Hence, the execution until C’s acceptance of N’s last i-vouch-for-this certificate must
look like a correct execution with 2 correct nodes and k faulty nodes. By the induction
hypothesis and by our worst-case assumption that correct nodes are observing inde-
pendent forks, the correct node C and the seemingly correct node N can together accept
a maximum of 2 · (2k − 1) = 2k+1 − 2 forks in this execution prefix. However, in addition
to these forks that are created by the other k faulty nodes, the correct node C has also
accepted updates (in the form of i-vouch-for-this certificates) from the seemingly cor-
rect, but actually faulty, node N. These updates constitute yet another fork that has
been observed by C (even though C may only later realize that the node N is faulty).
Therefore, C can observe a maximum of 2k+1 − 2 + 1 = 2k+1 − 1 forks. Hence, the claim
holds for k + 1.

Combining the bound on the maximum number of forks that each correct node can
observe in the presence of k colluding faulty nodes with the claim that each correct
node could observe independent distinct forks (in the worst case), we get our desired
bound that k colluding faulty nodes can force n−k correct nodes to observe a maximum
of (n − k) · (2k − 1) forks.

7. IMPLEMENTATION

Figure 4 depicts Depot’s software architecture. The architecture comprises modules
that enforce the properties described in Section 6. The core replication module, which
enforces FJC consistency on updates, is at the core of the system. The other modules
are layered on top of this module, in one or both of two ways. First, the bounded stal-
eness and availability and durability modules are invoked when the client GETs and
PUTs. Second, the eviction, valid discard, and integrity modules, and the receipt man-
agement logic in the availability and durability module are filters that screen incoming
updates en route to the core replication module (as indicated by the horizontal block
arrows in Figure 4) and optionally issue read/write requests to the core replication
module (as indicated by the thin arrows in Figure 4).

Two design choices simplify the filter implementation in Depot. First, Depot nodes
exchange collections of updates called bundles that are processed atomically by all the
modules: either all the updates in a bundle are accepted or all are rejected. Second,
these screening modules are implemented using a two-phase approach. In the first
phase, each module performs its checks and votes for accepting or rejecting the bundle
without committing any changes. In the second phase, the changes are made persis-
tent if no module voted to reject the bundle in the first phase. Hence, if an update
bundle is rejected by a module that appears later on the update path, then changes in
earlier modules that are influenced by that update bundle are also rolled back, which
avoids inconsistencies in module state.

In the remainder of this section, we detail the implementation of GETs and PUTs,
describe optimizations that save bandwidth and storage, and say a few words about
our prototype.

Implementation of GET and PUT. The main complexity in implementing GETs and PUTs
in Depot results from the separation of data and metadata. Recall that an update is
only the metadata (Section 5.1) and that the core replication module replicates up-
dates across a configurable topology and at a configurable frequency. In our prototype,
servers exchange updates with each other, whereas each client node chooses a (usually
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Fig. 4. Overview of Depot’s software architecture. Block arrows denote messages, and thin arrows denote
function calls. The core replication module replicates updates and ensures fork-join-causally consistent ac-
cess to these updates. These updates are exchanged as collections called bundles. A bundle is processed
atomically by all modules in that all of the updates in a bundle are accepted or all are rejected. The avail-
ability module separates data from metadata by handing hashes of values to the core replication module.
The availability module also fetches values on GETs and ensures that insufficiently replicated updates are
accompanied by their corresponding values, as described in Section 6.3. Likewise, the bounded staleness,
eviction, valid discard, and integrity modules implement the checks described in Section 6. These modules
are implemented as filters: Incoming bundles that do not satisfy the checks are rejected.

nearby) primary server and fetches updates from that server periodically. The avail-
ability and durability module selectively replicates values depending on the receipt
logic and depending on whether a node is configured as a client or as a server; this
module also serves GETs and PUTs.

On a PUT, a client creates an update and stores the value and update locally. Next,
the client attempts to transfer the update and value to the client’s primary server
for ensuring the availability and durability properties (Section 6.3) and for receipt
generation. As an optimization, rather than initiate the log exchange protocol, a client
sends only the update and value of the PUT to its primary server. If the update passes
all consistency checks and if the value matches the hash in the update, the server
adds these items to its log and checkpoint. Otherwise, the client and server fall back
on log-exchange.

On receiving a new update and value, the primary server forwards the update
and associated value to the other servers for receipt generation. Each server veri-
fies the update and value and, if the verification succeeds, responds with a receipt. The
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primary server gathers these receipt responses into a receipt set and sends this receipt
set to the client. The client’s availability module stores these receipts and attaches
them to the updates that are propagated via log exchange.

On a GET, a client first checks the beacons needed to enforce the bounded staleness
property (Section 6.4). If the beacon checks succeed, the client requests the value for
the specified key k, by sending k along with a value-digest to the client’s primary server.
The value-digest is a set of two-byte digests, one per logically latest update of k that
the client has received via background gossip; note that unless there are concurrent
updates to k, the value-digest contains just one element.

If the value-digest matches the latest updates known to the server, the server re-
sponds with the corresponding values. The client then checks that these values cor-
respond to the H(value) entries in the previously received updates. If so, the client
returns the values, completing the GET. If the server rejects the value-digest or if the
values do not match, then the client initiates a value and update transfer by sending
to its primary server: (a) its version vector and (b) k. The server replies with: (a) the
missing updates, which the client verifies (Section 5.2), and (b) the most recent set of
values for k.

If a client cannot reach its primary server, it randomly selects another server (and
does likewise if it cannot reach that server). If no servers are available, the client
enters client-to-client mode for a configurable length of time, during which it gossips
with the other clients. In this mode, on a PUT, the client responds to the application as
soon as the data reaches the local store. On a GET, the client fetches the values from
the clients that created the latest known updates of the desired key.

Optimizing bandwidth and storage for scalability. Bandwidth and storage are the most ex-
pensive resources that Depot uses. To reduce its consumption of these resources, Depot
reduces the average size of an update and its associated dVV to about 300 bytes. It
does so via several optimizations.

— The dependency version vector, dVV, included with each update (Section 5.2) logi-
cally specifies a full version vector. However, an update by node N includes only the
entries that have changed since node N ’s last write. Since updates are received in
FIFO order from each node, a receiver can always construct the full version vector
from the dVV [Schiper et al. 1991].

— We also use a similar technique to optimize the gossip request message sent when
a node asks another for recent updates. Though the requester logically sends its
entire version vector VV, we optimize for the case of repeated fetches from the same
node by sending a diff since the last request and resending the full version vector
only if the nodes lose synchronization.

— Lastly, when sending an update, we further optimize the dVV encoding by exploit-
ing the temporal locality of various logical times present in an update’s dVV and its
accept stamp. We expect that in a Depot deployment, these logical times will be close
to one another. Therefore, when sending dVV, we transmit only the delta between
the logical time in the dVV entries and the accept stamp. Temporal locality makes
this delta small, and smaller integers take fewer bytes to transmit (our imple-
mentation uses a custom serialization), reducing the overall bandwidth consumed
by dVV.

These optimizations ensure that version vectors create very little bandwidth and stor-
age overhead. For example, with 8 nodes, the first and third optimizations make the
size of an encoded dVV only a few bytes. Similarly, in the common case, a gossip
request message is only a few bytes long.
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Fig. 5. Summary of main evaluation results.

Fig. 6. Baseline variants whose costs we compare to Depot’s. Two of the main differences between
B+H+S+Store (the strongest baseline) and Depot are that Depot includes history hashes and that Depot
uses local storage at each client.

Prototype. Our prototype is implemented in Java. It keeps every version written so
does not implement laddered backups or garbage collection (Section 6.6); implement-
ing these features is future work. The implementation is otherwise complete (but not
optimized). It uses Berkeley DB (BDB) for local storage and does so synchronously: af-
ter writing to BDB, Depot calls commit before returning to the caller, and we configure
BDB to call fsync on every commit.7

8. EXPERIMENTAL EVALUATION

In evaluating Depot, our principal question is: what is the “price of distrust?” That
is, how much do Depot’s guarantees cost, relative to a baseline storage system? We
measure latency, network traffic, storage at both clients and servers, and CPU cycles
consumed at both clients and servers (Section 8.1). We then convert the resource over-
heads into a common currency [Gray and Shenoy 2000] using a cost model loosely
based on the prices charged by today’s storage and compute services (Section 8.2). We
then move from “stick” to “carrot”, illustrating Depot’s end-to-end guarantees under
faults (Section 8.3). Figure 5 summarizes our results.

Method and environment. Most of our experiments compare our Depot implementation
to a set of baseline storage systems, described in Figure 6. All of them replicate key-
value pairs to a set of servers, using version vectors to detect precedence, but omit

7This approach aids, but does not quite guarantee, persistence of committed data: “Synchronous” disk writes
in today’s systems do not always push data all the way to the disk’s platter [Nightingale et al. 2008]. Note
that if a node commits data and subsequently loses it because of an ill-timed crash, Depot handles that case
as it does any other faulty node.
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some of Depot’s safeguards. In none of the variants do clients check version vectors
or maintain history hashes. These baselines use the same code base as Depot, so
they are not heavily optimized. For example, as in Depot, the baselines separate data
from metadata, causing writes to two Berkeley DB tables on every PUT, which may
be inefficient compared to a production system. Such inefficiencies may lead to our
underestimating Depot’s overhead.

Our default configuration is as follows. There are 8 clients and 4 servers with the
servers connected in a mesh and two clients connecting to each server. This config-
uration models the example scenario in which the Depot clients are running on the
Web servers of a medium-sized Web service (Section 3). Servers gossip with each other
once per second; a client gossips with its primary server every 5 seconds. RSA moduli
are 1024 bits, and our hash function is SHA-256. We experiment with a slightly older
implementation that runs without receipts (Section 6.3) and beaconing (Section 6.4).
Since receipts require signature checks, our current evaluation slightly understates
overhead.

Our default workload is as follows. Clients issue a sequence of PUTs and GETs
against a volume preloaded with 1000 key-value pairs. We partition the write key set
into several nonoverlapping ranges, one for each client. As a result, a GET returns
a single value, never a set. A client chooses write keys randomly from its write key
range and read keys randomly from the entire volume. We fix the key size at 32 bytes.
In each run, each client issues 600 requests at roughly one request per second. We
examine three different value sizes (3 bytes, 10KB, and 1MB) and the following read-
write percentages: 0/100, 10/90, 50/50, 90/10, and 100/0. (We do not report the 10/90
and 90/10 results; their results are consistent with, and can be predicted by, those from
the other workloads.)

We use a local Emulab [White et al. 2002]. All hosts run Linux FC 8 (version
2.6.25.14-69) and are Dell PowerEdge r200 servers, each with a quad-core Intel Xeon
X3220 2.40 GHz processor, 8GB of RAM, two 7200RPM local disks, and one Gigabit
Ethernet port.

8.1. Overhead of Depot

Microbenchmarks. To put our results in perspective, we begin by measuring the costs
of low-level cryptographic and storage operations that Depot and the baseline systems
compose to execute a single PUT or GET. The cryptographic operations are SHA-256,
RSA-Sign, and RSA-Verify and use the Sun Java security library. We issued 1000 oper-
ations, measuring CPU time and latency. Similarly for local BDB storage operations,
we issue 1500 local “DB get” or “DB put” operations on a dummy table on randomly
chosen keys from a set of 1000 keys, measuring latency and CPU utilization for vari-
ous object sizes. We set the BDB cache to 100MB. The statistics from these runs are
reported in Figure 7. The BDB latencies have significant variance, which we speculate
comes from variation in disk access times.

Latency. To evaluate latencies in Depot and the baseline systems, we measure from
the point of view of the application, from when it invokes GET or PUT at the local library
until that call returns. Note that for a PUT, the client commits the PUT locally (if it is
a Depot or B+H+S+Store client) and only then contacts the server, which replies only
after committing the PUT. We report means, standard deviations, and 99th percentiles,
from the GET (i.e., 100/0) and PUT (i.e., 0/100) workloads.

Figure 8 depicts the results. For the GET runs, the difference in means between
Baseline and B+Hash are 0.0, 0.2, and 14.9 ms for 3B, 10KB, and 1MB, respectively,
which are explained by our measurements (Figure 7) of mean SHA-256 latencies in
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Fig. 7. Statistics for the costly low-level operations that Depot uses, which contribute to end-to-end costs.

Fig. 8. Latencies ((a) mean and standard deviation and (b) 99th percentile) for GETs and PUTs for various
object sizes in Depot and the four baseline variants. For small- and medium-sized requests, Depot introduces
negligible GET latency and sizeable latency on PUTs, the extra overhead coming from signing, synchronously
storing a local copy, and Depot’s additional checks.

the cryptographic library that Depot uses:8 0.1, 0.2, and 15.7ms for those object sizes.
Similarly, the means of RSA-Verify operations explain the difference between B+Hash
and B+H+Sign. The GET latency for Depot itself, with the two smaller object sizes,
is, surprisingly, lower than that of the strongest two baselines because Depot clients
verify signatures in the background (as part of exchanging updates), whereas the base-
lines do so on the critical path. With 1MB objects, Depot’s GET latency is comparable
to that of B+Hash and all stronger baselines. Thus, for GETs, Depot does not intro-
duce much latency beyond applying a collision-resistant hash to data stored in an SSP,
which prudent applications likely do anyway.

For PUTs, the latency is higher. Each step from B+Hash to B+H+Sign to
B+H+S+Store to Depot adds significantly to mean latency, and for large requests, go-
ing from Baseline to B+Hash does as well. For example, the mean latency for 10KB
PUTs ascends 3.1ms, 3.1ms, 7.8ms, 8.7ms, 10.4ms as we step through the systems;
99th percentile latency goes 14.0ms, 12.0ms, 18.6ms, 20.2ms, 23.3ms.

We can explain the observed Depot PUT latency with a model based on our preced-
ing measurements of the main steps in the protocol (see Figure 7). For example, for
10KB PUTs, the client hashes the value (mean measured time: 0.2ms), hashes history
(≈ 0.1ms), signs the update (4.2ms), stores the body and update (2.6ms, with the DB
cache enabled), and transfers the update and body over the 1Gbps network (≈ 0.1ms);
the server verifies the signature (0.3ms), hashes the value (0.2ms), hashes history
(≈ 0.1ms), and stores the body and update (2.6ms). The sum of the means (10.4ms)

8FlexiProvider: www.flexiprovider.de.
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Fig. 9. Per-request average resource use of Baseline (B), B+Hash (H), B+H+Sig (S), B+H+S+Store (St),
and Depot (D) in the 100/0 (GET) and 0/100 (PUT) workloads with 10KB objects. The bar heights represent
resource use normalized to Depot. The labels indicate the absolute per-request averages. (C) and (S) indicate
resource use at clients and servers, respectively. (C-S) and (C-S) are client-server and server-server network
use, respectively. For storage costs, we report the cost of storing a version of an object.

matches the observed latency (10.4ms). The model is similarly accurate for the 3B and
1MB experiments.

These PUT latencies could be reduced. For example, we have not exploited obvious
pipelining opportunities. Also, we experiment on a 1Gbit/s LAN; in many cloud stor-
age deployments, WAN delays would dominate latencies, shrinking Depot’s percentage
overhead.

Resource use. Figure 9 depicts the average use of various resources in the latency
experiments with 10KB objects. We measure CPU use at the end of a run, summing
the user and system time from /proc/<pid>/stat on Linux and dividing by the number
of requests. We measure network use as the number of bytes handed to TCP. We report
the overhead of a PUT as including the cost of propagating the resulting update to all
the nodes (clients and servers) and storing the update at these nodes.

Depot’s overheads are small for network use, server storage, and server CPU on
GETs. They are also small for client CPU on GETs, relative to the B+H+Sign baseline.
The substantial client storage overheads result from clients’ storing data for the PUTs
that they create and metadata for all PUTs. The substantial PUT CPU overheads are
due to additional Berkeley DB accesses (which cost CPU cycles, per our microbench-
marks) and cryptographic checks, which happen intensively during gossiping. Since
the request rate is low relative to the gossip rate, each request pays for a lot of gossip
work. With increased request rate or larger objects (as in the experiments summarized
immediately below) this CPU overhead will be lower.

Throughput. Most of our evaluation is about Depot’s underlying costs as opposed to
the performance of the prototype, so we treat throughput only briefly. We ran separate
measurements in which we saturated a single Depot server with requests from many
clients. For 10KB GETs, a single Depot server can handle 11k requests per second,
at which point network bandwidth is the bottleneck. For 10KB PUTs, peak through-
put is 700 requests per second. This disappointing number is not surprising given
the resource use just reported, but a well-tuned version ought to see sequential disk
bandwidth with the bottleneck being signature checks (0.3ms per core).

8.2. Dollar Cost

Is Depot’s added consumption of CPU cycles and client-side storage truly costly? To
answer this question, we must weight Depot’s resource use by the costs of the various
resources. To do so, we convert the measured overheads from the prior subsection into
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Fig. 10. Dollar cost to GET 1TB of data, PUT 1TB of data, or store 1TB of data for 1 month. Each object
has a small key and a 10KB value. 1TB of PUTs or GETs corresponds to 108 operations, and 1TB of storage
corresponds to 108 objects.

dollars (to pick a convenient currency). We use the following cost model, loosely based
on what customers pay to use existing cloud storage and compute resources.

Client-server network bandwidth $.10/GB
Server-server network bandwidth $.01/GB
Disk storage (one client or server) $.025/GB per month
CPU processing (client or server) $.10 per hour

For intuition, note that 4ms of CPU time to sign a small message costs about the same
as sending 1KB between a client and a server or storing 4KB at one node for a month.

Figure 10 shows the overheads from Figure 9 weighted by these costs. Depot’s over-
heads are modest for read-mostly workloads. Depot’s GET costs are only slightly higher
than Baseline’s: $107.80 versus $105.40 for 108 GET operations on 10KB objects. How-
ever, Depot’s PUT costs are over 50% higher: $225.80 versus $149.90 for 108 operations
on 10KB objects. Most of the extra cost is from gossiping, so the relative overheads
would fall for larger objects or more frequent updates. Depot’s storage costs are 31%
higher than Baseline’s: $138.90 versus $105.90 to store 108 10KB objects for a month.
Most of the extra cost is from storing a copy of each object at the issuing client; the rest
is from storing metadata.

8.3. Experiments with Faults

We now examine Depot’s behavior when servers become unavailable and when clients
create forking writes.

Server unavailability. In this experiment, 8 clients access 8 objects on 4 servers. The
objects are 10KB, and the workload is 50/50 GET/PUT. Servers gossip with random
servers every second, and clients gossip with their chosen partner (initially a server)
every 5 seconds. At about 220 seconds into the experiment, we kill all servers, and
300 seconds after that, we start a set of replacement servers on the same physical
nodes. The replacement servers do not retain the pre-failure state; they begin with
fresh state.

By postprocessing logs, we measure the staleness of GET results, compared to in-
stantaneous propagation of all updates: the staleness of a GET’s result is the time
since that result was overwritten by a later PUT. If the GET returns the most recent
update, the staleness is 0. We also report the latency of GETs and PUTs issued by a
client. Finally, we measure CPU consumption at each client; we create a time series
by combining the second-on-second increase in user time and the second-on-second
increase in system time, as obtained from /proc/<pid>/stat. This CPU consumption
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roughly corresponds to the per-request CPU cost because, in these experiments, clients
issue one request (PUT or GET) every second.

Figure 11(a) depicts the staleness observed at one client. Before the servers
fail, GETs in both Depot and B+H+S+Store have low staleness. After the failure,
B+H+S+Store blocks forever. Depot, however, switches to client-to-client mode, con-
tinuing to service requests. Later, when a new set of servers is started, these servers
rebuild their state from the clients and the clients switch back to client-server mode.
Staleness increases noticeably in client-to-client mode because: (1) disseminating up-
dates takes more network hops and (2) the lower gossip frequency increases the delay
between hops. However, on recovery, the staleness value falls back to its original value.

Figure 11(b) depicts the latency of GETs observed by the same client. Prior to the
failure, Depot’s GET latency is significantly higher than in the experiments in Sec-
tion 8.1 because each object is often updated (because there are few objects in the
workload), so the optimization described in Section 7 often fails, making the client
and server perform a log exchange to complete the GET. When the servers fail, Depot
continues to function, and GET latency actually improves: rather than requesting the
“current value” from the server (which requires a log exchange to get the new meta-
data for validating the newest update), in client-to-client mode, a client fetches the
version mentioned in the update it already has from the writer.

Figure 11(c) shows the PUT latency observed by the same client. PUT latency follows
a pattern similar to the GET latency and improves in client-to-client mode: PUTs return
as soon as the update and value are stored locally, with no round trip to a server. On
recovery, PUT latency rises to its former value.

Figure 11(d) depicts the per-request CPU utilization observed by the same client.
Like latency, the mean per-request CPU utilization drops slightly on failure because
less work is happening in the system (no transfers on PUTs, fewer fetches on GETs).
On recovery, the mean per-request CPU utilization rises again.

Client fork. In this experiment, 8 correct clients (8C0F), 6 correct clients and 2 faulty
clients (6C2F), and 6 correct clients (6C0F) access 1000 objects on 4 servers. The
objects are 10KB, and the workload is 50/50 GET/PUT. 300 seconds into the experiment,
faulty clients begin to issue forking writes. When a correct client observes a fork, it
publishes a Proof Of Misbehavior (POM) against the faulty client, and when servers or
other clients receive the POM, they stop accepting new writes directly from the faulty
client.

Figure 12(a) and Figure 12(b) depict the results for GETs and PUTs respectively.
Forks introduced by faulty clients do not have an obvious effect on GET or PUT latency;
note that the spikes in GET latency prior to t = 300 are unrelated to client failures.

Figure 12(c) shows CPU consumption over the trailing second (as described in the
discussion of Figure 11(d)) at a correct client during this experiment. Any additional
processing caused by the forking clients is small compared to the normal variation that
we see across time for all configurations of this experiment.

9. TEAPOT FOR LEGACY SSPS

Depot runs on both clients and SSP nodes, but it would be desirable to provide Depot’s
guarantees using unmodified legacy SSPs such as S3, Azure Storage, or Google Stor-
age. Intuitively, such an approach appears possible. In Depot, servers must: (1) prop-
agate updates among clients and (2) provide update bodies (i.e., values) in response to
GET requests. We should be able to use an SSP’s abstract key-value map as a commu-
nication channel and as storage for update bodies. And because Depot clients verify
everything that they receive from servers, we should still be able to provide most of the
properties discussed in Section 6. In this section, we give a brief overview of Teapot,
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Fig. 11. The effect of total server failure (t = 220) and failover to a fresh set of servers (t = 520) on: (a)
staleness; (b) GET latency; (c) PUT latency; (d) CPU consumption over the trailing second. The workload
is 50/50 R/W and 10KB objects chosen from a volume containing 8 objects. Depot maintains availability
through client-to-client transfers whereas the baseline system blocks, and GET latency, PUT latency, and
CPU consumption actually improves (at the expense of staleness).

a variation of Depot that uses legacy SSPs. We then compare Teapot and Depot and
discuss how legacy SSPs could be extended to support all of Depot’s properties.
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Fig. 12. PUT and GET latency and CPU consumption over the trailing second at a correct client with Depot
in three runs: 8 correct clients (8C0F), 6 correct clients and 2 faulty clients (6C2F), and 6 correct clients
(6C0F). Depot survives a fork introduced at 300 seconds into the execution without affecting the client-
perceived latency and the CPU consumption.

Teapot assumes an API like that of S3 (Figure 13): LPUT(k, v, b ) (associate v with
k in a bucket b owned by a given client) and LGET(k, b ) (return v). On a PUT, the
Teapot client creates and locally stores the metadata u (a Depot update) and the data
d (a Depot value). The client then stores both to the SSP by calling LPUT(H(u), u, bc)
and LPUT(H(d), d, bc), where bc is a bucket that only c can write. The client then
identifies its latest update by storing it to a distinguished key, k∗

c (that is, the client
executes LPUT(k∗

c , u, bc)). In the background, the client periodically fetches the other
clients’ latest updates by reading their k∗

c entries and then fetching and validating the
updates’ dependencies. On a GET, the Teapot client uses LGET to retrieve the value(s)
associated with the latest update(s) that it has received.

We have prototyped Teapot using S3 and a variation on the arrangement just
sketched. As shown in Figure 13, assessing S3 through Teapot rather than through
LPUT and LGET introduces little latency over S3; the baseline latencies to S3 are al-
ready scores of milliseconds, so the additional overheads are small. The resource costs
are similar to those of Depot (Section 8.1).
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Fig. 13. Average latencies (with standard deviations) perceived by Teapot for GET and PUT operations with
10KB payload when using Amazon S3 for storage.

Discussion. Teapot has two key differences from Depot. First, if a client fails in par-
ticular ways, Teapot cannot guarantee valid discard (Section 6.6). A client can, for
example, issue a PUT, allow the update to be observed by other clients, and then delete
the associated value. This unilateral deletion may cause a correct SSP to discard the
current value of a key. Depot, in contrast, meets valid discard as long as at least one
client is correct. Second, Teapot servers cannot provide the durability receipts that
Depot clients use to avoid depending on insufficiently replicated data (Section 6.3).
Note that Teapot tolerates arbitrary SSP failures and many other client failures
(crashes, forks, etc.), so Teapot’s additional vulnerability over Depot is limited and
may be justified by its deployability.

We now ask: what incremental extensions to SSPs would allow us to run code only
on clients but recover Depot’s full guarantees? We speculate that the following suf-
fices. First, to prevent a correct client from having to depend on updates that a faulty
client could delete, the SSP could implement LINK(K, bc, bc′ ), UNLINK(k, bc, bc′ ), and
VERIFY(k, H, bc). LINK causes every existing or new key-value pair in a key range
K in one client’s bucket (bc) to be linked to another client’s bucket (bc′), where a key-
value pair that is the target of a link by another bucket may not be modified or deleted.
UNLINK removes such a link. VERIFY checks that the SSP stores a value with hash
H for key k in bucket bc. Then, if a client LINKs to other clients’ buckets when it
joins the system and VERIFIES an update’s value before accepting the update into its
history, we can restore unanimous consent, and hence valid discard, for garbage col-
lecting versions (Section 6.6). Second, to assure clients that updates are sufficiently
replicated, the SSP could return a receipt in response to LPUT that the clients could
use like receipt sets (Section 6.3). These extensions seem plausible: Others have pro-
posed receipts [Kotla et al. 2007; Popa et al. 2011; Shah et al. 2007; Yumerefendi and
Chase 2007], and the proposed LINK and UNLINK calls have correlates on Unix file
systems, suggesting utility beyond Teapot.

This discussion illustrates that clients can use an SSP-supplied key-value map as a
black box to recover most of Depot’s properties. To recover all of them, the SSP needs
to be incrementally augmented not to delete prematurely.

10. RELATED WORK

We organize prior work in terms of trade-offs between availability and fault tolerance.

Restricted fault tolerance, high availability. A number of systems provide high availability
but do not tolerate arbitrary faults. For example, key-value stores in clouds [Chang
et al. 2006; Cooper et al. 2008; DeCandia et al. 2007] take a pragmatic approach, using
system structure and relaxed semantics to provide high availability. Also, systems like
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Bayou [Terry et al. 1995], Ficus [Reiher et al. 1994], PRACTI [Belaramani et al. 2006],
and Cimbiosys [Ramasubramanian et al. 2009] can get high availability by replicating
all data to all nodes. Unlike Depot, none of these systems tolerates arbitrary failures.

Medium fault tolerance, medium availability. Another class of systems provides safety even
when only a subset (for example, 2/3 of the nodes) is correct. However, the price for
this increased fault tolerance compared to the prior category is decreased liveness
and availability: to complete, an operation must reach a quorum of nodes. Such sys-
tems include Byzantine Fault Tolerant (BFT) replicated state machines (see Castro
and Liskov [2002], Clement et al. [2009], Guerraoui et al. [2010], and Hendricks et al.
[2007]) and Byzantine Quorums [Malkhi and Reiter 1998]. Note that researchers are
keenly interested in reducing trust: compared to classic BFT systems, the more re-
cent A2M [Chun et al. 2007], TrInc [Levin et al. 2009], and BFT2F [Li and Mazières
2007] all tolerate more failures, the former two by assuming trusted hardware and
the latter by weakening guarantees. However, unlike Depot, these systems still have
fault thresholds, and none works disconnectedly. PeerReview [Haeberlen et al. 2007]
requires a quorum of witnesses with complete information (hindering liveness), one of
which must be correct (a trust requirement that Depot does not have).

High fault tolerance, low availability. In fork-based systems, such as SUNDR [Li et al.
2004] and FAUST [Cachin et al. 2009], the server is totally untrusted, yet even under
faults provides a safety guarantee: fork-linearizability, fork-sequential consistency,
etc. [Oprea and Reiter 2006]. However, these systems provide reduced liveness and
availability compared to Depot. First, in benign runs, their admittedly stronger se-
mantics (versus Depot’s causal consistency during such runs) means that they cannot
be available during a network partition or server failure. Second, after a fork, nodes
are “stranded” and cannot talk to each other, effectively stopping the system. A re-
lated strand of work focuses on accountability and auditing (see Kotla et al. [2007],
Shah et al. [2007], Yumerefendi and Chase [2007], and Popa et al. [2011]), provid-
ing proofs to participants if other participants misbehave. All of these systems detect
misbehavior, whereas our aim is to tolerate and recover from it, which we view as a
requirement for availability.

Systems with similar motivations. Venus [Shraer et al. 2010] allows clients not to trust
a cloud storage service. While Venus provides consistency semantics stronger than
Depot’s (causal consistency for pending operations, linearizability for completed op-
erations (roughly)), it makes stronger assumptions than Depot. Specifically, Venus
relies on an untrusted verifier in the cloud, assumes that a core set of clients does not
permanently go offline, and does not handle faulty clients, such as clients that split
history. SPORC [Feldman et al. 2010] is designed for clients to use a single untrusted
server to order their operations on a single shared document and provides causal con-
sistency for pending operations (and stronger for committed operations). Unlike Depot,
SPORC does not consider faulty clients, allow clients to talk to any server, or support
arbitrary failover patterns. Furthermore, SPORC is not designed for environments
with large numbers of updates, as it does not permit garbage collection of updates;
SPORC requires that all the updates be preserved to be able to detect and recover
from forks. However, SPORC provides innate support for confidentiality and access
control, whereas Depot layers those on top of the core mechanism.

A number of other systems have sought to minimize trust for safety and liveness.
However, they have not given a correctness guarantee under arbitrary faults. For ex-
ample, Zeno [Singh et al. 2009] does not operate with maximum liveness or minimal
trust assumptions: it assumes f + 1 available servers per partition, where f is the
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number of faulty servers. TimeWeave [Maniatis 2003] ensures that correct nodes can
blame any malactivity on culprit nodes. However, unlike Depot, TimeWeave does not
detect or repair forks. S2D2 [Kang 2004] tracks dependences using tamper-evident his-
tory summaries, which are similar to Depot’s history hashes. However, unlike Depot,
S2D2 does not detect forks. And neither S2D2 nor TimeWeave targets cloud storage
(which requires addressing staleness, durability, and recoverability). Other systems
target scenarios similar to cloud storage but do not protect consistency [Goh et al.
2003; Kallahalla et al. 2003; Strunk et al. 2000].

Some systems have, like Depot, been designed to resist large-scale correlated
failures. Glacier [Haeberlen et al. 2005] can tolerate a high threshold, but still
no more than this threshold, of faulty nodes, and it stores only immutable ob-
jects. OceanStore [Kubiatowicz et al. 2000] is designed to minimize trust for durability
but does not tolerate nodes that fail perniciously.

Distributed revision control. Distributed repositories like Git9, Mercurial10, and Past-
watch [Yip et al. 2006] have a data model similar to Depot’s and could be augmented
to resist faulty nodes (e.g., forcing clients to sign updates in Git would prevent servers
from undetectably altering history). However, all of these systems are geared toward
replicating a source-code repository. Our context brings concerns that these systems
do not address, including how to avoid clients’ storing all data, how to perform update
exchange in this scenario, how to provide freshness, how to evict faulty nodes, how to
garbage collect, etc.

11. CONCLUSION

Depot began with an attempt to explore a radical point in the design space for cloud
storage: trust no one. Ultimately we fell short of that goal: unless all nodes store a full
copy of the data, then nodes must rely on one another for durability and availability.
Nonetheless, we believe that Depot significantly expands the boundary of the possible
by demonstrating how to build a storage system that eliminates trust assumptions for
safety and minimizes trust assumptions for liveness.

APPENDIX

A. FORK-JOIN-CAUSAL CONSISTENCY

We express Fork Join Causal (FJC) consistency semantics in terms of a set of condi-
tions that must hold for the observer graph that we associate with each execution of a
system. The observer graph of an execution captures how information flows during the
execution: the graph’s vertices represent the read and write operations executed by the
nodes, and the edges encode dependencies among these operations. The graph is not
an actual data structure that our protocol maintains, but it is useful for presentation
purposes.

Definition A.1. An observer graph is an execution and an edge assignment.

Definition A.2. An execution is a set of read and write vertices, with one vertex for
each read or write operation by any node.

(1) Write vertices are tuples of the form (n, s, oId, val), where n is the node issuing the
write operation, s is a per-node sequence number that monotonically increases with
every operation issued by n, oId is the identifier of the object being written, and
val is the value written to object oId.

9http://git-scm.com/
10http://mercurial.selenic.com/
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(2) Read vertices are tuples of the form (n, s, oId, wl) where n, oId, and s define the
node issuing the read, the object read, and the sequence number of the operation
and where wl denotes the list of write vertices whose values are returned by the
read. We say a read r reads from a write w if r.wl includes w.

Definition A.3. An edge assignment for an execution is a set of directed edges con-
necting vertices of an execution.

An edge assignment is an abstract representation of the data flow in an execution.
Notice that the definition does not specify how the edge assignment is produced.

A given consistency semantic is defined by a consistency check that determines the
set of allowed observer graphs. And showing that an execution is consistent under some
semantics requires showing that an oracle can produce an edge assignment, and hence
an observer graph, that passes the consistency check. On the other hand, showing that
a system enforces some consistency semantics requires presenting an algorithm that, for
every possible execution of the system, constructs an edge assignment that passes the
consistency check.

Definition A.4. A consistency check for a consistency semantics C is a set of condi-
tions that an observer graph must satisfy to be called consistent with respect to C.

Definition A.5. An execution α is C-consistent iff there exists an edge assignment
for α such that the resulting observer graph satisfies C’s consistency checks.

A final bit of housekeeping.

Definition A.6. We say that vertex u precedes vertex v in observer graph G (denoted
as u ≺G v) if there is a directed path from u to v in G. By extension, we say that the
operation corresponding to u precedes the one corresponding to v. If u ≺G v, then v
depends on u. If u �≺G v and v �≺G u, then we say that u and v are concurrent.

Definition A.7. An operation u is said to be observed by a correct node p in G if
either p executes u or if p executes an operation v such that u ≺G v.

We now define the set of executions admitted by FJC consistency semantics in terms
of its consistency checks.

Fork-Join-Causal Consistency. An execution α is said to be Fork-Join-Causal (FJC) con-
sistent if there exists an edge assignment for α that produces an observer graph G that
satisfies the following consistency check.

(1) Serial ordering at each correct node. The ordering of operations by any correct node
is reflected in the observer graph. Specifically, if p is a correct node and v and v′
are vertices corresponding to operations by p, then v.s < v′.s ⇔ v ≺G v′.

(2) Reads by correct nodes return the latest preceding concurrent writes. For any read
operation r = (p, s, oId, wl) issued by a correct node p, and writes w and w′ to object
oId, the following condition holds.

w ∈ wl ⇔ w ≺G r∧ � ∃w′ : w ≺G w′ ≺G r

Comparison with fork-causal consistency. Fork-Causal Consistency (FCC) enforces the
following three conditions:

(1) Serial ordering at each correct node;
(2) Reads by correct nodes return the latest preceding concurrent writes;
(3) Correct nodes observe that every node issues totally ordered writes.
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Fig. 14. (a) An execution with a faulty node p2 that issues two writes with s = 3 and (b) an observer graph
that is FJC and FCC consistent. There is no causally consistent observer graph because w0, w1, w2, and w3
are not serially ordered according to any possible history of node p2. The observer graph is both FJC and
FCC consistent because FJC and FCC do not require total ordering of p2’s operations.

The first two conditions are identical to those required by FJC. The third condition
trivially holds for writes issued by correct nodes, since, by the first condition, such
writes are totally ordered. The difference between FJC and FCC is in the degree to
which writes by incorrect nodes are admissible. Consider a faulty node p that issues
writes w0, w1, and w2 such that w0 precedes both w1 and w2, but neither w1 ≺G w2
nor w2 ≺G w1. By its third condition, FCC prevents any correct node from observing
both w1 and w2. Hence, under FCC, once two correct nodes have observed w1 and w2
respectively, they become partitioned from each other. Under FJC, in contrast, this
restriction does not exist; there, w1 and w2 are treated as concurrent writes, allowing
a correct node to observe both.

Comparison with causal consistency. Causal consistency enforces conditions that are
analogous to those enforced by FJC, but it requires them to hold for operations issued
by all nodes, not just correct nodes. Specifically, an execution α is said to be causally
consistent if there exists an edge assignment for α that produces an observer graph G
that satisfies the following consistency check.

(1) Serial ordering at each node. The ordering of operations by any node is reflected in
the observer graph. Specifically, if p is a node and v and v′ are vertices correspond-
ing to operations by p, then v.s < v′.s ⇔ v ≺G v′.

(2) Reads return the latest preceding concurrent writes. For any read operation r =
(p, s, oId, wl) issued by a node p, and writes w and w′ to object oId, the following
condition holds.

w ∈ wl ⇔ w ≺G r∧ � ∃w′ : w ≺G w′ ≺G r

Figure 14(a) shows an execution that is both FJC and FCC but not causally consis-
tent. In this example, node p2 is faulty and produces four writes w0, w1, w2, and w3.
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Node p1 observes w0, w1, and w2 but not w3, and node p3 observes w0, w1, and w3 but
not w2. As Figure 14(b) illustrates, we can produce an edge assignment and observer
graph that passes all FJC/FCC tests by dispensing with the serial ordering constraint
at the faulty node. Conversely, it is impossible to produce an edge assignment to pro-
duce an observer graph G′ that passes the causal consistency checks.
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FU, K., KAASHOEK, M. F., AND MAZIÈRES, D. 2002. Fast and secure distributed read-only file system. ACM
Trans. Comput. Syst. 20, 1, 1–24.

GILBERT, S. AND LYNCH, N. 2002. Brewer’s conjecture and the feasibility of consistent, available, partition-
tolerant web services. SIGACT News 33, 51–59.

GOH, E.-J., SHACHAM, H., MODADUGU, N., AND BONEH, D. 2003. SiRiUS: Securing remote untrusted
storage. In Proceedings of the Annual Network & Distributed System Security Symposium (NDSS).

GRAY, J. AND SHENOY, P. 2000. Rules of thumb in data engineering. In Data Engineering. 3–12.
GUERRAOUI, R., KNEZEVIC, N., QUEMA, V., AND VUKOLIC, M. 2010. The next 700 BFT protocols. In Pro-

ceedings of the European Conference on Computer Systems (EuroSys).
HAEBERLEN, A., MISLOVE, A., AND DRUSCHEL, P. 2005. Glacier: Highly durable, decentralized storage

despite massive correlated failures. In Proceedings of the USENIX Symposium on Networked Systems
Design and Implementation (NSDI).

HAEBERLEN, A., KOUZNETSOV, P., AND DRUSCHEL, P. 2007. PeerReview: Practical accountability for dis-
tributed systems. In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP).

HENDRICKS, J., GANGER, G. R., AND REITER, M. K. 2007. Low-overhead Byzantine fault-tolerant storage.
In Proceedings of the ACM Symposium on Operating Systems Principles (SOSP).

HERLIHY, M. P. AND WING, J. M. 1990. Linearizability: A correctness condition for concurrent objects. ACM
Trans. Program. Lang. Syst. 12, 3.

KALLAHALLA, M., RIEDEL, E., SWAMINATHAN, R., WANG, Q., AND FU, K. 2003. Plutus: Scalable secure
file sharing on untrusted storage. In Proceedings of the USENIX Conference on File and Storage Tech-
nologies (FAST).

KANG, B. 2004. S2D2: A framework for scalable and secure optimistic replication. Ph.D. thesis, University
of California Berkeley.

KARGER, D., LEHMAN, E., LEIGHTON, T., PANIGRAHY, R., LEVINE, M., AND LEWIN, D. 1997. Consistent
hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web.
In Proceedings of the ACM Symposium on Theory of Computing (STOC).

KISTLER, J. AND SATYANARAYANAN, M. 1992. Disconnected operation in the coda file system. ACM Trans.
Comput. Syst. 10, 1, 3–5.

KOTLA, R., ALVISI, L., AND DAHLIN, M. 2007. SafeStore: A durable and practical storage system. In Pro-
ceedings of the USENIX Annual Technical Conference (ATC).

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA,
S., WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. OceanStore: An architecture for
global-scale persistent storage. In Proceedings of the International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS).

LAMPORT, L. 1978. Time, clocks, and the ordering of events in a distributed system. Comm. ACM 21, 7.
LAMPORT, L. 1979. How to make a multiprocessor computer that correctly executes multiprocess programs.

IEEE Trans. Comput. 28, 9, 690–691.
LAMPORT, L., SHOSTAK, R., AND PEASE, M. 1982. The Byzantine generals problem. ACM Trans. Program.

Lang. Syst. 4, 3, 382–401.
LEVIN, D., DOUCEUR, J. R., LORCH, J. R., AND MOSCIBRODA, T. 2009. TrInc: Small trusted hardware for

large distributed systems. In Proceedings of the USENIX Symposium on Networked Systems Design and
Implementation (NSDI).
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