
Verification Condition Generation with the Dijkstra State Monad

Cole Schlesinger
Princeton University

Nikhil Swamy
Microsoft Research

Abstract
The Hoare state monad provides a powerful means of structuring
the verification of higher-order, stateful programs. This paper de-
fines a new variant of the Hoare state monad, which, rather than
being a triple of a pre-condition, a return type, and a post-condition,
is a pair of a return type and a predicate transformer. We dub this
monad the Dijkstra state monad.

Using the Dijkstra state monad, we define a new unification-
based type inference algorithm, which succeeds in computing ver-
ification conditions for higher-order stateful programs. We prove
our algorithm sound. We also prove it complete with respect to
a simple surface-level typing judgment, resembling ML type in-
ference. In other words, we show that any recursion-free program
typeable in our surface system can also be typed in the Dijkstra
monad. Thus, programmers may use our algorithm to type their
programs in the Dijkstra monad and obtain more precise types,
knowing that when our algorithm fails to infer a type, the failure
is due to a typing error that can be detected by our simple surface
type system. Recursive functions can be typed as usual if they are
annotated with their loop invariants. We also show how to structure
specifications so that despite the use of higher-order logic in the
types of higher-order functions, we can generate first-order verifi-
cation conditions for many programs. The result is a light-weight,
yet powerful system for specification and verification of deep prop-
erties of stateful functional programs.

We have implemented our inference algorithm as a front-end to
the F⋆ compiler and report on a preliminary evaluation of our tool
on a collection of benchmarks.

1. Introduction
Functional programmers often extol the gains in productivity, mod-
ularity and elegance provided by higher-order functions. Such func-
tions are routinely combined with effects, whether directly, as in
ML, or monadically, as in Haskell. While the type systems of
these languages rule out many common errors, and also guaran-
tee some properties beyond basic type safety (e.g., parametricity),
these properties remain relatively simple. Proving functional cor-
rectness requires a more advanced analysis. But, as is well known,
the very combination of higher-order functions and state that pro-
grammers love poses difficulties for program verification tools.

A promising way to structure the verification of higher-order
stateful programs is via the Hoare state monad (Nanevski et al.
2008), or Hoare monad, for short. Conceptually, the Hoare monad
is a simple idea: it is a refinement of the normal state monad,
recording pre- and post-conditions on the input and output state.
Informally, ST Pre a Post is the type of a computation from input
heaps h satisfying the pre-condition Pre h to a pair containing the
result of the computation x:a and an output heap h’ satisfying
Post x h’. We show its definition below.1

1 We write dependent function arrows as x:t→t’, where the formal param-
eter x:t is in scope in the codomain t’; this is sometimes written Πx:t.t’.

type ST Pre a Post = h:heap{Pre h}→ (x:a * h’:heap{Post x h’})

While the Hoare monad has been put to use successfully by
Nanevski et al. in tools like Ynot, this work has primarily been
in the context of interactive proof assistants like Coq. There are
at least two difficulties. First, type inference for the Hoare monad
(i.e., verification condition generation) is a bidirectional type infer-
ence algorithm. Second, the inferred verification conditions (VCs),
which may be in higher-order logic, have to be solved interactively
using tactic-based proving in Coq.

To get a sense of the difficulties involved simply in computing
VCs (let alone solving them, for the moment), consider the program
inv below, which updates the contents of an integer reference with
its inverse.

let inv x = x := 1 / !x

What is the weakest pre-condition for this program in the Hoare
monad? Typically, a weakest pre-condition calculus works by start-
ing with a programmer-supplied post-condition and “pushing” it
backwards through the computation to compute a pre-condition.
Here, we have no post-condition to get us started. So, are we stuck?

Of course not. Our first insight, borrowed from Dijkstra, is that
weakest pre-condition computations are designed to be parametric
in the post-condition formula over which the weakest pre-condition
is computed. That is, a weakest pre-condition computation can be
viewed as a predicate transformer, transforming an arbitrary post-
condition predicate into a pre-condition.

Based on this insight, we can write a precise specification for
inv, shown below. We quantify over all post-conditions (predicates
relating a unit value and an output heap), and define the weakest
pre-condition of inv over this symbolic post-condition. In the type
below, the functions sel and upd are the usual heap select and up-
date functions from McCarthy’s theory of functional arrays (Mc-
carthy 1962).

∀ψ . x:ref int→ST (λ h. sel h x ≠ 0 && ψ () (upd h x (1/sel h x))) unit ψ

As we will see shortly, writing specifications in this style (with
polymorphic post-conditions) is nice for several reasons. Two of
them are already apparent. First, a symbolically computed pre-
condition does not require a programmer-provided post-condition.
Second, notice that the pre-condition of inv is able to describe
the output heap (upd h x (1/sel h x)) function of the input heap h.
Prior approaches (e.g., Nanevski et al. (2008)) have relied on two-
state post-conditions to relate the input and output-heap—this is
unnecessary if specifications are always post-condition parametric.

To appreciate the power of post-condition parametricity, let us
look at another aspect of the Hoare state monad. We sketch the
signature of the bind operator of the ST monad below.

ST Pre a Post1→ (x:a→ST (Post1 x) b Post)→ST Pre b Post

This combinator allows two monadic computations to be com-
posed, but it requires the post-condition of the first computation f to
be syntactically identical to the pre-condition of the second compu-
tation g. Thus, when inferring types for the Hoare monad, we need

a subsumption rule in the type system that captures the rule of con-
sequence—i.e., we need to be able to strengthen the pre-condition
of g and/or weaken the post-condition of f in order to infer a type
for bindST f g. However, type inference in a setting that includes
subtyping or subsumption is challenging.

Once again, post-condition polymorphism comes to the rescue.
If we were to uniformly write all our specification in the style of
Dijkstra’s predicate transformers, instead of the Hoare monad, the
result would be what we call the Dijkstra state monad, which we
write DST and sketch below.

type DST a Tx = ∀ψ . ST (Tx ψ) a ψ

val bindDST: DST a Tx1
→ (x:a→DST b (Tx2 x))
→DST b (Λψ . Tx1 (λ x. Tx2 x ψ))

The DST monad takes just two parameters: the type a is the type
of the value returned by the computation, while Tx is a predicate
transformer that computes a pre-condition for the computation for
any post-condition. The bind combinator of the DST monad, unlike
the ST monad, allows two computations to be composed regardless
of the relationship between their pre- and post-conditions. We no
longer need a subsumption rule in order to infer types for programs
in the DST monad.

At this point, the reader might wonder if there is another design
path we might follow—one that avoids higher order and polymor-
phic predicates. Unfortunately, such a route to success seems im-
possible in a higher-order language. In essence, a function f that
abstracts over a function g must have a specification that abstracts
over the specification of g. The predicate polymorphism of DST
makes this easy to express. We show the type of apply below, but
leave a detailed discussion until later.

val apply:∀α,β ,η f:(y:α →DST β (η y))→x:α →DST β (η x)
let apply f x = f x

In summary, in order to write specifications for higher-order
functions, one needs to use predicate polymorphism anyway. We
advocate embracing this style of specification wholeheartedly by
using the DST monad throughout.

1.1 The shape of our development and contributions
We present our ideas in the setting of the F⋆ programming lan-
guage (Swamy et al. 2011a), a dependently typed dialect of ML.
We strive to develop an effective verification condition generator
targeting F⋆ programs that make heavy use of state. Ideally, we
would like to produce proof obligations that can be automatically
discharged by Z3 (de Moura and Bjørner 2008), the SMT solver
used by F⋆’s typechecker. To simplify the presentation, rather than
work with the entire F⋆ language, we define a small calculus λDST,
intended to be a tiny, ML-like subset of F⋆.

Our goal is to define a sound and complete weakest pre-
condition calculus for recursion-free λDST programs. Unfortu-
nately, in its entirely unrestricted form, this proves intractable.
The main source of difficulty is that to type higher-order functions
we need to infer higher-rank types, which is, in general, undecid-
able (Wells 1994). However, with some restrictions familiar from
work that aims to infer higher-rank types, (e.g., as in HMF (Lei-
jen 2008), we require higher-order arguments to be annotated), we
make progress. Our development and contributions proceeds as
follows:
A simple specification of the set of typeable programs. We present
a simple, surface-level type system that defines the set of λDST
programs for which we can infer precise verification conditions.
This type system computes basic ML types for λDST programs.
However, by design, not all ML programs can be typed in our
surface type system, e.g., those programs that contain functions
with unannotated higher-order arguments are rejected.

A core type inference algorithm. We then present our main type
inference algorithm for λDST programs, interpreting them in the
DST monad, and inferring precise specifications for them.
Type inference is sound (Theorem 1). When a well-typed program
λDST is executed in a context that satisfies the inferred VCs, then
all assertions in the program are guaranteed to succeed. For wrong
programs, the inferred constraints are unsatisfiable. We prove this
result by elaborating well-typed λDST programs into F⋆, and rely-
ing on the soundness of F⋆.
Type inference is complete (Theorem 2). We prove that all λDST
programs that can be typed in the surface level type system can
also be typed using our core inference algorithm, yielding a more
informative type. As such, programmers who are accustomed to
the type system of ML, need only understand the restrictions of our
simple surface level type system. They may then use our algorithm
and obtain more precise types, knowing that when our algorithm
fails to infer a type, the failure is due to a typing error that can be
detected by the simple surface type system.
First-order VCs (Theorem 3). We prescribe a specific form in
which to annotate types for higher-order libraries, making car-
fully structured use of predicate transformers and other constructs
from higher-order logic. For programs that adhere to this prescrip-
tion, we prove that our core inference algorithm will yield only
first-order verification conditions. These VCs can then be fed to
an SMT solver. This is in contrast to prior work on verifying
higher-order stateful code using the Hoare state monad, e.g., HT-
T/Ynot (Nanevski et al. 2008), which, despite some automation,
requires interactive proofs in the Coq proof assistant (Bertot and
Castéran 2004).
Implementation. We have implemented our algorithm as a front-
end to the F⋆ compiler (Swamy et al. 2011a). Following infer-
ence, we elaborate λDST programs into F⋆. By relying on the self-
certified F⋆ core typechecker (Strub et al. 2012) for verification,
we can obtain a highly reliable path for certification of higher-order
stateful programs—comparable in reliability to certification of, say,
Ynot programs using Coq.
Evaluation. We report on a preliminary experimental evaluation
of our tool on a suite of thirty small benchmarks, totaling approx-
imately 500 lines of code. More substantially, the Dijkstra monad
and the verification condition generator described here has been ap-
plied to the automatic verification of a suite of JavaScript programs,
programs that make heavy use of a dynamically typed higher-order
store. The topic of JavaScript verification, orthogonal to this paper,
is described in another technical report (Swamy et al. 2012a).
Outline. We start in Section 2 by discussing our solution infor-
mally, using several examples. Along the way, we review F⋆ and
the Hoare state monad. Section 3 presents λDST and its surface
typing relation formally. Section 4 presents our core inference al-
gorithm, as well as the metatheoretical properties of our system.
We discuss further examples and our implementation in Sections 5
and 6. Section 7 discusses related work and concludes. Full state-
ments and proofs of the theorems, including a complete definition
of the λDST calculus, can be found in the appendix.

2. Overview
This paper defines λDST, an ML-like surface language; a type in-
ference algorithm; and an elaboration of λDST into F⋆. λDST is
not a separate language design in its own right—it is simply the
subset of F⋆ we use in this paper. F⋆ is itself a variant of ML
with a similar syntax and dynamic semantics but with a type sys-
tem based on dependent types. To date, F⋆ has been used to pro-
gram and verify more than 30,000 lines of code, including security
protocols, web browser extensions, and distributed applications. Its

main typechecker, compiler, and runtime support are coded in F#,
although its core typechecker is written in F⋆ itself and has been
certified for correctness.

2.1 Basics of F⋆

Three elements in the type system of F⋆ play a significant role
in this paper: value-indexed types, dependent functions, and ghost
refinement types. Using these features, it is possible to write, say,
n:nat→array int n, the type of a function that allocates an array of n
integers. Formally, the type is a dependent function from values n
in its domain nat to array int n, the latter being an example of a type
that is indexed both by a type (int) as well as a value (n). The kind
given to the type constructor array is ⋆⇒ nat⇒ ⋆ , indicating that it
constructs a ⋆-kinded type (the kind given to the types of values and
computations) from a ⋆-kinded type and a nat-typed value. Types
are ascribed to terms using a single colon (x:t) whereas kinds are
ascribed to types using two colons (int::⋆).

The type nat itself can be defined using the ghost refinement,
x:int{x ≥ 0}, a refinement of the primitive type int. Here, the for-
mula x ≥ 0 is itself a type, built using the type constructor ≥ ::int⇒
int ⇒ E. The kind E is a base kind in F⋆, and stands for the
F⋆ propositions that have non-constructive (say, SMT-supplied)
proofs. Importantly, the representation of nat is the same as int,
and indeed nat is a subtype of int.

The formulas that appear in ghost refinements are decided us-
ing an SMT solver. As such, decidability of type checking in F⋆

is modulo decidability of the logic used in the solver. We gener-
ally use a first-order logic extended with some common theories,
including equality, linear arithmetic, and functional arrays.

2.2 The Hoare state monad
The state monad is a convenient way of structuring stateful compu-
tations in a functional language. Computations in the state monad
are functions from an initial heap to a pair containing the computed
value and resulting heap, i.e., heap→ (α * heap). Nanevski et al.
(2008) integrate a Hoare logic (Hoare 1969) with the state monad
using dependent types. The resulting monad is called the Hoare
state monad, or Hoare monad.

Encoding the Hoare state monad in F⋆

type heap :: ⋆
type ST (φ ::heap⇒ E) (α ::⋆) (ψ::α ⇒ heap⇒ E) =

h:heap{φ h}→ (x:α * h’:heap{ψ x h’})

val returnST : ∀ α ::⋆ ,
ψ::α ⇒ heap⇒ E .
x:α

→ST (ψ x) α ψ

let returnST α ψ x h = (x,h)

val bindST : ∀ α ::⋆ , β ::⋆ ,
φ ::heap⇒ E ,
ψ1::α ⇒ heap⇒ E ,
ψ::β ⇒ heap⇒ E .
ST φ α ψ1

→ (x:α →ST (ψ1 x) β ψ)
→ST φ β ψ

let bindST α β φ ψ1 ψ f g h = let x, h = f h in g x h

Informally, the Hoare state monad is simply the state monad
(heap→ (α * heap)) augmented with predicates to track the pre- and
post-conditions of a stateful computation that may read or write a
heap and produce an α -typed result. In the listing above heap is
an abstract type, and the STφ α ψ is the type of computation which
when run in a heap h satisfying the pre-condition φ h produces a
result x:α and an output heap h’ satisfying the relation ψ x h’, unless
it diverges.

As usual, the ST monad comes with with two operations,
bindST and returnST, for sequencing monadic computations and
lifting pure values into the monad, respectively (Wadler 1992).
Lifting values into the Hoare state monad is simple. Values are
pure, by definition having no effect on the heap, and so any proper-
ties of the initial heap are preserved in the resulting heap. Working
backwards in a weakest pre-condition style, returnST takes the
form of a polymorphic function on types α and values x of type α,
yielding a stateful computation where the final heap is unchanged
and returned along with x.

The bindST operator allows a stateful computation f with a
result type α to be composed with a stateful function g that expects
an α and returns a β . bindST is also polymorphic in the pre- and
post-conditions of f and g. The bindST function allows two stateful
computations to be composed, so long as the post-condition of the
first matches the pre-condition of the second. The type, in effect,
captures the classic Hoare rule for sequencing.

2.3 The Dijkstra state monad
Notice that writing specifications for the ST-monad that are poly-
morphic in the post-condition predicate is quite convenient, e.g.,
one does not have to directly state that returnST leaves the input
heap h unchanged. Without this polymorphic style one would need
state extra conditions to relate the output heap to the input heap, for
example, by making use of two-state predicates as post-conditions.
To avoid the additional complexity of two-state predicates (and to
simplify type inference), we embrace post-condition polymorphism
wholeheartedly. We identify a variant of the Hoare monad, the Di-
jkstra state monad, and define it below.

Definition of the Dijkstra state monad in F⋆

type DST (α ::⋆) φ ::(α ⇒ heap⇒ E)⇒ heap⇒ E =
∀ψ::(α ⇒ heap⇒ E). ST (φ ψ) α ψ

val return : ∀α . x:α →DST α (Λψ::α⇒ heap⇒ E .ψ x)
let return α x ψ h = (x, h)

val bind : ∀α ::⋆ , β ::⋆ ,
φ1::(α ⇒ heap⇒ E)⇒ heap⇒ E ,
φ2::α ⇒ (β ⇒ heap⇒ E)⇒ heap⇒ E .
DST α φ1

→ (x:α →DST β (φ2 x))
→DST β (Λψ. φ1 (λy. φ2 yψ))

let bind α β φ1 φ2 f g ψ h =
let y, h’ = f (λy.φ2 yψ) h in
g y ψ h’

Rather than work directly with pre- and post-conditions, we ab-
stract the semantics of each computation using a predicate trans-
former φ (Dijkstra 1975) that characterizes the effects of the com-
putation in a weakest pre-condition style. In essence, DST t φ is a
refinement of the state monad, quantifying over all post-conditions
ψ and generating a pre-condition (φ ψ) on the initial heap h and
a similar refinement, ψ , for the post-condition, relating the return
value x to the final heap h’.

The displays above show the kinds of all the type variables
and explicit type abstraction and application. Henceforth, we omit
explicitly mentioning these when they can be inferred from the
context.

2.4 Polymorphic specifications for higher-order functions
In the previous section, predicate polymorphism allowed us to give
precise types to our monadic combinators. However, programs that
use these combinators also need predicate-polymorphic specifica-
tions. The type of apply mentioned in the Introduction is one exam-
ple: we revisit it in more detail here.

A function f that abstracts over another function g must have a
specification that abstracts over the specification of g. Indeed, we

insist such a function to be maximally general in the specification
of g, i.e., f must be parametric in the predicate transformer that
represents the semantics of g. In Section 4.5, we impose a well-
formedness condition on the types of higher-order functions to
enforce this condition.

To illustrate, we start with the simplest higher-order function,
the apply combinator, which abstracts function application. We
show its type and definition in our system below.

The type and implementation of apply
val apply:∀α,β . η .(y:α →DST β (η y))→x:α →DST β (η x)
let apply f x = f x

The specification above shows that the predicate transformer
of apply itself is just the predicate transformer of the abstracted
function f.

The apply combinator, like all higher-order functions in our sys-
tem, has a type of the following shape: η .(x:t1 → DST t2(ηy))→
DST t φ . Each function-typed argument in a type is accompanied
by a predicate transformer η which captures the specification of
the abstracted function. The predicate transformer variable η is in
scope to the right of the dot that follows it, i.e., it may appear free
in t1, t2, t or φ . Requiring every higher-order function to be given a
type with this syntactic shape imposes a uniformity in the shape of
function types, while facilitating a significantly simpler algorithm
for comparing and unifying types, without loss of expressiveness.

The apply function is simple. But, more complex higher-order
functions require more elaborate specifications. The display below
shows the type and definition of twice, the combinator that applies
its argument twice.

Annotated higher-order function: twice
val twice: ∀α . η .(y:α →DST α (η y))

→x:α
→DST α (Λψ . η x (λ z. η z ψ))

let twice f x = let y = f x in f y

In the body of the function twice (above), we apply the ab-
stracted function f twice, each time in a context that requires a dif-
ferent post-condition. In general, we may apply an abstracted func-
tion in arbitrarily many contexts. Indexing the DST monad with
predicate transformers captures this precisely. The above type is of
the form η .(y:τ →DST t (η y))→ t′, where η is a predicate trans-
former variable that models the behavior of the abstracted function
y:τ→DST t (η y). With predicate transformers, the type of twice is
exactly as one would expect: the predicate transformer for the en-
tire function is simply the predicate transformer variable composed
with itself. In Section 5, we show how predicate transformers can
be combined with loop invariants to give precise specifications to
higher-order recursive functions.

Now, rather than attempting to automatically infer such rich
specifications for functions like twice, our algorithm requires all
functions that abstract over function parameters to be annotated
with their specifications. Given such an annotation, our algorithm
can infer instantiations of predicate transformer variables at every
call site of these functions.

The rationale behind this design is that, typically, higher-order
functions (e.g., map, fold) abstract over some form of complex
(and often recursive) control. Since recursive functions require
programmer-provided invariants anyway, an inference algorithm
over-engineered to infer precise pre-conditions for higher-order
functions is a poor trade-off. Instead, since the number of call sites
outweighs the number of definitions of a higher-order function,
a simpler algorithm that can infer annotations at call sites using
annotations at definitions seems a better choice.

A client of twice
let inc x = x := !x + 1
let addTwo r = twice (λ (). inc r) ()
(* Inferred type *)
val addTwo : r:ref int→DST unit (Λψ PreInc r (λx. PreInc x ψ))

where PreInc = λx.Λψ.λ s0. ψ () (upd s0 x ((sel s0 x) + 1))
(* Elaborated to F* *)
let addTwo = λ r. twice unit PreInc (Λγ.λ(). inc r) ()

Given the annotation on twice, a programmer may freely use
the inc function, and write the code shown above. We can infer its
type and elaborate it to F⋆—passing closures that capture refer-
ences, generalizing its type, and inferring the instantiations is all
computed automatically.

2.5 Polymorphic specifications for first-order code
Polymorphic specifications are not only useful for higher-order
code. In first-order programs with no annotations, pre-conditions
can be computed symbolically using polymorphic post-conditions,
as long as such programs do not employ recursion. As first-order
functions often appear frequently in higher-order code as top-level,
utility or even anonymous functions, complete type inference over
a first-order, recursion-free fragment of λDST relieves a substantial
burden on the programmer.

Implementation of next fragment in λDST

let next fragment l =
if is empty stream !out
then None
else let f, rem = stream read !out l in

out := rem;
Some f

As a concrete example, we show a program and its inferred
specification (adapted from an ongoing development, independent
of this paper, that aims to certify an implementation of the TLS-1.2
protocol2). The details of next fragment and its specification are
of secondary importance—the main point is that the specification
is arguably more complex than the function itself! Code like this
is often written by F⋆ programmers, manually threading state in
a monadic style, and painstakingly writing detailed specifications
even for small functions. With the λDST type inference and elabo-
ration algorithm, we can now write imperative programs in direct
style, and automatically compute a specification as precise as the
manual specification written previously.

Inferred specification of next fragment

val next fragment: l:int→
DST (option fragment)

(Λψ . λs. (IsEmpty s.outÔ⇒ ψ None s) ∧
(not(IsEmpty s.out)Ô⇒

(∀f. StreamRead s.out fÔ⇒
ψ (Some f) (Upd s out (App s.out f)))))

We conclude our overview with a technical remark. Hoare-style
program logics are sometimes formulated with post-conditions that
can mention both the pre- and the post-state. However, with poly-
morphic specifications, the additional complexity is unnecessary.
The types inferred for inc, addTwo, next fragment, etc., illustrate
how we can speak about the post-state as a function of the pre-state
using predicate transformers. In a sense, polymorphic predicates
give us a lightweight notion of framing—specifications need only
mention the locations that are modified.

2 http://tools.ietf.org/html/rfc5246

v ∶∶= x ∣ () ∣ true ∣ false ∣ λx.e value
e ∶∶= v ∣ v1 v2 ∣ let x = e1 in e2

∣ if v then e1 else e2 ∣ ref v ∣!v ∣ v1 ∶= v2 expr.
τ ∶∶= α ∣ unit ∣ bool ∣ heap ∣ set ∣ ref τ small type
t ∶∶= τ ∣ t→ t′ surf. ty.
s ∶∶= t ∣ ∀ᾱ.t surf. ty. scheme
Γ ∶∶= ⋅ ∣ x:s ∣ Γ,Γ′

Figure 1. Surface syntax of λDST terms and types

3. A surface-level type system for λDST
We start our formal presentation by defining λDST and a simple,
surface-level type system for this calculus. In Section 4 we develop
our main type inference algorithm that interprets λDST programs
in the DST monad. Our objective in this part of the paper is to pro-
vide a simple intuitive specification of the subset of λDST for which
our main inference algorithm is guaranteed to succeed. Theorem 2
(Completeness) establishes that every program typeable in our sur-
face type system can also be typed by our main algorithm.

3.1 Syntax
The syntax of λDST terms is shown in Figure 1. Values v and ex-
pressions e are standard for a λ calculus with references (reference
values also being names x). Later, we show how to elaborate λDST
programs into F⋆. For this purpose, λDST inherits some of the id-
iosyncrasies of F⋆. Notably, we restrict function arguments to be
values, as it simplifies the treatment of value dependency in F⋆.
Non-value function arguments must be hoisted using a let-binding.

We also show the syntax of surface-level types in λDST. This
resembles the type language of ML, where polymorphic type
schemes s are distinguished from mono-types t. However, λDST
goes a step further and separates out a subset of the mono-types,
i.e., the non-function, or small types, τ . As we will see, the key re-
striction in λDST is that in order for inference to succeed, function
parameters and references must always have small types.

3.2 Typing
The surface typing judgment is written Γ ⊢ e ∶ t, shown in Figure 2.
The judgment is mostly standard for an ML-like language. For
example, we have the value restriction, embodied in the rules (S-
Bind) and (S-Gen), where only the types of let-bound values are
generalized. The main interesting elements to pay attention to are
the three highlighted rules.

The rule (S-x) states that a type scheme∀ᾱ.t can only be instan-
tiated by substituting small types for the type variables. Recall from
Section 2.4 that we require function types to have a specific syntac-
tic shape—higher-order functions must also abstract over predicate
transformers corresponding to their function-typed arguments. Re-
stricting (S-x) in this manner ensures that this invariant is preserved
even through type instantiation.

The rule (S-Lam) shows that we only infer types for λDST
functions that abstract over non-function-typed values. As already
mentioned in Section 2.4, we view the inference of types for higher-
order arguments as a poor trade-off—the complexity required in
the inference algorithm outweighs the likely benefit, particularly
as most higher-order functions involve some form of recursive or
iterative control and must be annotated with an invariant anyway.
Of course, λDST programs can still be higher-order—the context Γ
is free to bind names at types of an arbitrary order. Thus, in a sense,
we infer types for λDST programs that are clients of fully annotated
higher-order libraries.

Finally, the rule (S-Ref) requires that references hold only non-
function values. To appreciate the need for this restriction, consider
a program that allocates a ref-cell, storing a value of type t1 =

x:int→ DST int φ in it. Later, it updates the same ref-cell storing
a value of type t2 = x:int→ DST int φ

′ in it. This program would
be well-typed in ML (since the reference can just be given the type
ref (int→ int). However, typing it in the DST monad requires giving
it a type that is a common supertype of t1 and t2. Inferring such a
common supertype is non-trivial.

The last restriction may make it seem that λDST programs are
restricted to use a first-order store. This is not true. So long as
a reference can be given a small type, there is no problem. For
example, in concurrent work on using λDST to verify JavaScript
programs, we routinely employ a higher-order store, but, every
reference has a small type, since each value in the store, even if
it contains a function closure, has type dynamic.

4. Verification condition generation for λDST
We now present our main type inference algorithm. To simplify the
presentation, we assume that a source λDST program has already
been typed using the surface-level judgment, and converted into
an annotated form e, where every λ -bound variable is annotated
with its type, and every use of a variable with a polymorphic type
is annotated with its type instantiations. This annotation of source
terms is entirely straightforward—we relegate to the appendix the
definition of a judgment Γ ⊢ e ∶ t↝ e, which surface types a source
term e and emits an annotated term e. Although, formally, we
present our type inference procedure as a two-pass algorithm, in
practice (as in our implementation), surface typing and verification
condition generation can be done in a single pass.

4.1 Syntax and interpretation of types
The syntax of annotated λDST terms and the full language of types
is shown in Figure 3. Annotated terms include λ -abstractions with
annotations on the bound variable and variables xτ̄ subscripted with
type instantiations, if any. The full type language includes the small
types τ of the previous section. But, function types t are dependent
and have a monadic co-domain, DST t φ , where φ is a predicate
transformer characterizing the function’s effect on the heap. Note
that monadic types may only appear to the right of an arrow, as is
standard in a monadic interpretation of ML (Swamy et al. 2011b).
Type schemes σ are as in the surface type system, except the
generalized type is now a full type t instead of a surface type t.
Function types. Our restrictions on the shape of function types are
manifest in the syntax. First, note that all function types have a
monadic co-domain, i.e., a co-domain of the form DST t φ . This
means that all functions are considered impure. This is clearly sub-
optimal. For example, the function f = λx.x+1 could be given a
precise, pure type using only the language of refinements in F⋆,
e.g., x:int→ y:int{y = x+1}. However, for simplicity in λDST, we
do not have refinement types on their own. Pre- and post-conditions
on the Hoare monad are the only way to state refinement properties.
So, we write the type of f as x:int→DST int (Λψ.λh.ψ (x+1) h).
From this type we can conclude that f has no write effects on
the heap, recovering some information about its purity, albeit in
a roundabout way. In the long run, we expect to integrate λDST
with recent work on inferring precise monadic types for ML pro-
grams (Swamy et al. 2011b) to alleviate this limitation. In the mean-
time, we limit ourselves to functions with monadic co-domains.

Next, note that function types come in two flavors. The first
takes the form x:τ → DST t φ . This is a dependent function, with
a small type τ in its domain. Higher-order functions, however, take
a more stylized form, and are written ηκ .t1 → DST t2 φ . Note, the
formal parameter t1 is not directly named. Instead, we bind a set
of predicate transformer names ηκ , in scope both within t1 and to
the right of the arrow. In more explicit syntax, ηκ .t1 → DST t2 φ

Γ ⊢ () ∶ unit
S-1

v ∈ {true, false}
Γ ⊢ v ∶ bool

S-b
Γ(x)= ∀ᾱ.t

Γ ⊢ x ∶ t[τ̄/ᾱ] S-x

Γ,x:τ ⊢ e ∶ t
Γ ⊢ λx.e ∶ τ → t

S-Lam
Γ ⊢ v1 ∶ t→ t′ Γ ⊢ v2 ∶ t

Γ ⊢ v1 v2 ∶ t′
S-App

Γ ⊢ v ∶ bool ∀i ∈ {1,2}.Γ ⊢ ei ∶ t
Γ ⊢ if v then e1 else e2 ∶ t S-If

Γ ⊢ v ∶ τ
Γ ⊢ ref v ∶ ref τ

S-Ref
Γ ⊢ v ∶ ref τ

Γ ⊢!v ∶ τ S-Rd

Γ ⊢ v1 ∶ ref τ Γ ⊢ v2 ∶ τ
Γ ⊢ v1 ∶= v2 ∶ unit

S-Wr
e1 ≠ v Γ ⊢ e1 ∶ t1 Γ,x:t1 ⊢ e2 ∶ t2

Γ ⊢ let x = e1 in e2 ∶ t2
S-Bind

Γ ⊢ v ∶ t1 s = ∀ᾱ.t1 ᾱ = FTV(t1)∖FTV(Γ) Γ,x:s ⊢ e ∶ t
Γ ⊢ let x = v in e ∶ t S-Gen

Figure 2. Γ ⊢ e ∶ t: Surface typing for λDST, with important rules highlighted

v ∶∶= . . . ∣ λx:τ.e annot. value
e ∶∶= . . . ∣ xτ̄ annot. expr
t ∶∶= τ ∣ x:τ →DST t φ ∣ ηκ .t1 →DST t2 φ type
σ ∶∶= t ∣ ∀ᾱ.t type scheme
κ ∶∶= ⋆ ∣ E ∣ x:t⇒ κ ∣ α::κ ⇒ κ kinds
φ ,ψ ∶∶= ηκ ∣ T ∣ F ∣ a1 = a2 ∣ a1 ∈ a2 ∣ φ ∧ψ formula

∣ φ ∨ψ ∣ ¬φ ∣ φ1 Ô⇒ φ2 ∣ ∀x:σ .φ ∣ ∃x:σ .φ
∣ λx:t.φ ∣ φ a ∣ Λα::κ.φ ∣ φ ψ ∣ ∀α::κ.φ

a ∶∶= v ∣ sel a1 a2 ∣ upd a1 a2 a3 ∣ dom a ∣ a1 op a2 logic term
Γ = ⋅ ∣ x:σ ∣ Γ,Γ′ typ. env.

Figure 3. Annotated λDST terms and the full type language

is sugar for ∀η ∶∶ κ.t1 → DST t2 φ . The display below shows the
interpretation of λDST types in F⋆.

Preventing the co-domain of a higher-order function from being
directly dependent on its parameter may seem like an odd restric-
tion. However, recall that all functions are impure, and consider a
type of the form f ∶ (t1→DST t2 φ)→DST t φ

′. If f were to appear
free in t or φ

′, of what use would it be? An application of an impure
function f in these types is clearly nonsensical—we cannot reduce
impure functions at the type level. Instead, having φ

′ dependent on
φ , the predicate transformer for f is much more useful.

Interpretation of λDST types in F⋆

[[⋆]] = ⋆

[[E]] = E
[[x:t⇒ κ]] = x:[[t]]⇒ [[κ]]

[[α::κ ⇒ κ
′
]] = α::[[κ]]⇒ [[κ

′
]]

[[φ]] = . . . (a congruence of [[⋅]] on the
structure of formulas)

[[a]] = a
[[τ]] = τ

[[x:τ →DST t φ]] = x:[[τ]]→DST [[t]] [[φ]]

[[ηκ .t →DST t′ φ]] = ∀η ::[[κ]].[[t]]→DST [[t′]] [[φ]]

where
DST t φ = ∀ψ::(t⇒ heap⇒ E).ST (φ ψ) t ψ

ST φ t ψ = h:heap{φ h}→ (x:t * h′:heap{ψ x h′})

For simplicity and clarity, higher-order functions in λDST are
written ηκ .(t1 → DST t2 ηκ) → DST t3 φ , and now both t3 and
φ may refer to the predicate transformer of the formal param-

eter.3 Additionally, by providing a syntactic form for accompa-
nying function-typed parameters with type variables representing
their predicate transformers, we avoid introducing a general form
of first-class polymorphism into the language—the only kind of
first-class polymorphism allowed is the abstraction over predicate
transformers in higher-order functions. Finally, in Section 4.5, we
see how by systematically writing higher-order specifications ac-
cording to this restricted syntax, we obtain our completeness result.
Formulas. We use the metavariables, φ or ψ , to stand for formulas
and functions over formulas. Formulas here are drawn from a logic
with the usual first-order connectives, equality over atoms a and
set membership. We also include abstraction over atoms λx:τ.φ as
well as abstraction over types and formulae, Λα::κ.t, and the corre-
sponding application forms—the latter are convenient, particularly
for higher-order specifications. For conciseness when writing for-
mulae, we often drop type annotations on bound variables—these
can easily be inferred.

The atoms a include values, but also terms from the select/up-
date theory of maps—sel h a selects the contents of the map h at
location a; upd h x a is a map that is identical to h, except at x
where it contains a; dom h is a set representing the domain of the
finite map h.
Contexts. Type contexts Γ, as usual, bind a set of unique names to
their type schemes.

4.2 Inference of predicate transformers
Figure 4 presents the core of our inference algorithm, where we
rely on two forms of judgment. Values, which by definition have
no effect on the heap, are typed under the following form: the judg-
ment Γ ⊢ v ∶ t infers a type t for the annotated value v, given a
context Γ. Expressions, however, may contain effects—indeed, for
simplicity, we consider all expressions to be effectful. The judg-
ment Γ⊢ {φ}e ∶ t {ψ} infers a type t and a pre-condition φ , given a
post-condition ψ and a context Γ. Furthermore, the judgment states
that should e be executed with a heap satisfying φ and terminate,
then the resulting heap and value returned will satisfy ψ—a stan-
dard Hoare logic interpretation. We present the latter judgment as
a backwards-style weakest pre-condition calculus. We expect ψ , a
predicate of kind t⇒ heap⇒E, as input to the judgment, and com-
pute φ , a heap⇒ E predicate.

The rules for variables come in two parts. The rule (Var) should
be familiar. However, it applies only to variables with mono-types.
Variables with poly-types are typed using the rule (Var-poly). The

3 Sometimes in our examples, we still give a name to a function-typed
formal parameter so that we can speak about it.

Γ ⊢ v ∶ t ⊢ Γ ok Γ(x)= t
Γ ⊢ x ∶ t Var

fresh η Γ,x:τ ⊢ {φ}e ∶ t {η}
Γ ⊢ λx:τ.e ∶ x:τ →DST t (Λη .φ) Lam

Γ ⊢ {φ}e ∶ t {ψ} ⊢ Γ ok Γ(x)= ∀ᾱ.t′ t′[τ̄/ᾱ]= t

Γ ⊢ {λh.∀x:t.φ x h}xτ̄ ∶ t {φ} Var-poly

Γ ⊢ v ∶ t
Γ ⊢ {φ v}v ∶ t {φ} Ret

fresh η Γ ⊢ {φ}e1 ∶ t1 {η}
Γ,x:∣t1∣⊢ {φ

′}e2 ∶ t2 {ψ} ς = [λx:t1.φ ′/η]
Γ ⊢ {ςφ} let x = e1 in e2 ∶ ⌈t2⌉x:t1 {ψ} Bind

Γ ⊢ v ∶ t σ = ∀ᾱ.t ᾱ = FTV(t)∖FTV(Γ) Γ,x:σ ⊢ {φ}e ∶ t′ {ψ}
Γ ⊢ {φ[v/x]} let x = v in e ∶ t′[v/x]{ψ} Gen

Γ ⊢ v1 ∶ x:τ1 →DST t2 φ Γ ⊢ v2 ∶ τ1

Γ ⊢ {φ[v2/x] ψ}v1 v2 ∶ t2[v2/x]{ψ} App-τ

Γ ⊢ v1 ∶ ηκ .t1 →DST t2 φ
′

Γ ⊢ v2 ∶ t′1 ∣t′1∣= ς ∣t1∣ ς = [φ/η]
Γ ⊢ {ςφ

′
ψ}v1 v2 ∶ ςt2 {ψ} App-t

Γ ⊢ v ∶ bool ∀i ∈ {1,2}.Γ ⊢ {φi}ei ∶ ti {ψ} t =∣t1∣ ⊔ ∣t2∣
φ = λh.(v = true Ô⇒ φ1 h)∧(v = false Ô⇒ φ2 h)

Γ ⊢ {φ} if v then e1 else e2 ∶ t {ψ} If

Γ ⊢ v ∶ τ φ = λh.∀y. y /∈ dom h Ô⇒ ψ y (upd h y v)
Γ ⊢ {φ} ref v ∶ ref τ {ψ} Ref

Γ ⊢ v ∶ ref τ v′ = sel h v
Γ ⊢ {λh.ψ v′ h} !v ∶ τ {ψ} Rd

Γ ⊢ v1 ∶ ref τ Γ ⊢ v2 ∶ τ
Γ ⊢ {λh.ψ () (upd h v1 v2)}v1 ∶= v2 ∶ unit{ψ} Wr

Figure 4. Inference of predicate transformers

A sequence of bound names: A ∶∶= ⋅ ∣ xA ∣ ηA
We write: Λ(xA).φ to mean λx.ΛA.φ ; and ΛηA.φ to mean Λη .ΛA.φ ; and Λ ⋅ .φ to mean φ

Normalizing a type
∣τ ∣A = τ

∣x:τ →DST t ψ ∣A = x:τ →DST ∣t∣x A ((Λ(x A).ψ) x A)
∣ηκ .t →DST t′ ψ ∣A = ηκ .t →DST ∣t′∣η A ((Λη A.ψ) η A) when η ; ⋅ ⊢ t ok

Joining two types
τ ⊔τ = τ

x:τ →DST t1 ψ1 ⊔ x:τ →DST t2 ψ2 = x:τ →DST t1 ⊔ t2 (Λψ.ψ1 ψ ∧ψ2 ψ)
ηκ .t1 →DST t′1 ψ1 ⊔ηκ .t1 →DST t′2 ψ2 = ηκ .t1 →DST t′1 ⊔ t′2 (Λψ.ψ1 ψ ∧ψ2 ψ)

Closing a type w.r.t a name (NB: when ηκ .t′ →DST t ψ is uniform (§4.5) FV(t′) ⊆ η̄k)
⌈τ⌉x:tx = τ

⌈y:τ →DST t ψ⌉x:tx = y:τ →DST ⌈t⌉x:tx (Λη .λh.∀x:tx.ψ η h) when x ∈ FV(ψ)
⌈y:τ →DST t ψ⌉x:tx = y:τ →DST ⌈t⌉x:tx ψ otherwise
⌈ηκ .t′ →DST t ψ⌉x:tx = ηκ .t′ →DST ⌈t⌉x:tx (Λη .λh.∀x:tx.ψ η h) when x ∈ FV(ψ)
⌈ηκ .t′ →DST t ψ⌉x:tx = ηκ .t′ →DST ⌈t⌉x:tx ψ otherwise

Figure 5. Auxiliary functions for the inference of predicate transformers

reason for this distinction is that type instantiation in λDST is trans-
lated to explicit type applications in F⋆, and there, type applica-
tions are an expression form. Note, the (Var-poly) rule relies on type
instantiation annotations to compute the instantiation for the type
scheme. In practice, the instantiations can be computed via unifica-
tion, as usual.

Next, we show a rule for typing λ -abstractions. The rule (Lam)
shows how predicate polymorphism allows us to make progress on
predicate transformer inference. When typing the body of an effect-
ful function, we compute its pre-condition symbolically, by using
a fresh predicate variable η for its post-condition. The conclusion
closes over η , generating a predicate transformer from φ that meets
our well-formedness condition.

Of course, we also have standard rules for typing the unit and
boolean constants—these are just as in the surface typing judgment
and we leave them out here.

Turning to the expression forms, we have the rule (Ret), corre-
sponding to the unit of the monad. It lifts a value into the monad.
Its weakest pre-condition is a heap predicate which is just the post-
condition on the returned value.

The rule (Bind) is for monadic sequencing. Typing the second
sub-expression requires the type of the let-bound variable. How-
ever, typing the first sub-term requires a post-condition as input. So,
we seem to be in a spot of bother. But, this is easily solved. We infer
a pre-condition for e1 using a symbolic post-condition η , yielding
the type of x needed to type the second computation. Typing e2 us-
ing the post-condition ψ , we obtain an intermediate heap predicate

φ
′, a pre-condition of the body e2, and use this predicate (closed

appropriately) to compute a pre-condition for the entire term by
substituting it for instances of the variable η in φ .

There are two other subtleties in the (Bind) rule. The first is the
use of the operator ∣⋅∣ in the second premise. This is an auxiliary
function from types to types (defined in Figure 5), where ∣t1 ∣ is
the type t1 in a canonical form. The significance of this canonical
form is made apparent in Section 4.5, but for now, suffice to say
that putting types in canonical form makes it easy to compare two
function types for equality. Intuitively, the canonical form of a
dependent function x:τ → DST t φ is x:τ → DST t′ (φ

′ x), where
x does not appear free in φ

′, and t′ is the canonical form of t.
Similarly, a higher-order function type ηκ .t → DST t′ (ψ η̄) is in
canonical form if η̄ is not free in ψ and t′ is in canonical form.

The second subtlety in (Bind) is in the use of the operator ⌈t2⌉
x:t1

in the conclusion. This operator, defined in Figure 5, serves to
close the type t2 by introducing a universal quantifier for the let-
bound name x which would otherwise escape its scope. Consider
the program letx = ein λy:τ.x. The type of the λ -term in the body
is tbody = y:τ → DST tx (Λη .η x). Naı̈vely assigning this type to
the entire let-expression causes the let-bound variable x to escape
its scope. The operator ⌈tbody⌉

x:tx closes over the variable x:tx,
rewriting the type tbody to y:τ →DST tx (Λη .λh.∀x:tx.η x h).

We present two rules for application. The (App-τ) rule describes
first-order functions applied to τ-typed values, while the rule (App-t)
addresses higher-order functions applied to function-typed values.
The former employs substitution on the dependent argument, as is
standard in a dependent type system, and draws on the predicate
transformer φ to generate the weakest pre-condition.

The remaining rule, (App-t), is more complicated, as it must
instantiate the predicate transformer variables η coupled with the
higher-order function arguments. We accomplish this by relying
on the premise ∣ t′1 ∣= ς ∣ t1 ∣, which serves to unify the type t′1
(inferred for the function argument) with the type of the parameter
t1 (supplied as part of the higher-order function type). Given that
∣t′1 ∣ is in canonical form, unifying t1 with it involves instantiating
the predicate transformer variables η̄ that appear free in t1 with the
concrete predicate transformers that appear in ∣t′1∣. The instantiation
is the substitution ς . Having established a means of instantiating the
η variables, we can apply the predicate transformer φ

′ to generate
a weakest pre-condition for the application term.

A natural question arises as to whether such a unification is
always possible—after all, we claim in Section 3 that any term
typeable in the surface language can be typed in the main judg-
ment. In particular, there are many ways to write E-kinded predi-
cate transformers, like those that show up in the monadic codomain
of t1. Will they always present the requisite shape, such that unifica-
tion with the computed type t′1 will succeed? Section 4.5 introduces
a well-formedness condition on types in the context to ensure that
higher-order function types are always maximally general in the
predicate transformers η that model their arguments; and, that such
functions are always dependent on the arguments in scope. These
conditions are sufficient to ensure that the unification in (App-t) (for
well surface-typed programs) always succeeds.

The next rule (If) computes a weakest pre-condition for the con-
ditional form. We compute a weakest pre-condition and a type
for each branch, but then have to compute a single type and pre-
condition for the entire expression. Computing the pre-condition
is easy: we simply take the conjunction of the computed pre-
conditions for each branch, under the suitable guard. But comput-
ing a common type for the branches requires a bit more work. We
define a join operator, ⋅ ⊔ ⋅ on types, at the bottom of the Figure 4.
Since we know that the source term is well-typed in the surface type
system, we know that both branches have types that are structurally
the same. Furthermore, by our well-formedness condition on envi-

ronments, we prove that the types computed by our algorithm can
always be put in a canonical form, where higher-order functions are
maximally general in the predicate transformers of their function-
typed arguments. Thus, in the definition of the join operator, we
can assume that both types have syntactically identical domains,
but may differ on the predicate transformers in their co-domains.
The join then simply takes the conjunction of the predicate trans-
formers.

Finally, the operations on references are typed using (Ref), (Rd),
and (Wr), again with standard weakest pre-condition generation,
with logical primitives drawn from the select/update theory of
maps.

4.3 An example derivation
Before moving on, we revisit the next fragment example from Sec-
tion 2 to show a sample derivation. In this version, we rewrite the
example in A-normal form—so as to more easily demonstrate the
inference derivation—and desugar sequencing into the standard let
binding. We also provide types for the functions is empty stream
and stream read, which are accompanied by the predicate trans-
formers EmptyStreamTX and StreamReadTX. Finally, we make use
of standard datatypes and tuples, although they are not presented as
part of the core calculus.

Deriving a type for next fragment

1 val is empty stream : s:stream→DST bool (EmptyStreamTX s)
2 val stream read : s:stream→DST (fragment * stream) (StreamReadTX s)
3
4 let next fragment = fun l→
5 {φ1 = λh. (λout stream. φ2) (sel h out) h}
6 let out stream = !out in
7 {φ2 = EmptyStreamTX out stream (λb. φ3)}
8 let b = is empty stream out stream in
9 {φ3 = λh. (b = true Ô⇒ φ31 h) ∧ (b = false Ô⇒ φ32 h)}

10 if b
11 {φ31 = ψ None}
12 then None
13 {φ32 = φ321}
14 else
15 {φ321 = StreamReadTX out stream (λ f .λ rem. φ322)}
16 let f, rem = stream read out stream l in
17 {φ322 = λh. φ323 () (upd h out rem)}
18 let = out := rem in
19 {φ323 = ψ (Some f)}
20 Some f
21 {ψ}

Technically, the form of the term is let x = v in e, binding the
function on l to the name next fragment. We set that aside for the
moment and focus on the function itself. It has the form (λ l:int. e),
where the int annotation comes from the surface inference phase.
Our first step is to apply the rule (Lam), which adds l:int to the
environment, picks a fresh post-condition variable ψ , and computes
a type and pre-condition for the body of the function.

The body of next fragment (lines 5–21) is a sequence of let
bindings that hoist the dereference of out and the computation of
the if statement condition. Working backwards, we begin by typing
the if statement, which—again working backwards—brings us to
the end of the second branch on line 20. Line 20 is a value, and so
we use the rule (Ret) to lift it into the DST monad, producing the pre-
condition on line 19. Continuing to work backwards, we examine
the next statement in this sequence of let statements, out := rem on
line 18. Here, we apply the rule (Wr), producing a pre-condition
reflecting the pending update to the heap.

The final statement in this branch (line 16) is a bit tricky. It
calls for the rule (App-τ), which types stream read as a function and
out stream as a stream—in both cases, by applying the rule (Var) to
pull the variables from the context. We compute the pre-condition

by applying the predicate transformer StreamReadTX (extracted
from the type of out stream) to the supplied post-condition. We
leave StreamReadTX abstract for simplicity, but in practice we
would substitute out stream for the dependent parameter name.

But our task on line 16 is only half done—we typed the function
application but not the let binding itself. As premises, the (Bind)
rule picks a fresh post-condition variable η , used to type the first
expression, and then types the second premise using the supplied
post-condition, ψ . There are two subtle issues here. The first lies
in pushing the bound variable into the context. Our completeness
result relies on a well-formedness condition on the context (we
discuss this further when presenting the rule (App-t) and again in
presenting our completeness result); we employ a normalization
function ∣⋅∣ to ensure that x:t1 meets our well-formedness criteria.
The second subtlety arises in generating the pre-condition for the
let statement itself. The bound variable may appear free in the pre-
condition φ1, and thus escape the binding. To handle this, we close
over x prior to substituting for the post-condition variable η .

To illustrate this point, consider the variable f bound on line 16.
Until this point, f had appeared free in both terms and formulae.
The let statement binds it, but it still exists free in the formula φ322
that will be pushed backward. Thus, we must close over f in the
pre-condition φ322, transforming it into (λ f .φ322). Note that this
new, closed term is exactly the kind of a post-condition—and so
we apply StreamReadTX to it directly.

Returning our attention to the remaining branch of the if state-
ment, we see it is a value, and thus easily lifted with the rule (Ret).
Stepping back, we can now infer a type for the entire if statement.
We have already generated the pre-conditions of both branches, φ31
and φ32, respectively. b is a variable annotated with bool during the
first inference phase; hence an application of the (Const) rule satis-
fies the first premise. Joining the two branch types is trivial—they
are both of the type option fragment. Finally, the pre-condition is
generated in traditional weakest pre-condition style, by predicating
the respective branch constraints on the value of the condition b.
The resulting pre-condition is shown on line 9.

From here, the remaining steps are simple. We again type the
function application on line 8 with (App-τ), generating the pre-
condition of the function application from the predicate transformer
EmptyStreamTX, drawn from the function type, and closing over
the variable b as we generate the pre-condition for the let binding.
Typing the dereference on line 6 relies on the rule (Rd), which
characterizes a dereference as a select operation on the value out
in the heap.

As a result, the pre-condition of the function body is shown on
line 5. At face value, it bears faint resemblance to the type we
showed in Section 2, thanks to abstractions and applications in-
herent in the inference algorithm, as well as the opaque predicate
transformers EmptyStreamTX and StreamReadTX. However, sub-
stituting each of the φi pre-conditions we computed and applying a
standard β reduction will indeed yield the previous, simpler type.

4.4 Soundness
We show the soundness of our type inference algorithm via an
elaboration to F⋆, making use of the soundness guarantee provided
by the F⋆ type system (Swamy et al. 2011a)—we sketch it here,
relegating a formal presentation to the appendix.

The elaboration judgment is written Γ ⊢ v ∶ t ↝ v, for an λDST
value v typed in a context Γ at type t (according to the typing
judgment Γ ⊢ v ∶ t that we have already seen), and then elaborated
into an F⋆ term v. Simultaneously, the elaboration judgment for
expressions is written Γ ⊢ {φ}e ∶ t {ψ}↝ e, where an expression
typed according to our main expression typing judgment Γ⊢ {φ}e ∶
t {ψ} is then elaborated into an F⋆ expression e.

⌊τ⌋ = τ

⌊x:τ →DST t φ⌋ = x:τ → ⌊t⌋
⌊ηκ .x:t →DST t′ φ⌋ = x:⌊t⌋→ ⌊t′⌋
⌊∀ᾱ.t⌋ = ∀ᾱ.⌊t⌋
⌊Γ,x:σ⌋ = ⌊Γ⌋,x:⌊σ⌋

Figure 6. Erasure of types and contexts to the surface level

The elaboration is mostly straightforward. let-bindings typed
using (Bind) are simply applications of the bindST function from
Section 2, with inferred types serving to instantiate the type param-
eters. Generalization via (Gen) introduces explicit type abstraction
followed by a standard let binding in F⋆; instantiation is type ap-
plication. Allocation, dereference, assignment, and assertions are
simply sugar for underlying alloc, read, write, and assert functions,
with the inference rules providing the type arguments. The rule for
translating λ -abstractions is mostly a congruence, except for the
addition of explicit type abstraction over the post-condition vari-
able that is hidden within the DST monad.

To state our theorem, we start by defining a partial erasure func-
tion on types, to relate the DST types in our full system to surface
types. Figure 6 defines a function ⌊⋅⌋ from types t to surface types
t. This is entirely straightforward—we just drop all the predicate
transformer and DST-parts of a type, and retain everything else.

THEOREM 1 (Soundness).
1. Given an environment Γ such that ⊢ SST ;ΓST ,[[Γ]] ok
and values v,v′, and v, and types t,t
such that ⌊Γ⌋ ⊢ v ∶ t↝ v′

and Γ ⊢ v′ ∶ t ↝ v;
then SST ;ΓST ,[[Γ]],FTV(t)∖FTV(Γ); ⋅ ⊢F⋆ v ∶ [[t]].

2. Given an environment Γ such that ⊢ SST ;ΓST ,[[Γ]] ok
and expressions e,e′ and e; types t,t; and ψ such that
SST ;ΓST ,[[Γ]],FTV(t,ψ)∖FTV(Γ) ⊢ [[ψ]] ∶∶ t⇒ heap⇒ E ,
and ⌊Γ⌋ ⊢ e ∶ t↝ e′

and Γ ⊢ {φ}e′ ∶ t {ψ}↝ e;
then SST ;ΓST ,[[Γ]],FTV(t,ψ)∖FTV(Γ); ⋅ ⊢F⋆ e ∶ ST [[φ]] [[t]] [[ψ]].

In the statement of the theorem above, we write SST ;ΓST for
the F⋆ typing signature that gives kinds and types to the type and
term constants (DST, bind etc..) used in λDST. The translation of a
context Γ to an F⋆ context, denoted [[Γ]], is straightforward—we
simply translate each type in Γ according to the interpretation of
types given in Section 4.1. The typing judgment of F⋆ is written
S;Γ; ⋅ ⊢F⋆ e ∶ t, meaning that given a signature S and a context Γ

(and an empty affine compartment ⋅), the expression e has type t.
We also rely on a standard auxiliary function FTV that extracts the
free type variables from types.

As a consequence of soundness of inference, and soundness of
F⋆, we can show that when a well-typed expression e is run in
a context with its free variables in Γ substituted in a well-typed
manner, then the expression e reduces without assertion failures.

4.5 Completeness
Type inference is complete in the sense that λDST programs ty-
peable in our surface type system are also typeable by our algo-
rithm, but yielding a more informative type. We obtain this result by
imposing a uniformity condition on the typing context Γ. The main
condition is that we require all higher-order functions in Γ to be
maximally general in the predicate transformers of their function-
typed arguments. For example, a type η .(x:int→DST int (η x))→
DST int (φ η) is maximally general in its function-typed argument,
since it accepts any int→DST int ψ function as an argument.

While such a condition may seem overly restrictive, we view
higher-order interfaces that are maximally general in their predicate

arguments as good programming practice. Besides, using the types
of ML and Haskell, or indeed the language of our surface type
system, all higher-order interfaces are, by construction, maximally
general in the specifications of their arguments. Thus, for most
higher-order functions that programmers write today, these kinds
of maximally general specifications do not seem too much of a
burden.

Our uniformity condition on types, written N;A ⊢ σ ok, is
defined in the display below. Here, the context A is a (possibly
empty) sequence of predicate transformer and formal parameter
names (η’s and x’s) that are bound at outer scopes in the type.
The context N records a (possibly empty) sequence of predicate
transformer names intended to model the behavior of the function-
typed parameters of a higher-order function. A typing context Γ

(written ⊢ Γ ok) is uniform if for every x:σ in Γ, we can derive
⋅; ⋅ ⊢ σ ok.

Uniformity of types

⋅;A ⊢ τ ok
OK-1

⋅; ⋅ ⊢ t ok ᾱ ⊆ FV(⌊t⌋)
⋅; ⋅ ⊢ ∀ᾱ.t ok

OK-2

N;x A ⊢ t ok x,A /∈ FV(φ) η̂ ⊳ φ

η̂⊕N;A ⊢ x:τ →DST t (φ x A) ok
OK-F1

η ; ⋅ ⊢ t1 ok N;ηA ⊢ t2 ok η ,A /∈ FV(φ) η̂ ⊳ φ

η̂⊕N;A ⊢ ηκ .t1 →DST t2 (φ η A) ok
OK-F2

where
Pred. tx. vars N ∶∶= ⋅ ∣ η ,N
Opt. tx. var η̂ ∶∶= ⋅ ∣ η

Un-cons cons η⊕N = η ,N
Un-cons nil ⋅⊕ ⋅ = ⋅

Match any ⋅ ⊳ φ

Match exact η ⊳ η

We use several auxiliary functions in this judgment. First, η̂

represents an optional transformer variable—it may be nothing (⋅).
We use an operator (a partial function (η̂ ×N) ⇀ N) to split a
possibly empty sequence of variables N into its head and tail. And,
finally, we use a relation ⊳, relating a η̂ to a predicate φ , defined by
the axioms (Match any) and (Match exact).

The first rule, (OK-1) is trivial: all small types are uniform.
However, notice that this rule is only applicable in an empty N
context. The significance of this will become clear shortly.

The rule (OK-2) requires that in any type scheme ∀α.t, all the
type variables α must appear free in the partial erasure of t. This is
to ensure that the type instantiations computed by the surface type
system can be carried over to our core type system, via the rule
(S-var-poly).

The rule (OK-F1) is for function types with a small domain. We
check the co-domain t in a context extended with the name of the
formal parameter, and in the conclusion, we expect the predicate
transformer to be a function φ of all the formal parameters in
scope, i.e., x A. This structure of a type corresponds to the canonical
form of types described in Section 4.2. Finally, in the last premise,
we require the head of the sequence of predicate variables η̂ to
match the predicate φ . The significance of this will be clearer in
conjunction with the next and last rule (OK-F2).

When checking a higher-order function type t = ηκ .t1 →
DST t2 ψ in (OK-F2), we check the domain type t1 in a context
with the abstracted predicate variables η as the N-context. Revis-
iting the last premise of (OK-F1), let us suppose t1 were of the form
x:τ → DST t (φ x). In order to complete the derivation, we require
φ to be the first predicate variable η abstracted by t, i.e., t would
be maximally general in the specification of t1.

Continuing through the premises of (OK-F2): the second premise
resembles the first premise of (OK-F1)—we check the co-domain in a
context including the η among the formal parameters. The third and
fourth premises also resemble (OK-F1). In the conclusion, again, we
require the predicate transformer to be a function of all the formal
parameters and predicate variables in scope.

With these tools, we can present the following completeness
theorem, where we write ⊢ Γ ok when each type bound in Γ is
uniform.

THEOREM 2 (Completeness).

(1) Given an environment Γ such that ⊢ Γ ok and values v,v′ and
type t such that ⌊Γ⌋ ⊢ v ∶ t↝ v′; then, given a fixed source of
fresh names, there exists a unique t such that Γ ⊢ v′ ∶ t and
⌊t⌋= t.

(2) Simultaneously, given an environment Γ such that ⊢ Γ ok and
expressions e,e′ and type t such that ⌊Γ⌋ ⊢ e ∶ t↝ e′; then, for
any ψ , given a fixed source of fresh names, there exists unique
t,φ such that Γ ⊢ {φ}e′ ∶ t {ψ} and ⌊t⌋= t.

Theorem 2 (Completeness) states that if there exists a surface
typing derivation for e in an erased, uniform context Γ, then either
a pure λDST typing derivation exists, if e is a value, or a stateful
typing derivation can be constructed. The proof proceeds by mutual
induction on the structure of the surface-typing derivations in the
premises.

4.6 Generating first-order verification conditions
The judgement Γ ⊢ {φ}e ∶ t {ψ} infers a stateful pre-condition φ

for the program e and post-condition ψ: if φ holds on an initial
heap, then ψ will hold on the value and heap resulting from the ex-
ecution of e. The underlying F⋆ type system is powerful, and it is
natural to ask whether the inference algorithm—which may instan-
tiate higher-order type arguments at higher-order function calls—
always generates verification conditions that F⋆ can discharge via
an SMT solver with first-order theories. This is indeed the case,
provided higher-order specifications in the context do not directly
make use of higher-order logic. In other words, despite the heavy
use of predicate polymorphism in our type inference algorithm, un-
less a programmer explicitly uses a higher-order assertion, our ver-
ification condition generator never introduces a higher-order proof
obligation. We sketch the proof here.

The syntax of λDST allows higher-kinded quantification in for-
mulae, allowing programmers to write higher-order assertions. This
is undeniably useful, e.g., we have used our verification condi-
tion generator to verify higher-order JavaScript programs (Swamy
et al. 2012a), where specifications make pervasive use of existential
quantification over predicate transformers. While such specifica-
tions are useful, automatically discharging their proofs is a signif-
icant challenge. Indeed, we devised a novel strategy for automat-
ically proving the stylized higher-order formulas that arise in the
context of JavaScript verification using Z3. But, automated proving
for arbitrary higher-order formulas is intractable. While the sacri-
fice of higher-order quantification does limit expressivity, we had
little trouble ensuring that all our benchmark programs, presented
in Section 6, met this restriction.

Thus, our formal development relies on a well-formedness con-
dition ⊢FO φ ok on formulae that simply restricts quantification to
⋆-kinded types, i.e., it proscribes use of the higher-order quantifier
∀α::κ.φ , for all non-base kinds κ . Of course, Λ-abstraction over
higher kinds is still permitted (and necessary, just to use the DST
monad). We lift the ⊢FO φ ok to types and contexts in the obvious
way. Note that our soundness and completeness results hold regard-
less of this restriction—if a programmer chooses to write higher-
order assertions (as we did for JavaScript) our verification condition

generator still generates well-typed F⋆ programs with higher-order
proof obligations.

Before presenting the full theorem, we first show a key sup-
porting lemma establishing that, given a well-formed context and
a well-formed post-condition, our inference algorithm computes a
well-formed pre-condition.

LEMMA 1 (Well-formed Verification Conditions). For all con-
texts Γ such that ⊢FO Γ ok; formulae ψ such that ⊢FO ψ ok;
expressions e; types t; and pre-conditions φ ; if Γ ⊢ {φ}e ∶ t {ψ},
then ⊢FO φ ok.

Intuitively, Lemma 1 (Well-formed Verification Conditions)
shows that the inference algorithm does not introduce higher-
kinded quantification where none previously existed. The proof
proceeds by induction on the structure of the typing relation. We
can now proceed in stating our final theorem.

THEOREM 3 (First-order Verification Conditions). For all con-
texts Γ such that ⊢FO Γ ok; formulae ψ such that ⊢FO ψ ok and
FTV(ψ)=∅; expressions e; types t; pre-conditions φ ; and heaps
h; if Γ ⊢ {φ}e ∶ t {ψ}, then φ h is representable in a first-order
theory.

First, consider the verification condition generated by the in-
ference algorithm. The judgment Γ ⊢ {φ}e ∶ t {ψ} produces a pre-
condition φ that is well kinded in Γ at kind heap⇒ E, and, thanks
to Lemma 1 (Well-formed Verification Conditions), we know that
⊢FO φ ok. Applying the pre-condition to a given initial heap h

yields the verification condition (φ h), which is well-kinded at kind
E. Now, since formulae have a standard beta reduction rule and
there are no fixed points or uninterpreted higher-order predicates,
we can reduce these to a normal form—F⋆ guarantees semantic
equivalence under β -reduction.

Many of the syntactic operators that comprise formulae—
including equality, implication, and quantification over ⋆-kinded
types—can be trivially represented using first-order theories. In
fact, only η variables and higher-kinded quantification pose poten-
tial difficulty—both may lead to instances where a higher-kinded
variable is applied to a type, yielding a term that is both in nor-
mal form and not reducible. However, as Γ binds no η variables,
the case (η φ) is ruled out by kinding, and we rely on the well-
formedness condition to restrict quantification to ⋆-kinded types.
The remaining cases, like (Λα::κ.t φ), are also ruled out, since
these are reducible.

5. A higher-order, recursive example
So far, we have only considered recursion-free code. In this section,
we present a higher-order, recursive example, iter. Giving specifica-
tion to recursive functions requires the use of an inductive invariant.
Callers of such functions will have to manually supply this invari-
ant. However, our inference algorithm can still be used to compute
instantiations for the predicate transformers that model function-
typed arguments. Note, we use curried functions in this example—
although our formal system leaves out currying, our implementa-
tion supports it.

The implementation of iter (shown overleaf) is straightforward—
it recurses over a list l, applying a stateful function f to each ele-
ment. The trickier part is writing its specification in a style that
allows us to infer all but the inductive invariant needed to reason
about the recursion. Lines 1–7 above show the specification of iter.
Its shape is ∀ν ::κ.η .(y:τ → DST t (η y))→ t′. It is polymorphic
in the type α of list elements and Φ, the inductive invariant. At line
2, we see the function argument f, preceded, as usual, by a poly-
morphic predicate transformer variable η , which abstracts over
post-conditions to generate the weakest pre-condition of f. At line

3, we see the list argument l and on line 4 the monadic return type,
with a predicate transformer Ψ ensuring, among other things, that
Φ is indeed inductive and that Φ l be true initially—we discuss it
forthwith.

Type and implementation of iter
1 val iter:∀α::⋆ ,Φ::list α⇒ heap⇒E.
2 η . f:(x:α →DST unit (η x))
3 → l:list α

4 →DST unit Ψ

5 where Ψ = (Λψ.λh. (∀h1. Φ [] h1 Ô⇒ ψ () h1)
6 ∧ (∀h2 hd tl. Φ (hd::tl) h2 Ô⇒ η (λ (). Φ tl) hd h2)
7 ∧ Φ l h)
8 let rec iter f l = match l with
9 | []→ ()

10 | hd::tl→bind α α (η hd) Ψ (f hd) (λ . iter α Φ f tl)

Examining the form of Ψ, note that it has the kind (α ⇒

heap ⇒ E)⇒ heap ⇒ E. Turning now to the body of the trans-
former, we have three clauses on lines 5–7, respectively. The first
clause, ∀h1. Φ [] h1 Ô⇒ ψ () h1, ensures that the post-condition
holds when the invariant holds on the base case of the recursion—
it is used to prove the post-condition ψ when we exit the recursion
at line 9. The second conjunct is a bit more subtle. It is most easily
understood from the perspective of a weakest pre-condition com-
putation. If we want the post-condition ψ to hold at the exit of the
function, then it must be established by the recursive call to iter at
line 10. So, at the recursive call, we instantiate the post-condition
of iter with ψ . For this call to succeed, the pre-condition requires
the inductive invariant to hold on the tail of the list, i.e., we re-
quire Φ tl. This pre-condition must be established by the call to
f, and since f is polymorphic in its post-condition, we can simply
instantiate this to (λ (). Φ tl). The pre-condition of the call to f is
then η (λ (). Φ tl) hd. This gives us our second clause: we need to
be able to derive the pre-condition to f from the invariant Φ hd::tl,
which we know to be valid at the entry of the loop, as required by
the third clause.

Note, the reasoning behind the type of iter is relatively mechan-
ical. In the future, we hope to be able to make this precise, and
automate inference, with inductive invariants, for higher-order li-
braries. Of course, actually instantiating the invariant at the call
site requires some ingenuity, as the next example illustrates.

Now, consider a simple client of iter, a function that iterates over
a list of positive integers poslist, repeatedly dividing the contents of
a ref cell by the elements of the list.

let x = ref 1000 in
let divx i = x := x / i in (* inferred type *)
let = iter (λ l h. (sel h x ≥ 0) ∧ AllGT0 l) divx poslist in
assert (λ h. sel h x ≥ 0)

The type inferred for divx, under a suitable model for the divi-
sion operator, is:

i:int→DST unit (Λψ.λh.i ≠ 0∧ψ () (upd h x (sel h x/i))).
It requires its argument i to be non-zero, and reflects the update of
x in the heap. Applying the iterator to divx and a list of integers and
then asserting that the contents of the x is non-negative requires
introducing an inductive invariant. Here, the invariant we choose
is that the heap at x is always non-negative, and using AllGT0 l,
we aim to prove that every element of the list is greater than
0. Discovering and annotating the invariant is, in general, hard.
But, at least our type inference algorithm takes care of the boring
details—explicit type instantiations for the other type parameters
are unnecessary.

Figure 7. A fragment of the F⋆ compiler front end, wherein the in-
ference and elaboration passes implement type inference for λDST.
Intermediate results are abstract syntax trees in the following form:
(A) undecorated λDST; (B) typed λDST; (C) monadic F⋆.

6. Experimental evaluation
We implement our algorithm as two front-end passes in the F⋆

compiler. The first pass infers stateful types for an undecorated
AST, producing a new AST decorated with the inferred types. The
second pass consumes the type decorations and transforms the AST
via monadic elaboration. As part of the elaboration, polymorphic
functions are instantiated at their call sites with the types inferred
during the first phase. The elaborated AST is then passed to the
underlying, unmodified F⋆ type checker.

λDST is a fragment of F⋆ and ultimately compiled by the F⋆

compiler. Naturally, it may be useful to allow stateful λDST mod-
ules to interact with other F⋆ modules by calling pure functions
defined therein. Our inference algorithm supports this by automat-
ically lifting external function calls into the Dijkstra monad. The
listing below describes the types at which refined F⋆ functions are
lifted.

Lifting refinement types in F⋆ to interop. with monadic code
t1 → t2 ↝ t1 →DST t2 (Λψ.λh.∀y:t2. ψ y h)
t1 → y:t2{φ} ↝ t1 →DST t2 (Λψ.λh.∀y:t2. φ Ô⇒ ψ y h)
x:t1{φ}→ t2 ↝ x:t1 →DST t2 (Λψ.λh.φ ∧∀y:t2. ψ y h)

Pure, unrefined external functions are lifted in a similar man-
ner to pure values—there are no effects on the heap, and thus the
weakest pre-condition is simply a given post-condition that holds
for any value the function may return. External functions may also
have general refinement types, unlike the refinement types that ap-
pear in λDST programs. (In λDST, pre- and post-conditions are the
only refinements.) However, there is a natural translation from re-
finements on functions into the Dijkstra monad. Intuitively, refine-
ments on the domain are constraints that must be discharged prior
to each function call site; thus, adding each domain refinement as
a conjunct in the pre-condition achieves the same result. Similarly,
a function that type checks in F⋆ with a refinement on the range
is guaranteed to return a value such that the refinement formula
holds. Therefore, rather than requiring that the post-condition hold
over all possible return values, as we did for unrefined function
types, we quantify over all values that satisfy the refinement; the
post-condition must only hold on values that satisfy the range re-
finement.

We have evaluated our implementation on a suite of thirty small
benchmark programs ranging in complexity from imperative and
straight-line to higher-order and recursive; the example functions
presented in previous sections are representative of our selection.
In total, we have verified approximately five hundred lines of code.

We find our initial experiments encouraging, particularly be-
cause we have already used the Dijkstra monad and our verification
condition generator in an extensive case study for the automated
verification of JavaScript programs (Swamy et al. 2012a). These
JavaScript programs are a particularly challenging benchmarks,
since they make pervasive use of a dynamically typed higher-order
store. We anticipate improving our implementation and scaling it
to infer types for larger F⋆ developments currently in progress, and
to simplify existing F⋆ code.

7. Related work and conclusions
There has been much success in applying SMT solvers to program
verification. Tools based on frameworks like Boogie (Leino and
Rümmer 2010) or Why (Filliâtre and Marché 2007)) have been
used to verify significant developments, e.g., the Vcc verifier (Co-
hen et al. 2009) has been used to verify tens of thousands of lines of
C code. However, a limitation of these tools is that they generally
apply only to first-order programs. There are some tools based on
Why that begin to scale to higher-order programs, e.g., Who (Kanig
and Filliâtre 2009), although this is limited in that it pre-supposes
a particular no-aliasing discipline.

In contrast, approaches based on dependent types such as
HTT (Nanevski et al. 2008) naturally handle stateful, higher-order
programs. But, the tool based on this approach, Ynot, is a li-
brary on top of the Coq interactive proof assistant (Bertot and
Castéran 2004) and, despite advances (Chlipala et al. 2009), still
requires considerable manual effort both in the computation of
verification conditions as well as in discharging proofs. More re-
cently, Charguéraud (2011) applies his characteristic formulae to
higher-order imperative programs. This approach translates the se-
mantics of a higher-order stateful program in to a formula in higher-
order logic, which can then be attacked in an interactive manner in
Coq. In contrast, our approach aspires to better automation via au-
tomated computation of verification conditions in a style that can
be handled by an SMT solver.

Also related is other work on F⋆ and related languages. Borgström
et al. (2009) present an application of the Hoare monad within the
F7 programming language. However, this work does not address
type inference, does not give a weakest pre-condition calculus, and
does not handle higher-order code. Also related is FX (Borgström
et al. 2011), which uses substructural state on top of a Hoare-like
monad to model local state; but, again, that work does not handle
inference or higher-orderness. Bhargavan et al. (2010) provide a
means of verifying higher-order programs in a language with only
first-order refinement types by adopting certain syntactic conven-
tions. Again, they do not attempt inference nor do they handle state.

Our approach to inferring instantiations for higher-rank types
resembles work on HMF (Leijen 2008). HMF requires function pa-
rameters with polymorphic types to be annotated, a similar restric-
tion to ours. However, unlike HMF, we have dependent, higher-
kinded, and monadic types, but only predicative instantiation—
instantiation of type variables in HMF may be impredicative.

Another line of work on verifying higher-order programs is via
higher-order model checking (Kobayashi et al. 2011) or via liq-
uid types (Rondon et al. 2008). These approaches aim to be auto-
mated by discovering invariants using a variety of means, includ-
ing predicate abstraction and counter-example guided abstraction
refinement (Clarke et al. 2003). However, the type systems used
in these works do not handle state, and they are relatively frag-
ile, e.g., they are sensitive to argument order when trying to verify
closure passing programs, even when these are pure. Nevertheless,
aiming to combine model checking or abstract interpretation based
approaches with our work is likely to pay dividends, particularly in
the inference of invariants.
Conclusions. The main observation of this paper is that structur-
ing specifications for higher-order stateful programs using predi-
cate transformers facilitates easy type inference. We identify a new
variant of the Hoare state monad, which we call the Dijkstra state
monad, that makes uniform use of predicate transformers to define
the weakest pre-condition of a computation. We develop a type in-
ference algorithm for an ML-like programming language based on
the Dijkstra monad, and prove our algorithm sound and complete.
Further, when specifications are written carefully, the verification
conditions we compute are in a form amenable to automated prov-

ing by SMT solvers. Our initial experience verifying programs in-
dicates that our advocated style is lightweight, and can be used to
verify many interesting programs with no annotations, save for loop
invariants.

References
Y. Bertot and P. Castéran. Coq’Art: Interactive Theorem Proving and

Program Development. Springer Verlag, 2004.
K. Bhargavan, C. Fournet, and N. Guts. Typechecking higher-order security

libraries. In APLAS, pages 47–62, 2010.
J. Borgström, A. Gordon, and R. Pucella. Roles, stacks, histories: A triple

for hoare. Technical Report MSR-TR-2009-97, MSR, 2009.
J. Borgström, J. Chen, and N. Swamy. Verifying stateful programs with

substructural state and hoare types. In PLPV ’11, Jan. 2011.
A. Charguéraud. Characteristic formulae for the verification of imperative

programs. In ICFP, 2011.
A. Chlipala, G. Malecha, G. Morrisett, A. Shinnar, and R. Wisnesky. Effec-

tive interactive proofs for higher-order imperative programs. In ICFP,
2009.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM,
50, 2003.

E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. San-
ten, W. Schulte, and S. Tobies. Vcc: A practical system for verifying
concurrent c. In TPHOLS, 2009.

L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation

of programs. Commun. ACM, 18:453–457, August 1975.
J. C. Filliâtre and C. Marché. The why/krakatoa/caduceus platform for

deductive program verification. CAV’07, 2007.
C. A. R. Hoare. An axiomatic basis for computer programming. Commun.

ACM, 12(10):576–580, 1969.
J. Kanig and J.-C. Filliâtre. Who: a verifier for effectful higher-order

programs. In ML, ML ’09, New York, NY, USA, 2009. ACM.
N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and cegar for

higher-order model checking. In PLDI, pages 222–233, 2011.
D. Leijen. HMF: simple type inference for first-class polymorphism. ICFP,

New York, NY, USA, 2008. ACM.
K. Leino and P. Rümmer. A Polymorphic Intermediate Verification Lan-

guage: Design and Logical Encoding. In TACAS. 2010.
J. Mccarthy. Towards a mathematical science of computation. In IFIP

Congress, pages 21–28. North-Holland, 1962.
A. Nanevski, G. Morrisett, and L. Birkedal. Hoare type theory, polymor-

phism and separation. J. Funct. Program., 18, September 2008.
P. M. Rondon, M. Kawaguchi, and R. Jhala. Liquid types. In PLDI, pages

159–169, 2008.
P.-Y. Strub, N. Swamy, C. Fournet, and J. Chen. Self-certification: Boot-

strapping certified typecheckers in F* with Coq. In POPL, 2012.
N. Swamy, J. Chen, C. Fournet, P.-Y. Strub, K. Bhargavan, and J. Yang.

Secure distributed programming with value-dependent types. In ICFP,
2011a.

N. Swamy, N. Guts, D. Leijen, and M. Hicks. Lightweight monadic
programming in ml. In ICFP, 2011b.

N. Swamy, J. Weinberger, J. Chen, B. Livshits, and C. Schlesinger. Monadic
refinement types for verifying JavaScript programs. Technical report,
MSR, 2012a. URL http://research.microsoft.com/fstar.

N. Swamy, J. Weinberger, C. Schlesinger, J. Chen, and B. Livshits. Towards
javascript verification with the dijkstra state monad. Technical report,
MSR, 2012b.

P. Wadler. The essence of functional programming. In POPL, 1992.
J. Wells. Typability and type checking in the second-order lambda;-calculus

are equivalent and undecidable. In LICS, 1994.

σ ∶∶= ∀ᾱ.t ∣ t
t ∶∶= T ∣ x:dyn{φ} ∣ x:t →DST dyn φ ∣ x:t → t′

Γ ∶∶= ⋅ ∣ x:σ ∣C:σ ∣ Γ,Γ
φ ∶∶= . . . (F⋆’s refinement logic)

Γ(x) ⪰ t
Γ ⊢ x ∶ t

Γ(C) ⪰ x:t → t ∀i.Γ ⊢ vi ∶ ti
Γ ⊢C v̄ ∶ t[v/x]

Γ,x:dyn ⊢ e ↑ φ

Γ ⊢ λ x̄.e ∶ x:dyn→DST dyn φ

Γ ⊢ v ∶ x:dyn{φ}
Γ ⊢ v ↑ Λψ.λh.φ[v/x]Ô⇒ ψ v h

Γ ⊢ v ∶ x:t →DST dyn φ ∀i.Γ ⊢ vi ∶ ti
Γ ⊢ v v̄ ↑ φ[v/x]

Γ ⊢ v ∶ t Γ(C) ⪰ x:t → t′

compat(t,t′) Γ,x:t ⊢ e1 ↑ φ1 Γ ⊢ e2 ↑ φ2

Γ ⊢match v with C x̄→ e1 else e2 ↑ Λψ.λh. (∀x.v =Cx̄Ô⇒ φ1 ψ h)
&& (∀x.v ≠Cx̄)Ô⇒ φ2 ψ h

Γ ⊢ e1 ↑ φ1 Γ,x:dyn ⊢ e2 ↑ φ2

Γ ⊢ let x = e1 in e2 ↑ Λψ.φ1(λx.φ2ψ)

where:
∀ᾱ.t ⪰ t[¯t/α] and t ⪰ t
compat(t,t) and compat(t,x:t{φ})
dyn ≡ x:dyn{True}

Figure 8. Γ ⊢ v ∶ t and Γ ⊢ e ↑ φ—type inference for JS⋆

A. Specializing for JS⋆

A specialized version of the type system in this paper is presented in
a conference-length paper by Swamy et al. (2012b). In this section,
we show the specialized version and relate it to the full system
described in this paper.

Figure 8 shows the λDST type inference algorithm from Sec-
tion 4 specialized for JS⋆, a dynamically-typed language encoding
a fragment of JavaScript in F⋆. Much of the syntax of JS⋆is fa-
miliar from Section 4.1. For brevity, we let T stand for type con-
stants (like int, bool, etc.) in types t. Refinement types—written
x:dyn{φ}—are already in F⋆ and fit naturally with the Dijkstra
monad. Finally, type constructors C are pure functions that may
appear bound in the context.

The judgment Γ ⊢ v ∶ t on values remains unchanged in form.
The first two rules depict a nondeterministic form of the (Var-poly)
rule from Figure 4, where the type x:t → t is syntactic sugar for a
pure function with no side effects. The rule for functions directly
corresponds to the (Lam) rule from Figure 4.

We abbreviate the judgment on expressions, Γ ⊢ {φ}e ∶ t {ψ},
as Γ ⊢ e ↑ φ

′, where φ
′ = Λψ.φ . The first rule corresponds to a

monadic unit and follows from the (Return) rule in Figure 4, except
that, if the value being returned has a refined type, then the weakest
pre-condition is guarded by this refinement. The rule for functions
is a straightforward specialization of the (App-τ) rule. Note that
JS⋆function parameters are always of type dyn, and hence the rule
(App-t) is not applicable. The conditional rule follows directly from
(If), and the final rule—for let expressions—specializes (Gen) in that
JS⋆bindings do not support polymorphism, and thus FTV(t) ∖
FTV(Γ)= {}.

B. The λDST Calculus
This section presents the judgments in the λDST calculus that we omitted from the main body of the paper. In particular, we show the
elaboration of surface terms into an annotated intermediate form and also show the inference of predicate transformers combined with an
elaboration of λDST programs to F⋆ (Section B.2).

B.1 Surface typing for λDST

The main inference algorithm assumes that a source λDST program has already been typed using the surface level judgment and converted
into an annotated form e, where every λ -bound variable is annotated with its type, and every use of a variable with a polymorphic type
is annotated with its type instantiations. The main body of the paper elides the elaboration of surface level terms into this intermediate,
annotated form.

The syntax of surface terms was shown in Figure 1 (Section 3) and the syntax of our intermediate annotated language, and the full syntax
of λDST types was shown in Figure 3 (Section 4.1).

We present the surface elaboration judgment below, a simple extension of the surface type system of Figure 2.

Γ ⊢ e ∶ t↝ e: Surface typing and elaboration for λDST, with important rules highlighted

Γ ⊢ () ∶ unit↝ () S-1
v ∈ {true, false}
Γ ⊢ v ∶ bool↝ v

S-b
Γ(x)= ∀ᾱ.t

Γ ⊢ x ∶ t[τ̄/ᾱ]↝ xτ̄

S-x

Γ,x:τ ⊢ e ∶ t↝ e′

Γ ⊢ λx.e ∶ τ → t↝ λx:τ.e′
S-Lam

Γ ⊢ v1 ∶ t→ t′ ↝ v′1 Γ ⊢ v2 ∶ t↝ v′2
Γ ⊢ v1 v2 ∶ t′ ↝ v′1 v′2

S-App

Γ ⊢ v ∶ bool↝ v′ ∀i ∈ {1,2}.Γ ⊢ ei ∶ t↝ e′i
Γ ⊢ if v then e1 else e2 ∶ t↝ if v′ then e′1 else e′2

S-If
Γ ⊢ v ∶ τ ↝ v′

Γ ⊢ ref v ∶ ref τ ↝ ref v′
S-Ref

Γ ⊢ v ∶ ref τ ↝ v′

Γ ⊢!v ∶ τ ↝!v′
S-Rd

Γ ⊢ v1 ∶ ref τ ↝ v′1 Γ ⊢ v2 ∶ τ ↝ v′2
Γ ⊢ v1 ∶= v2 ∶ unit↝ v′1 ∶= v′2

S-Wr

e1 ≠ v Γ ⊢ e1 ∶ t1 ↝ e′1 Γ,x:t1 ⊢ e2 ∶ t2 ↝ e′2
Γ ⊢ let x = e1 in e2 ∶ t2 ↝ let x = e′1 in e′2

S-Bind

Γ ⊢ v ∶ t1 ↝ v′ s = ∀ᾱ.t1 ᾱ = FTV(t1)∖FTV(Γ) Γ,x:s ⊢ e ∶ t↝ e′

Γ ⊢ let x = v in e ∶ t↝ let x = v′ in e′
S-Gen

B.2 Elaboration to F⋆

Here we present the full elaboration of typed λDST programs to F⋆, based on the interpretation of λDST types in F⋆ shown in Section 4.1.

Syntax of F⋆ types
t ∶∶= α ∣ T c ∣ x:t→ t′ ∣ ∀α::κ.t ∣ t a ∣ t t′ ∣ λx:t.t′ ∣ Λα::k.t ∣ x:t{φ} ∣ (x:t * t′) ∣ ¡t types
k ∶∶= ⋆ ∣ P ∣ A ∣ E ∣ x:t⇒ k ∣ α::k⇒ k′ kinds
v ∶∶= v ∣ . . . ∣ Λα::κ.e values
e ∶∶= e ∣ . . . ∣ e t expressions
a ∶∶= . . . ∣ v atoms

Signature SST ;ΓST in F⋆ for translation primitives

type ref :: ⋆⇒ ⋆
type heap :: ⋆
type ST φ α ψ = h:heap{φ h}→ (x:α * h’:heap{ψ x h}
type DST (α ::⋆) φ ::(α ⇒ heap⇒ E)⇒ heap⇒ E =

∀ψ::(α ⇒ heap⇒ E). ST (φ ψ) α ψ

val return : ∀α . x:α →DST α (Λψ::α⇒ heap⇒ E .ψ x)

val bind : ∀ α ::⋆ , β ::⋆ ,
φ1::(α ⇒ heap⇒ E)⇒ heap⇒ E ,
φ2::α ⇒ (β ⇒ heap⇒ E)⇒ heap⇒ E .
DST α φ1

→ (x:α →DST β (φ2 x))
→DST β (Λψ. φ1 (λy. φ2 y ψ))

val bind’: ∀ α ::⋆ , β ::⋆ ,
’Tx::(α ⇒ heap⇒ E)⇒ heap⇒ E ,
’Pre::α ⇒ heap⇒ E ,
’Post::β ⇒ heap⇒ E .
DST α ’Tx

→ (x:α →ST (’Pre x) β ’Post)
→ST (’Tx ’Pre) β ’Post

logic val Select : ref α→heap→α

logic val Update : ref α→α→heap→heap
logic val Domain : heap→set
logic val Mem : ref α→set→bool

val return e : ∀α ::⋆ . x:α →DST α (Λ ’Post.λ h. (∀x:α . ’Post x h))

val read : ∀α ::⋆ . x:ref α→DST α (Λ ’Post. λ h. ’Post (Select x h) h)

val write : ∀α ::⋆ . x:ref α→v:α →DST unit (Λ ’Post. λ h. ’Post () (Update x v h))

val alloc : ∀α ::⋆ . x:α →DST (ref α) (Λ’Post. λh. (∀(y:ref α). (Mem y (Domain h)=false)
Ô⇒ ’Post y (Update y x h)))

Inference of predicate transformers and elaboration to F⋆

Γ ⊢ v ∶ t ↝ v
⊢ Γ ok constant(v) typeofv = τ

Γ ⊢ v ∶ τ ↝ v
Const

⊢ Γ ok Γ(x)= t

Γ ⊢ x ∶ t ↝ x
Var

fresh η Γ,x:τ ⊢ {φ}e ∶ t {η}↝ e

Γ ⊢ λx:τ.e ∶ x:τ →DST t (Λη .φ)↝ λx:τ.Λη ::[[t]]⇒ heap⇒ E.e
Lam

Γ ⊢ {φ}e ∶ t {ψ}↝ e
Γ ⊢ v ∶ t ↝ v

Γ ⊢ {φ v}v ∶ t {φ}↝ return τ v [[φ]] Ret

⊢ Γ ok Γ(x)= ∀ᾱ.t′ t′[τ̄/ᾱ]= t

Γ ⊢ {λh.∀x:t.φ x h}xτ̄ ∶ t {φ}↝ let y = x τ̄ in return e [[t]] y [[φ]] Var-poly

Γ ⊢ v1 ∶ x:τ1 →DST t2 φ ↝ v1 Γ ⊢ v2 ∶ τ1 ↝ v2

Γ ⊢ {φ[v2/x] ψ}v1 v2 ∶ t2[v2/x]{ψ}↝ v1 v2 [[ψ]] App-τ

Γ ⊢ v1 ∶ ηκ .t1 →DST t2 φ
′ ↝ v1 Γ ⊢ v2 ∶ t′1 ↝ v2 ∣t′1∣= ς ∣t1∣ ς = [φ/η]

Γ ⊢ {ςφ
′

ψ}v1 v2 ∶ ςt2 {ψ}↝ v1 [[φ]] v2 [[ψ]]
App-t

fresh η e1 ≠ v Γ ⊢ {φ}e1 ∶ t1 {η}↝ e1 Γ,x:∣t1∣⊢ {φ
′}e2 ∶ t2 {ψ}↝ e2 ς = [λx:t1.φ ′/η]

Γ ⊢ {ςφ} let x = e1 in e2 ∶ ⌈t2⌉x:t1 {ψ}↝ bind’ [[t1]] [[⌈t2⌉x:t1]] [[Λη .φ]] [[λx:t1.φ ′]] [[ψ]] (Λη .e1) (λx:[[t1]].e2)
Bind

Γ ⊢ v ∶ t ↝ v′ σ = ∀ᾱ.t = Gen(Γ,t) Γ,x:σ ⊢ {φ}e ∶ t′ {ψ}↝ e v = Λᾱ::⋆ .v′
Γ ⊢ {φ[v/x]} let x = v in e ∶ t′[v/x]{ψ}↝ (λx:σ .e) v

Gen

Γ ⊢ v ∶ bool↝ v ∀i ∈ {1,2}.Γ ⊢ {φi}ei ∶ ti {ψ}↝ e t =∣t1∣ ⊔ ∣t2∣ φ = λh.(v = true Ô⇒ φ1 h)∧(v = false Ô⇒ φ2 h)
Γ ⊢ {φ} if v then e1 else e2 ∶ t {ψ}↝ if v then (e1 ∶ [[t]]) else (e2 ∶ [[t]])

If

Γ ⊢ v ∶ τ ↝ v φ = λh.∀y. y /∈ dom h Ô⇒ ψ y (upd h y v)
Γ ⊢ {φ} ref v ∶ ref t {ψ}↝ alloc τ v [[ψ]] Ref

Γ ⊢ v ∶ ref τ ↝ v

Γ ⊢ {λh.ψ (sel h v) h} !v ∶ t {ψ}↝ read τ v [[ψ]] (Rd)

Γ ⊢ v1 ∶ ref τ ↝ v1 Γ ⊢ v2 ∶ τ ↝ v2

Γ ⊢ {λh.ψ () (upd h v1 v2)}v1 ∶= v2 ∶ unit{ψ}↝write τ v1 v2 [[ψ]] (Wr)

C. Soundness
This section develops our soundness result (also quoted as Theorem 1 (Soundness) in the main body of the paper).

Throughout this section, for any Γ and a possibly empty sequence of types and formuls t̄,ψ̄ , we write [[Γ]]t̄,ψ̄ for SST ;ΓST ,[[Γ]],FTV(t̄,ψ̄)∖

FTV(Γ).

LEMMA 2 (Subtyping of closure). For all Γ,x:tx such that ⊢ [[Γ,x:tx]]⋅ ok; and t such that ⋅; ⋅ ⊢ t ok and [[Γ,x:tx]] ⊢F⋆ t::k. Then (G1)
[[Γ,x:t1]] ⊢ t <∶ ⌈t⌉x:tx and (G2) [[Γ]] ⊢ ⌈t⌉x:tx ∶∶ k.
Proof:
From the definition of ⌈t⌉x:tx appealing to F⋆’s refinement subtyping for the sub-goal (G1)
and, for (G2), noting that for N;A ⊢ ηκ .t →DST t′ ψ ok we have FV(t)=∅.

◻

LEMMA 3 (Subtyping of joins). For all Γ such that ⊢ [[Γ]]⋅ ok; and t1,t2 such that for all i ∈ {1,2} we have ⋅; ⋅ ⊢ ti ok and [[Γ]] ⊢F⋆ [[ti]]::k.
Then, if t1⊔ t2 exists, we have for all i ∈ {1,2}, [[Γ]] ⊢ [[ti]]<∶ [[t1⊔ t2]].
Proof:
From the definition of ⋅ ⊔ ⋅ and F⋆’s refinement subtyping.

◻

THEOREM 4 (Soundness).
1. Given an environment Γ such that ⊢ SST ;ΓST ,[[Γ]] ok

and values v,v′, and v, and types t,t
such that ⌊Γ⌋ ⊢ v ∶ t↝ v′

and (TV) Γ ⊢ v′ ∶ t ↝ v;
then SST ;ΓST ,[[Γ]],FTV(t)∖FTV(Γ); ⋅ ⊢F⋆ v ∶ [[t]].

2. Simultaneously, given an environment Γ such that ⊢ Γ ok
and expressions e,e′ and e; types t,t
and ψ such that (HK) SST ;ΓST ,[[Γ]],FTV(t,ψ)∖FTV(Γ) ⊢ [[ψ]] ∶∶ t⇒ heap⇒ E ,
such that ⌊Γ⌋ ⊢ e ∶ t↝ e′

and (TE) Γ ⊢ {φ}e ∶ t {ψ}↝ e;
then SST ;ΓST ,[[Γ]],FTV(t,ψ)∖FTV(Γ); ⋅ ⊢F⋆ e ∶ ST [[φ]] [[t]] [[ψ]].

Proof:
The proof is by mutual induction over the structure of (TV) and (TE).

The only non-trivial case of (TV) is the rule (Lam),
but this follows easily from the mutual inductin hypothesis on the premise.

The cases of (TE) are more interesting.

Case (S-Ret):
From the mutual induction hypothesis on the premise and type-correctness of F⋆

we obtain (HTV) [[Γ]]t ; ⋅ ⊢F⋆ v ∶ [[t]], and (HTK) [[Γ]]t ⊢F⋆ [[t]] ∶∶ ⋆.
We appeal to the signature of return, and use (HTV), (HTK) and (HK) to conclude.

Case (Var-poly): Similar to (S-Ret)

Case (App-τ):
Straightforward from the mutual induction hypothesis on each premise
and concluding with F⋆’s rules for application and type-application.

Case (App-t):
As in the previous case, except here we note first the interpretation of
higher-order function types as universal types in F⋆,
and second, observe that unification obeys the identity t1 = ςt2 Ô⇒ [[t1]]= [[ς]][[t2]].

Case (Bind):
From the induction hypothesis on the first premise, we obtain

[[Γ]]t,η ; ⋅ ⊢F⋆ e1 ∶ ST [[φ]][[t]]η

Or, [[Γ]]t ; ⋅ ⊢F⋆ Λη .e1 ∶DST [[t]] Λη .φ

From the induction hypothesis on the second premise, we obtain

[[Γ,x: ∣t1∣]]t2,ψ ; ⋅ ⊢F⋆ e2 ∶ ST [[φ
′
]][[t2]][[ψ]]

From the definition of ⌈t2⌉
x:t1 , and Lemma 2 (Subtyping of closure),

we obtain that [[Γ,x: ∣t1∣]]t2,ψ ⊢ [[t2]]<∶ [[⌈t2⌉
x:t1]].

Thus, we have [[Γ,x: ∣t1∣]]t2,ψ ; ⋅ ⊢F⋆ e2 ∶ ST [[φ
′
]][[⌈t2⌉

x:t1]][[ψ]]

Or, [[Γ]]t1,t2,ψ ; ⋅ ⊢F⋆ λx:[[t1]].e2 ∶ x:t1 → ST [[φ
′
]] [[t2]] [[ψ]]

The conclusion follows from the signature of bind’ and the F⋆ rules for application

Case (Gen):
Easy from the induction hypotheses and the F⋆ rule for application.

Case (If):
From the induction hypotheses on each premise,
and Lemma 3 (Subtyping of joins) for the conclusion.

Case (Ref), (Read), (Wr): All follow from the signature SST ,ΓST .
◻

D. Completeness
LEMMA 4 (Well-formed types).

(1) For all Γ such that ⊢ Γ ok and v,t,v such that Γ ⊢ v ∶ t ↝ v; we have ⋅; ⋅ ⊢∣t∣ ok.
(2) For all Γ such that ⊢ Γ ok and e,t,ψ,φ ,e such that Γ ⊢ {φ}e ∶ t {ψ}↝ e; we have ⋅; ⋅ ⊢∣t∣ ok.

Proof:
Easy mutual induction over the structure of derivations.

◻

LEMMA 5 (Unification of well-formed types).
For all η ,A,t1,t2 such that (EQ) ⌊t1⌋= ⌊t2⌋, and (WF1) η ;A⊢ t1 ok, and (WF2) ⋅;A⊢ t2 ok; then there exists unique φ

′
such that t1[φ

′
/η]= t2.

Proof:
By induction on the structure of WF1.

◻

LEMMA 6 (Normalization is irrelevant for erasure). For all t, ⌊t⌋= ⌊∣t∣⌋.
Proof:
Easy, by inspection, normalization only affects formulas, which get erased.

◻

LEMMA 7 (Existence of joins). For all t1,t2,M,A such that ⌊t1⌋= ⌊t2⌋, and M;A ⊢ t1 ok and M;A ⊢ t2 ok. Then t1⊔ t2 exists and is unique.
Proof:
By induction over the structure of one of the well-formedness judgment.

◻

LEMMA 8 (Substitutions commute with erasure).
For all t, α and τ , ⌊t⌋[τ/α]= ⌊t[τ/α]⌋.
Proof:
Trivial.

◻

LEMMA 9 (Value substitutions are irrelevant for erasure).
For all t, x and v, ⌊t⌋= ⌊t[v/x]⌋.
Proof:
Trivial—values only appear in predicate transformers, which are absent in partially erased types.

◻

LEMMA 10 (Predicate substitutions are irrelevant for erasure).
For all t, η and φ , ⌊t⌋= ⌊t[φ/η]⌋.
Proof:
Trivial—predicate variables only appear in predicate transformers, which are absent in partially erased types.

◻

THEOREM 5 (Completeness).

(1) Given an environment Γ such that (WF) ⊢ Γok and values v,v′ and type t such that (TV) ⌊Γ⌋⊢ v ∶ t↝ v′; then, given a fixed source of fresh
names, there exists unique t,v such that Γ ⊢ v′ ∶ t ↝ v and ⌊t⌋= t.

(2) Simultaneously, given an environment Γ such that (WF) ⊢ Γ ok and expressions e,e′ and type t such that (TE) ⌊Γ⌋ ⊢ e ∶ t↝ e′; then, for
any ψ , given a fixed source of fresh names, there exists unique t,φ ,e such that Γ ⊢ {φ}e′ ∶ t {ψ}↝ e and ⌊t⌋= t.

Proof:
We prove (1) and (2) by mutual induction on the structure of (TV) and (TE).

We start with the cases of (TV).
Case (S-1), (S-b): Trivial, since the only rule applicable is (Const).

Case (S-x):
We have (TV), specialized to the case where x is elaborated to a value x (rather than xτ̄):

⌊Γ⌋(x)= t

⌊Γ⌋ ⊢ x ∶ t↝ x

The conclusion follows from an application of (Var), relying on (WF) for the first premise.

Case (S-Lam):

We have (TV)
(TV.1) ⌊Γ⌋,x:τ ⊢ e ∶ t↝ e

⌊Γ⌋ ⊢ λx.e ∶ τ → t↝ λx:τ.e

For the conclusion, the only rule applicable is (Lam), and are required to prove
(TE.1) Γ,x:τ ⊢ {φ}e ∶ t {η}↝ e.

For (TE.1), we apply the mutual induction hypothesis to (TV.1), noting ⌊τ⌋= τ .
We obtain unique Γ,x:τ ⊢ {φ}e ∶ t {η}↝ e, where, (EQ) ⌊t⌋= t
To conclude, we must show that ⌊x:τ →DST t Λη .φ⌋= x:τ → t,

which is immediate from (EQ) and the definition of ⌊⋅⌋.

We now turn to the cases of (2), the second mutual induction step.

Case (S-x):

We have (TE)
(T E.1) ⌊Γ⌋(x)= ∀ᾱ.t

⌊Γ⌋ ⊢ x ∶ t[τ̄/ᾱ]↝ xτ̄

To conclude, the only rule applicable is (Var-poly).
We use (WF) for the first premise;
For the second premise, we appeal to (TE.1) and an inversion on ⌊⋅⌋

to get Γ(x)= ∀ᾱ.t
The third premise uses the substitution [τ̄/ᾱ], from the annotation,
and hence there is only one way to apply the rule.

To show that ⌊t[τ̄/ᾱ]⌋= t[τ̄/ᾱ], we apply Lemma 8 (Substitutions commute with erasure).

Case (S-App):

We have (TE)
⌊Γ⌋ ⊢ v1 ∶ t→ t′ ↝ v′1 ⌊Γ⌋ ⊢ v2 ∶ t↝ v′2

⌊Γ⌋ ⊢ v1 v2 ∶ t
′
↝ v′1 v′2

The induction hypotheses applied to each of the premises of (TE) yields,
(From-IH1) Γ ⊢ v′1 ∶ t1 where (EQ1) ⌊t1⌋= t→ t′ ↝ v′1
and (From-IH2) Γ ⊢ v′2 ∶ t ↝ v2 where (EQ2) ⌊t⌋= t.

We consider two sub-cases.
Sub-case (T1-EQ) t1 = x:τ →DST t′ ψ:

We apply (App-τ) (the only rule applicable), using (From-IH1) for the first premise.
To use (From-IH2) for the second premise, we require showing t = τ .

But, this follows from (EQ2) and that ⌊τ⌋= τ .
To conclude, we must show that ⌊t′[v2/x]⌋= t′,
but we know that ⌊t′⌋= t′ from (T1-EQ) and we apply Lemma 9 (Value substitutions are irrelevant for erasure).

Sub-case (T1-EQ) t1 = ηκ .targ →DST t′ ψ:

We apply (App-t), the only rule applicable, using (From-IH1) and (From-IH2) for the first two premises.
For the last two premises, we must show that ∣t∣= ς ∣targ∣.
For this, we apply Lemma 4 (Well-formed types) to (From-IH1), and get
η ; ⋅ ⊢∣ηκ .targ →DST t′ ψ ∣ ok.
From the definition of ∣⋅∣, we get that that η ; ⋅ ⊢ targ ok.
Next, we apply Lemma 4 (Well-formed types) to (From-IH2), and obtain ⋅; ⋅ ⊢∣t∣ ok.
And we apply Lemma 5 (Unification of well-formed types), to obtain the necessary unique substitution.

Finally, we use Lemma 10 (Predicate substitutions are irrelevant for erasure) to conclude.

Case (S-Bind):

We have (TE)
e1 ≠ v (T E.1)⌊Γ⌋ ⊢ e1 ∶ t1 ↝ e′1 (T E.2)⌊Γ⌋,x:t1 ⊢ e2 ∶ t2 ↝ e′2

⌊Γ⌋ ⊢ let x = e1 in e2 ∶ t2 ↝ let x = e′1 in e′2

From the induction hypothesis on the premise (TE.1), we get for fresh η ,
(From-IH1) Γ ⊢ {φ}e′1 ∶ t1 {η}↝ e1, ⌊t1⌋= t1.

From Lemma 4 (Well-formed types), we have ⊢ Γ,x: ∣t1∣ ok
From Lemma 6 (Normalization is irrelevant for erasure) we have ⌊∣t2∣⌋= t1,

and so ⌊Γ,x: ∣t1∣⌋= ⌊Γ⌋,x:t1.
With this last fact, we can apply the induction hypothesis to (TE.2) and obtain

(From-IH2) Γ,x: ∣t1∣⊢ {φ
′
}e′2 ∶ t2 {ψ}↝ e2, (EQ2) ⌊t2⌋= t2.

The only rule applicable is (Bind), and we use (From-IH1) and (From-IH2).
To conclude, we must show that ⌊⌈t2⌉

x:t1⌋= t2, but this is trivial from (EQ2), since closure only affects formulas.

Case (S-Gen):
Straightforward induction hypothesis to each premise, noting

⊢Gen(Γ,t) ok from the use of normalization in Gen(., .).

Case (S-If):
Syntactically, the only rule available is (If).
From the induction hypothesis applied to each premise of (TE),

we get each of the first three premises of (If).
For the fourth premise, we use Lemma 7 (Existence of joins) to prove that the join

exists and is unique.
The final premise is a tautology.

Case (S-Ref): Easy, from the induction hypothesis and an application of (Ref).

Case (S-Read): Easy, from the induction hypothesis and an application of (Read).

Case (S-Write):
Syntatically, the only rule avaiable is (Write).
We apply the induction hypothesis to each premise and obtain small types for each.

sufficient for the first two premises of (Write),
where the equality among small types is obtained from the premise of (TE),

since erasure is the identity on small types.
◻

E. First-Order verification conditions
The judgements Γ ⊢ e ∶ t↝ e′ and Γ ⊢ {φ}e′ ∶ t {ψ}↝ e combine to infer a stateful pre-condition φ for the program e and post-condition
ψ: if φ holds on an initial heap, then ψ will hold on the value and heap resulting from the execution of e. The underlying F⋆ type system
is powerful, and it is natural to ask whether the inference algorithm—which may instantiate higher-order type arguments for higher-order
function calls—always generates verification conditions that F⋆ can discharge via an SMT solver with first-order theories. This is indeed the
case, as we demonstrate in this section.

We begin by defining a judgment ⊢FO φ ok, which restricts the shape of formulae to exclude the higher-order quantification form
∀α::κ.φ , for κ ≠ ⋆.

Formulas without higher-order quantification

⊢FO φ ok
φ = T ∣ F ∣ a1 = a2 ∣ a1 ∈ a2

⊢FO φ ok
⊢FO φ1 ok ⊢FO φ2 ok

⊢FO φ1 ∧φ2 ok
⊢FO φ1 ok ⊢FO φ2 ok

⊢FO φ1 ∨φ2 ok
⊢FO φ ok
⊢FO ¬φ ok

⊢FO φ1 ok ⊢FO φ2 ok
⊢FO φ1 Ô⇒ φ2 ok

⊢FO φ ok
⊢FO ∀x:σ .φ ok

⊢FO φ ok
⊢FO ∃x:σ .φ ok

⊢FO φ ok
⊢FO ∀α:⋆ .φ ok

⊢FO φ ok

⊢FO λx:t.φ ok

⊢FO φ ok
⊢FO φ a ok

⊢FO φ ok
⊢FO Λα::κ.φ ok

⊢FO φ ok ⊢FO ψ ok
⊢FO φ ψ ok

⊢FO φ ok
⊢FO ∀α::⋆ .φ ok ⊢FO η ok

Next, we prove a lemma establishing that, given a well-formed context and a post-condition lacking higher-order quantification, our
inference algorithm computes a pre-condition without higher-order quantifiers.

LEMMA 11 (Well-formed Verification Conditions). For all contexts Γ such that ⊢FO Γ ok; formulae ψ such that ⊢FO ψ ok; expressions
e; types t; and pre-conditions φ ; if (TE) Γ ⊢ {φ}e ∶ t {ψ}, then ⊢FO φ ok.

Proof:
The proof procedes by induction on the typing relation (TE).

◻

Intuitively, the above lemma shows that the inference algorithm does not introduce higher-kinded quantification where none previously
existed.

Now, consider the verification condition generated by the inference algorithm. The judgment Γ ⊢ {φ}e′ ∶ t {ψ} ↝ e produces a pre-
condition that is well kinded in Γ at kind heap⇒E. Applying the pre-condition to some initial heap H yields the verification condition (φ H),
which is well-kinded at kind E. Now, since formulae have a standard beta reduction rule and there are no fixed points, we can reduce these to
a normal form.

(λx.φ) v↝ φ[v/x]
R-λ

(Λα.φ1) φ2 ↝ φ1[φ2/α]
R-Λ

DEFINITION 12 Let φ̂ denote the normal form resulting from a standard beta reduction of φ closed under (R-λ) and (R-Λ), both part of F⋆’s
equivalence relation on types.

We next prove a standard cannonical forms lemma on formulae, where we consider the possible normal forms for E-kinded formulae in
an environment Γ.

LEMMA 13 (Canonical forms of well-formed formulae). For all Γ,φ , if SST ;ΓST ,Γ ⊢ [[φ]] ∶∶ E, and ⊢FO φ , then φ̂ is one of the following:

• T ∣ F.
• a1 = a2 ∣ a1 ∈ a2, for all a2,a2.
• φ1∧φ2 ∣ φ1∨φ2 ∣ ¬φ1 ∣ φ1 Ô⇒ φ2 ∣ ∀x:σ .φ1 ∣ ∃x:σ .φ1 ∣ ∀α::⋆ .φ1, for all φ1,φ2 well-kinded at kind E and canonical.
• ηE
• ηκ⇒κ ′ φ1

Proof:
Straightforward induction on the structure of φ .

◻

Most of the syntactic operators that comprise formulae—including equality, implication, and quantification—can be trivially represented
using first-order theories. In fact, for E-kinded formulas in canonical form, only the last two forms involving η variables pose potential
difficulty—Λ-abstraction over predicates have been eliminated via reduction. The proposition below captures this property.

PROPOSITION 14 (First-order formula). For all Γ,φ , if SST ;ΓST ,Γ ⊢ [[φ]] ∶∶ E, if ⊢FO φ and ηE /∈ FTV(φ̂) and ηκ⇒κ ′ /∈ FTV(φ̂) then φ̂

is a first-order formula.
Proof:
Immediate, from the canonical forms lemma.

◻

Next, we introduce an auxiliary lemma, which establishes that (aside from the pre- and post-condition), the types computed by our
inference algorithm have no free predicate variables.

LEMMA 15 (Free-type variables are ⋆-kinded). For all Γ such that ⊢ SST ;ΓST ,[[Γ]] ok, and an e,e,t,φ ,ψ such that Γ ⊢ {φ}e ∶ t {ψ}↝ e,
we have that for all α ∈ FTV(t), SST ;ΓST ,[[Γ]]t ⊢ α::⋆.
Proof:
By induction over the structure of the typing judgment.

◻

With these tools in hand, we state and prove our final theorem, i.e., that when starting from closed, first-order post-conditions, every
verification condition generated by our inference algorithm is representable in a first-order theory.

THEOREM 6 (First-order Verification Conditions). For all contexts Γ such that ⊢ Γ ok and ⊢FO Γ ok; post-condition formulae ψ such
FTV(ψ)= ∅ and that ⊢FO ψ ok; expressions e; types t; pre-conditions φ ; and heap H, such that Γ ⊢ H ∶ heap; if Γ ⊢ {φ}e ∶ t {ψ}↝ e,
then φ̂ H is a first-order formula.
Proof:
From our soundness theorem, we have SST ;ΓST ;[[Γ]]t ⊢ e ∶ ST [[φ]] [[t]] [[ψ]].
From the type-correctness of F⋆, we have SST ;ΓST ;[[Γ]]t ⊢ [[φ]] ∶∶ heap⇒ E
And SST ;ΓST ;[[Γ]]t ⊢ [[φ H]] ∶∶ E
From Lemma 15 (Free-type variables are ⋆-kinded), we know that [[Γ]]t binds only ⋆-kinded type variables, we know that

ηE /∈ FTV([[φ H]]) and
ηκ⇒κ ′ /∈ FTV([[φ H]]).

From the definition of [[⋅]], a simple congruence over formulas, we know
ηE /∈ FTV(φ H) and
ηκ⇒κ ′ /∈ FTV(φ H).

Applying Lemma 1 (Well-formed Verification Conditions) we have ⊢FO φ and we conclude using Proposition 14 (First-order formula).
◻

